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Resources & Background

Resources Admittedly self-centered

ODE Method (using different meaning than in the 1970s)

Goal: find solution to f̄(θ∗) = 0

f̄(θ) = E[f(θ, ξn+1)]

ODE algorithm:
d

dt
ϑt = f̄(ϑt) design for stability

Euler approximation: θn+1 = θn + αn+1f̄(θn)

Stochastic Approximation: θn+1 = θn + αn+1f(θn,ξn+1)

CS&RL, Chapters 4 and 8
The ODE Method for Asymptotic Statistics in Stochastic
Approximation and Reinforcement Learning [56, 57]
And of course Borkar’s manifesto

TD Methods CS&RL:

Chapter 5 (purely deterministic setting)
Chapters 9 & 10 (traditional MDP)

Control Techniques
FOR

Complex Networks

Sean Meyn

Pre-publication version for on-line viewing. Monograph available for purchase at your favorite retailer   
More information available at  http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521884419

Markov Chains
and

Stochastic Stability

S. P. Meyn and  R. L. Tweedie

August 2008 Pre-publication version for on-line viewing.   Monograph to appear Februrary 2009 
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New material in this lecture:
[2] The projected Bellman equation in reinforcement learning. IEEE Transactions on
Automatic Control (to appear).
[3] Stability of Q-learning through design and optimism. arXiv 2307.02632, 2023.

1 / 34

https://meyn.ece.ufl.edu/2021/08/01/control-systems-and-reinforcement-learning
http://www.meyn.ece.ufl.edu/archive/spm_files/CTCN/CTCN.html
http://www.meyn.ece.ufl.edu/archive/spm_files/book.html
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Resources & Background

Too many resources to list

Sadly, I am leaving out all of the fun zero-variance theory with Caio Lauand

Introducing Dr. Lauand in May, 2025

Stick around for tutorial next Thursday at
2 / 34



Q Learning



Watkins MDP Theory

Stochastic Optimal Control (Review)

MDP Model

X is a stationary controlled Markov chain, with input U

For all states x and sets A,

P{Xn+1 ∈ A | Xn = x, Un = u, and prior history} = Pu(x,A)

c : X× U → R is a cost function

γ < 1 a discount factor

Q function:

Q∗(x, u) = min
U

∞∑
n=0

γnE[c(Xn, Un) | X(0) = x, U(0) = u]

Bellman equation:

Q∗(x, u) = c(x, u) + γE
[
min
u′

Q∗(Xn+1, u
′) | Xn = x, Un = u

]
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Watkins Q-Learning

Q-Learning and Galerkin Relaxation

Dynamic programming

Find function Q∗ that solves (Fn means history)

E
[
c(Xn, Un) + γQ∗(Xn+1)−Q∗(Xn, Un) | Fn

]
= 0

H(x) = min
u
H(x, u)

Goal of Q-Learning

Given {Qθ : θ ∈ Rd}, find θ∗ that solves f̄(θ∗) = 0,

f̄(θ)
def
= E

[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

The family {Qθ} and eligibility vectors {ζn} are part of algorithm design.

Projected Bellman Equation: f̄ (θ∗) = 0

4 / 34
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Watkins Q-Learning

Q(0)-Learning Goal f̄(θ∗) = 0

f̄(θ) = E
[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

Prototypical choice ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

=⇒ prototypical Q-learning algorithm

Q(0) Learning Algorithm

Estimates obtained using SA

θn+1 = θn + αn+1fn+1 fn+1 =
{
cn + γQθ

n+1
−Qθ

n

}
ζn

∣∣∣
θ=θn

Qθ
n+1

= Qθ(Xn+1,ϕ
θ(Xn+1))

ϕθ(x) = argmin
u

Qθ(x, u) [Qθ-greedy policy]

Input {Un} chosen for exploration.
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Watkins Linear function approximation

Q(0)-Learning Goal f̄(θ∗) = 0

Q(0)-learning with linear function approximation

Estimates obtained using SA

θn+1 = θn + αn+1fn+1 fn+1 =
{
cn + γQθ

n+1
−Qθ

n

}∣∣∣
θ=θn

ζn

Qθ
n+1

= Qθ(Xn+1),ϕ
θ(Xn+1))

