
Intro to deep RL,
the concept of generalization and

the importance of representation learning

Vincent François-Lavet

19 juin 2024

1/48

Motivation : Overview

2/48

Outline

Introduction

Generalization in deep RL
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

Model-based methods (planning-based techniques)
Model-free techniques

3/48

Outline

Introduction

Generalization in deep RL
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

Model-based methods (planning-based techniques)
Model-free techniques

3/48

Outline

Introduction

Generalization in deep RL
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

Model-based methods (planning-based techniques)
Model-free techniques

3/48

Outline

Introduction

Generalization in deep RL
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

Model-based methods (planning-based techniques)
Model-free techniques

3/48

Introduction

4/48

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

5/48

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

5/48

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

5/48

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

5/48

Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

transitions
are usually
stochastic

Environment
st → st+1

Observations and
actions may be

high dimensional

ωt+1at

Observations may not
provide full knowledge

of the underlying
state : ωt 6= st

Environment
st → st+1

ωt+1

Environment
st → st+1

Experience may be constrained
(e.g., not access to an accu-

rate simulator or limited data)

5/48

Definition of an MDP
An MDP can be defined as a 5-tuple (S,A,T ,R, γ) where :

I S is a finite set of states {1, . . . ,NS},
I A is a finite set of actions {1, . . . ,NA},
I T : S ×A → P(S) is the transition function (set of conditional transition

probabilities between states),

I R : S ×A× S → R is the reward function, where R is a continuous set
of possible rewards in a range Rmax ∈ R+ (e.g., [0,Rmax]),

I γ ∈ [0, 1) is the discount factor.

s0 s1 s2

a0 a1r0 r1

. . .
Policy

Reward
function

R(s0, a0, s1)

Transition
function

T (s0, a0, s1)

Policy
Reward
function

R(s1, a1, s2)

Transition
function

T (s1, a1, s2)

6/48

Performance evaluation

In an MDP (S,A,T ,R, γ), the discounted expected return
V π(s) : S → R (π ∈ Π, e.g., S → A) is defined such that

V π(s) = E
[∑∞

k=0
γk rt+k | st = s, π

]
, (1)

with γ ∈ [0, 1).

From the definition of the (discounted) expected return, the optimal
expected return can be defined as

V ∗(s) = max
π∈Π

V π(s). (2)

and the optimal policy can be defined as :

π∗(s) = argmax
π∈Π

V π(s). (3)

7/48

Overview of the techniques used for finding the optimal
policy π∗

In general, an RL agent may include one or more of the following
components :

I a model of the environment in conjunction with a planning
algorithm.

I a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

I a direct representation of the policy π(s) or π(s, a), or

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

8/48

Strengths and weaknesses of model-based methods

The respective strengths of the model-free versus model-based
approaches depend on different factors.

X For some tasks, the model of the environment is available or
can be learned efficiently due to the particular structure of the
task.

7 If the agent does not have access to a generative model of the
environment, the learned model will have some inaccuracies.

7 A model-based approach requires working in conjunction with
a planning algorithm, which is computationally demanding.

9/48

Generalization in deep RL

10/48

Challenges of applying RL to real-world problems

In real-world scenarios, it is often not possible to let an agent
interact freely and sufficiently in the actual environment :

I The agent may not be able to interact with the true
environment but only with an inaccurate simulation of it. This
is known as the reality gap.

I The agent might have access to only limited data. This can
be due to safety constraints (robotics, medical trials, etc.),
compute constraints or due to limited exogenous data (e.g.,
weather conditions, trading markets).

11/48

Generalization

In an RL algorithm, generalization refers to either

I the capacity to achieve good performance in an environment
where limited data has been gathered, or

I the capacity to obtain good performance in a related
environment. This latter case can be tackled with specific
transfer learning techniques.

12/48

Overview

To understand generalization in RL from limited data, we will

I take inspiration from the bias-variance concept in supervised
learning, and

I introduce the formulation in RL.

We’ll then discuss how an agent can have a good generalization in
RL (disclaimer : we’ll see where deep RL comes in !)

13/48

Bias and overfitting in supervised learning

A supervised learning algorithm can be viewed as a mapping from

a dataset DLS of learning samples (x , y)
i.i.d.∼ (X ,Y) into a

predictive model f (x | DLS).

Low overfittingX High overfitting

Low bias

X

High bias

x

y

x

y

x

y

x

y

14/48

Bias and overfitting in supervised learning

A supervised learning algorithm can be viewed as a mapping from

a dataset DLS of learning samples (x , y)
i.i.d.∼ (X ,Y) into a

predictive model f (x | DLS).