Qθ(x, u) = θTψ(x, u)

Qθ(x) = θTψ(x,ϕθ(x))

ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

= ψ(Xn, Un)

f̄(θ) = A(θ)θ − b̄ p.w. constant if U is oblivious

A(θ) = E
[
ζn
[
γψ(Xn+1,ϕ

θ(Xn+1))− ψ(Xn, Un)
]T ]

b̄
def
= E

[
ζnc(Xn, Un)

]
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Watkins Linear function approximation

Watkins’ Q-learning

E
[{
c(Xn, Un) + γQθ∗(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]
= 0

Watkin’s algorithm A special case of Q(0)-learning

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Convergence of Qθn to Q∗ holds under mild conditions

Asymptotic covariance is infinite for γ ≥ 1/2 [5]
σ2 = lim

n→∞
nE[∥θn − θ∗∥2] = ∞
Using the standard step-size rule αn = 1/n(x, u)

7 / 34



Watkins Linear function approximation

Watkins’ Q-learning

E
[{
c(Xn, Un) + γQθ∗(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]
= 0

Watkin’s algorithm A special case of Q(0)-learning

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Convergence of Qθn to Q∗ holds under mild conditions

Asymptotic covariance is infinite for γ ≥ 1/2 [5]
σ2 = lim

n→∞
nE[∥θn − θ∗∥2] = ∞
Using the standard step-size rule αn = 1/n(x, u)

7 / 34



Watkins Linear function approximation

Watkins’ Q-learning

E
[{
c(Xn, Un) + γQθ∗(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]
= 0

Watkin’s algorithm A special case of Q(0)-learning

The family {Qθ} and eligibility vectors {ζn} in this design:

Linearly parameterized family of functions: Qθ(x, u) = θTψ(x, u)

ζn ≡ ψ(Xn, Un)

ψi(x, u) = 1{x = xi, u = ui} (complete basis)

Convergence of Qθn to Q∗ holds under mild conditions

Asymptotic covariance is infinite for γ ≥ 1/2 [5]
σ2 = lim

n→∞
nE[∥θn − θ∗∥2] = ∞
Using the standard step-size rule αn = 1/n(x, u)

7 / 34



Watkins Linear function approximation

Asymptotic Covariance of Watkins’ Q-Learning
This is what infinite variance looks like

1
4

65
3 2σ2 = lim

n→∞
nE[∥θn − θ∗∥2] = ∞ Wild oscillations?

Not at all, the sample paths appear frozen
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Histogram of parameter estimates after 106 iterations.
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This is what infinite variance looks like

1
4

65
3 2σ2 = lim

n→∞
nE[∥θn − θ∗∥2] = ∞ Wild oscillations?

Not at all, the sample paths appear frozen

Sample paths using a higher gain, or relative Q-learning [8]
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Figure 1: Comparison of Q-learning and Relative Q-learning algorithms for the stochastic shortest
path problem of [4]. The relative Q-learning algorithm is unaffected by large discounting.
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8 / 34



Watkins Linear function approximation

Asymptotic Covariance of Watkins’ Q-Learning
Can we do better?

1
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Figure 1: Comparison of Q-learning and Relative Q-learning algorithms for the stochastic shortest
path problem of [4]. The relative Q-learning algorithm is unaffected by large discounting.

Relative Q-learning: estimate relative Q-function,

H∗(x, u) = Q∗(x, u)− δ⟨ν, Q∗⟩

And don’t use step-size αn = g/n [Recall Eric’s Tuesday plenary]

First consider second order methods
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An intelligent mouse might offer other clues
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Zap

Momentum

Zap



Zap Need for second order methods

Motivation

The ODE method begins with design of the ODE: d
dtϑ = f̄(ϑ)

Challenges we have faced with Q-learning:

How can we design dynamics for
1 Stability
2 f̄(θ∗) = 0 solves a relevant problem

How can we better manage problems introduced by 1/(1− γ)?
Relative Q-Learning is one approach