Low overfittingX High overfitting

Low bias

X

High bias

x

y

x

y

x

y

x

y

14/48

Bias and overfitting in supervised learning

A supervised learning algorithm can be viewed as a mapping from

a dataset DLS of learning samples (x , y)
i.i.d.∼ (X ,Y) into a

predictive model f (x | DLS).

Low overfittingX High overfitting

Low bias

X

High bias

x

y

x

y

x

y

x

y

14/48

Bias and overfitting in supervised learning

A supervised learning algorithm can be viewed as a mapping from

a dataset DLS of learning samples (x , y)
i.i.d.∼ (X ,Y) into a

predictive model f (x | DLS).

Low overfittingX High overfitting

Low bias

X

High bias

x

y

x

y

x

y

x

y

14/48

Bias and overfitting in supervised learning
There are many choices to optimize the learning algorithm and
there is usually a tradeoff between the bias and the overfitting
terms to reach to best solution.

Low variance
=low overfitting

High variance
=high overfitting

Low bias

High bias

More data

15/48

Bias and overfitting in supervised learning
Assuming a random sampling scheme DLS ∼ DLS , f (x | DLS) is a
random variable, and so is its average error over the input space.
The expected value of this quantity is given by :

I [f] = E
X

E
DLS

E
Y |X

L (Y , f (X | DLS)), (4)

where L(·, ·) is the loss function.

If L(y , ŷ) = (y − ŷ)2, the error
naturally gives the bias-variance decomposition :

E
DLS

E
Y |X

(Y − f (X | DLS))2 = σ2(x) + bias2(x), (5)

where

bias2(x) ,
(
EY |x(Y)− EDLS

f (x | DLS)
)2
,

σ2(x) , EY |x
(
Y − EY |x(Y)

)2︸ ︷︷ ︸
Internal variance

+EDLS

(
f (x | DLS)− EDLS

f (x | DLS)
)2

︸ ︷︷ ︸
Parametric variance = overfitting

.

16/48

Bias and overfitting in supervised learning
Assuming a random sampling scheme DLS ∼ DLS , f (x | DLS) is a
random variable, and so is its average error over the input space.
The expected value of this quantity is given by :

I [f] = E
X

E
DLS

E
Y |X

L (Y , f (X | DLS)), (4)

where L(·, ·) is the loss function. If L(y , ŷ) = (y − ŷ)2, the error
naturally gives the bias-variance decomposition :

E
DLS

E
Y |X

(Y − f (X | DLS))2 = σ2(x) + bias2(x), (5)

where

bias2(x) ,
(
EY |x(Y)− EDLS

f (x | DLS)
)2
,

σ2(x) , EY |x
(
Y − EY |x(Y)

)2︸ ︷︷ ︸
Internal variance

+EDLS

(
f (x | DLS)− EDLS

f (x | DLS)
)2

︸ ︷︷ ︸
Parametric variance = overfitting

.

16/48

Bias and overfitting in reinforcement learning

This bias-variance decomposition highlights a tradeoff between

I an error directly introduced by the learning algorithm (the
bias) and

I an error due to the limited amount of data available (the
parametric variance).

17/48

Bias and overfitting in reinforcement learning

Since there is no direct bias-variance decomposition for loss
functions other than L2 loss in supervised learning, there is not an
actual “bias-variance” tradeoff in RL.

However, there is still a tradeoff between a sufficiently rich learning
algorithm (to reduce the model bias, which is present even when
the amount of data would be unlimited) and a learning algorithm
not too complex (so as to avoid overfitting to the limited amount
of data).

18/48

Bias and overfitting in RL

The batch or offline algorithm in RL can be seen as mapping a
dataset D ∼ D into a policy πD (independently of whether the
policy comes from a model-based or a model-free approach) :

D → πD .

In an MDP, the suboptimality of the expected return can be
decomposed as follows :

E
D∼D

[V π∗(s)− V πD (s)] = (V π∗(s)− V πD∞ (s))︸ ︷︷ ︸
asymptotic bias

+ E
D∼D

[(V πD∞ (s)− V πD (s))︸ ︷︷ ︸
error due to finite size of the dataset Ds

referred to as overfitting

].

19/48

How to improve generalization ?

We can improve generalization of RL thanks to the following
elements :

• an abstract representation that discards non-essential
features,

• the objective function (e.g., reward shaping, tuning the
training discount factor) and

• the learning algorithm (type of function approximator and
model-free vs model-based).

And of course, if possible :

• improve the dataset (exploration/exploitation dilemma in an
online setting)

20/48

Questions so far ?

21/48

Using self-supervised learning and
abstract representations

22/48

Foreword

Vocabulary

I An encoder is a specific deep learning component that
transforms the input (to reduce the dimensionality).