Assuming we have solved , forget and
approximate Newton-Raphson flow:

d

dt
f̄(ϑt) = −f̄(ϑt) giving f̄(ϑt) = f̄(ϑ0)e

−t

10 / 34
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Zap Feedback linearization

Zap Algorithm Designed to emulate Newton-Raphson flow
d
dt
ϑt = −[A(ϑt)]

−1f̄(ϑt), A(θ) = ∂θ f̄ (θ)

Zap-SA

θn+1 = θn + αn+1Gn+1f(θn,ξn+1) Gn+1 = −[Ân+1]
−1

Ân+1 = Ân + βn+1(An+1 − Ân) An+1 = ∂θf(θn,ξn+1)

Ân+1 ≈ A(θn) requires high-gain:
βn
αn

→ ∞, n→ ∞

Numerics that follow: αn = 1/n, βn = (1/n)ρ, ρ ∈ (0.5, 1)

Zap Q-Learning: f(θn,ξn+1) =
{
c(Xn, Un) + γQθ∗(Xn+1)−Qθ∗(Xn, Un)

}
ζn

ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

An+1 = ζn
[
γψ(Xn+1,ϕ

θ(Xn+1))− ψ(Xn, Un)
]T

ϕθ(x) = argmin
u

Qθ(x, u)

11 / 34
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Zap Feedback linearization

Zap Algorithm Designed to emulate Newton-Raphson flow
d
dt
ϑt = −[A(ϑt)]

−1f̄(ϑt), A(θ) = ∂θ f̄ (θ)
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Zap Challenges and remarkable conclusions

Challenges

Q-learning: {Qθ(x, u) : θ ∈ Rd , u ∈ U , x ∈ X}
Find θ∗ such that f̄(θ∗) = 0, with

f̄(θ) = E
[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn
]

What makes theory difficult:

1 Does f̄ have a root?

2 Does the inverse of A exist?

3 SA theory is weak for a discontinuous ODE

=⇒ resolved for Zap by exploiting special structure,
even for NN function approximation [6, 1]

Conclusions for Zap: Stability and optimal asymptotic covariance Σ∗

[Recall Eric’s Tuesday plenary for defn of Σ∗]
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Zap Zap Along Walk to the Cafe

Zap Q-Learning
Optimize Walk to Cafe

1
4

65
3 2

Convergence with Zap gain βn = n−0.85

Infinite covariance with αn = 1/n or 1/n(x, u).
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Zap Zap Along Walk to the Cafe

Zap Q-Learning
Optimize Walk to Cafe

1
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65
3 2Convergence with Zap gain βn = n−0.85
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Zap Zap Q-Learning with Neural Networks

Zap with Neural Networks

0 = f̄(θ∗) = E
[{
c(Xn, Un) + γQθ∗(Xn+1)−Qθ∗(Xn, Un)

}
ζn
]

ζn = ∇θQ
θ(Xn, Un)

∣∣
θ=θn

computed using back-progagation
A few things to note:

As far as we know, the empirical success of plain vanilla DQN is
extraordinary (however, nobody reports failure)

VI. Stunning reliability with  parameterized by various neural networksQθ

Reliability and stunning transient performance
—from coupling with the Newton-Raphson flow.
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A few things to note:

As far as we know, the empirical success of plain vanilla DQN is
extraordinary (however, nobody reports failure)
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Projected Bellman Equation

Theory and Practice

ϕθ(x) = argmin
u

Qθ(x, u)

Most of the elegant theory for tabular Q-learning: training is oblivious

In practice we follow the intelligent mouse

Approaches to exploration, Uk ∼ ϕ̃k( · | Xk):

ε-greedy, Uk = ϕθ(Xk) probability 1− ε small ε > 0

Discontinuous vector field
Lipschitz fails (and more)

Tamed Gibbs, ϕ̃θ
0(u | x) = 1

Zθ
κ(x)

exp
(
−κθQθ(x, u)

)
κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2κ0 else

SA recursion satisfies all the assumptions New in 2023

16 / 34



Projected Bellman Equation

Theory and Practice

ϕθ(x) = argmin
u

Qθ(x, u)

Most of the elegant theory for tabular Q-learning: training is oblivious

In practice we follow the intelligent mouse

I only need to see the cat once

Approaches to exploration, Uk ∼ ϕ̃k( · | Xk):

ε-greedy, Uk = ϕθ(Xk) probability 1 − ε small ε > 0

Discontinuous vector field
Lipschitz fails (and more)

Tamed Gibbs, ϕ̃θ
0(u | x) =

1

Zθ
κ(x)

exp
(
−κθQ

θ
(x, u)

)
κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2
κ0 else

SA recursion satisfies all the assumptions New in 2023

16 / 34



Projected Bellman Equation

Theory and Practice ϕθ(x) = argmin
u

Qθ(x, u)

Most of the elegant theory for tabular Q-learning: training is oblivious

In practice we follow the intelligent mouse

Approaches to exploration, Uk ∼ ϕ̃k( · | Xk):

ε-greedy, Uk = ϕθ(Xk) probability 1− ε small ε > 0

Discontinuous vector field

Gibbs, ϕ̃k(u | x) = 1

Z exp
(
−κQθk(x, u)

)
large κ > 0

Lipschitz fails (and more)

Tamed Gibbs, ϕ̃θ
0(u | x) = 1

Zθ
κ(x)

exp
(
−κθQθ(x, u)

)
κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2κ0 else

SA recursion satisfies all the assumptions New in 2023

16 / 34



Projected Bellman Equation

Theory and Practice ϕθ(x) = argmin
u

Qθ(x, u)

Most of the elegant theory for tabular Q-learning: training is oblivious

In practice we follow the intelligent mouse

Approaches to exploration, Uk ∼ ϕ̃k( · | Xk):

ε-greedy, Uk = ϕθ(Xk) probability 1− ε small ε > 0

Discontinuous vector field

Gibbs, ϕ̃k(u | x) = 1

Z exp
(
−κQθk(x, u)

)
large κ > 0

Lipschitz fails (and more)

Tamed Gibbs, ϕ̃θ
0(u | x) = 1

Zθ
κ(x)

exp
(
−κθQθ(x, u)

)
κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2κ0 else

SA recursion satisfies all the assumptions New in 2023

16 / 34



Projected Bellman Equation

Theory and Practice ϕθ(x) = argmin
u

Qθ(x, u)

Most of the elegant theory for tabular Q-learning: training is oblivious

In practice we follow the intelligent mouse

Approaches to exploration, Uk ∼ ϕ̃k( · | Xk):

ε-greedy, Uk = ϕθ(Xk) probability 1− ε small ε > 0

Discontinuous vector field

Gibbs, ϕ̃k(u | x) = 1

Z exp
(
−κQθk(x, u)

)
large κ > 0

Lipschitz fails (and more)
Approximates ε-greedy policy with ε = 0 if θk is large

Tamed Gibbs, ϕ̃θ
0(u | x) = 1

Zθ
κ(x)

exp
(
−κθQθ(x, u)

)
κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2κ0 else

SA recursion satisfies all the assumptions New in 2023

16 / 34



Projected Bellman Equation

Theory and Practice ϕθ(x) = argmin
u

Qθ(x, u)

Most of the elegant theory for tabular Q-learning: training is oblivious

In practice we follow the intelligent mouse

Approaches to exploration, Uk ∼ ϕ̃k( · | Xk):

ε-greedy, Uk = ϕθ(Xk) probability 1− ε small ε > 0

Discontinuous vector field

Gibbs, ϕ̃k(u | x) = 1

Z exp
(
−κQθk(x, u)

)
large κ > 0

Lipschitz fails (and more)

Tamed Gibbs, ϕ̃θ
0(u | x) = 1

Zθ
κ(x)

exp
(
−κθQθ(x, u)

)
New in 2023

κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2κ0 else

SA recursion satisfies all the assumptions New in 2023

16 / 34



Projected Bellman Equation

Theory and Practice ϕθ(x) = argmin
u

Qθ(x, u)

Most of the elegant theory for tabular Q-learning: training is oblivious

In practice we follow the intelligent mouse

Approaches to exploration, Uk ∼ ϕ̃k( · | Xk):

ε-greedy, Uk = ϕθ(Xk) probability 1− ε small ε > 0

Discontinuous vector field

Gibbs, ϕ̃k(u | x) = 1

Z exp
(
−κQθk(x, u)

)
large κ > 0

Lipschitz fails (and more)

Tamed Gibbs, ϕ̃θ
0(u | x) = 1

Zθ
κ(x)

exp
(
−κθQθ(x, u)

)
large κ0 > 0

κθ

{
= 1

∥θ∥κ0 ∥θ∥ ≥ 1

≥ 1
2κ0 else

SA recursion satisfies all the assumptions New in 2023
16 / 34



Projected Bellman Equation

Theory for Tamed Gibbs ϕ̃k(u | x) def
= P{Uk = u | Fk ;Xk = x}

For ease of analysis: ϕ̃k(u | x) = (1− ε)ϕ̃θk
0 (u | x) + ενW(u)

Assumptions: Qθ(x, u) = θTψ(x, u), and

For oblivious policy (ε = 1):

1 There is a unique invariant pmf πW for (X,U).

2 The covariance is full rank,

RW = EπW

[
ψ(Xn, Un)ψ(Xn, Un)

T
]
, Un = Wn ∼ νW

First step in analysis is to show that and hold for any ε > 0:

There is a unique invariant pmf πθ for (X,U).

The covariance is full rank,

RΘ(θ) = Eπθ

[
ψ(Xn, Un)ψ(Xn, Un)

T
]
, Un ∼ ϕ̃n( · | Xn)
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Projected Bellman Equation

Theory f̄(θ)
def
= E

[{
c(Xn, Un) + γQθ(Xn+1)−Qθ(Xn, Un)

}
ζn

]
Stability with sufficient optimism.
There is εγ > 0 (lower bound given in paper) for which the following hold:

For each 0 < ε < εγ , there is κε,γ such that

The mean flow d
dtϑ = f̄(ϑ) is ultimately bounded.

There is at least one solution to the projected Bellman equation

f̄(θ∗) = 0
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For each 0 < ε < εγ , there is κε,γ such that

The mean flow d
dtϑ = f̄(ϑ) is ultimately bounded.

There is at least one solution to the projected Bellman equation

f̄(θ∗) = 0

Proof follows Van Roy’s analysis of TD-learning,

d

dt
∥ϑt∥ ≤ −δ∥ϑt∥ , if ∥ϑt∥ ≥ 1/δ
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Goal: solve T (θ∗) = θ∗
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The mean flow d
dtϑ = f̄(ϑ) is ultimately bounded.

There is at least one solution to the projected Bellman equation

f̄(θ∗) = 0

Proof follows from the stability proof:

Denote T (θ) = θ + ε0f̄(θ) for θ ∈ Rd, with ε0 > 0 sufficiently small.

∥T (θ)∥ ≤ 1/δ , if ∥θ∥ ≤ 1/δ

Brouwer’s fixed-point theorem tells us T (θ∗) = θ∗ has at least one solution.

See also de Farias & Van Roy [18]
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= E
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For each 0 < ε < εγ , there is κε,γ such that

The mean flow d
dtϑ = f̄(ϑ) is ultimately bounded.

There is at least one solution to the projected Bellman equation

f̄(θ∗) = 0

Under some additional assumptions θ∗ is locally asymptotically stable

18 / 34



Projected Bellman Equation

Baird’s Example ϕ̃k(u | x) = (1− ε)ϕ̃
θk
0 (u | x) + ενW(u)

1 2 3 4 5 6

7

hθ(x) = θTψ(x) =
θ8 + 2θk x = k ≤ 6

2θ8 + θ7 x = 7

The need for ε > 0 sufficiently small:

Recent application to change detection, using Zap: A∗ = ∂θ f̄ (θ
∗) is not Hurwitz [7].
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Future work:

Beyond the projected Bellman error for Q-learning [45, 46, 47, 48]

Zap with optimism

Acceleration techniques (momentum and matrix momentum)
See Zap-Zero in CS&RL and [3]
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