I An abstract representation or latent representation is the
representation obtained after the input goes through the
encoder.

23/48

Foreword

Vocabulary

I An encoder is a specific deep learning component that
transforms the input (to reduce the dimensionality).

I An abstract representation or latent representation is the
representation obtained after the input goes through the
encoder.

23/48

Catcher

This environment has only a few important features :
(i) the position of the paddle and
(ii) the position of the blocks.

0 10 20 30

0

5

10

15

20

25

30

35

X1

1.00.50.00.51.01.52.0 X21.0
0.50.0 0.5 1.0

X 3

1.0

0.5

0.0

0.5

1.0

 State representation (action 0, action 1):

 Estimated transitions (action 0, action 1):

0.0

0.2

0.4

0.6

0.8

1.0

Be
gi

nn
in

g
to

 e
nd

 o
f t

ra
je

ct
or

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Es
tim

at
ed

 e
xp

ec
te

d
re

tu
rn

Figure –
Without interpretability loss.

X1

1.0 0.50.0 0.5
1.0 X21.0

0.5
0.0

0.5
1.0

X 3

1.0

0.5

0.0

0.5

1.0

 State representation (action 0, action 1):

 Estimated transitions (action 0, action 1):

0.0

0.2

0.4

0.6

0.8

1.0

Be
gi

nn
in

g
to

 e
nd

 o
f t

ra
je

ct
or

y

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Es
tim

at
ed

 e
xp

ec
te

d
re

tu
rn

Figure – With interpretability loss :
v(a(1)) = (1, 1) and v(a(2)) = (−1, 1).

24/48

Abstract representations for
reasoning, exploration and transfer

learning

25/48

Combining model-based and model-free via abstract
representations

We are interested to learn both the model and the value function
through one abstract representation :

I it can enforce a good generalization (information bottleneck),

I planning is computationally efficient,

I it facilitates interpretation of the decisions taken by the agent,

26/48

Information bottleneck

As opposed to auto encoders, we seek to preserve only relevant
information and we apply the Information Bottleneck (IB) principle
to representation learning of state. This gives us the functional
that we minimize

L = I [S ;X]− βI [(X); {X ∗,A∗}]

This corresponds to a trade-off between

I minimizing the encoding rate I [S ;X] and

I maximizing the mutual information between the abstract state
X (and reward) and the tuple previous abstract state, previous
action (X ∗,A∗).

27/48

Simple labyrinth
Abstract representation of states for a labyrinth
task (without any reward).

150 100 50 0 50 100 150 200

200

100

0

100

200

Figure – 2D representation
using t-SNE (blue represents
states where the agent is on the
left part, green on the right part
and orange in the junction).

1.0 0.5 0.0 0.5 1.0
X1

1.0

0.5

0.0

0.5

1.0

X 2

 Estimated transitions (action 0, 1, 2 and 3):

Figure – The CRAR agent is able
to reconstruct a sensible
representation of its environment in
2 dimensions.

28/48

Combined Reinforcement via Abstract Representations
(CRAR)

t = 0 t = 1
s0 s1environment

a0

encoder encoder

model-based

transition
model

reward
model

abstract
state

abstract
state

r0

model-
free

model-
free

Q Q

. . .

Figure – Illustration of the integration of model-based and model-free
RL in the CRAR architecture.

The value function and the model are trained via the abstract
representation.

29/48

Learning the model

Here is how we learn the internal model :

Lτ (θe , θτ) =| (e(s; θe) + τ(e(s; θe), a; θτ)− e(s ′; θe)) |2,

Lρ(θe , θρ) =| r − ρ(e(s; θe), a; θρ) |2,

Lg (θe , θg) =| γ − g(e(s; θe), a; θg) |2 .

These losses train the weights of both the encoder and the
model-based components.

Training of the value function is done with DDQN

30/48

Learning the model

Here is how we learn the internal model :

Lτ (θe , θτ) =| (e(s; θe) + τ(e(s; θe), a; θτ)− e(s ′; θe)) |2,

Lρ(θe , θρ) =| r − ρ(e(s; θe), a; θρ) |2,

Lg (θe , θg) =| γ − g(e(s; θe), a; θg) |2 .

These losses train the weights of both the encoder and the
model-based components.

Training of the value function is done with DDQN

30/48

Learning the model

Here is how we learn the internal model :

Lτ (θe , θτ) =| (e(s; θe) + τ(e(s; θe), a; θτ)− e(s ′; θe)) |2,

Lρ(θe , θρ) =| r − ρ(e(s; θe), a; θρ) |2,

Lg (θe , θg) =| γ − g(e(s; θe), a; θg) |2 .

These losses train the weights of both the encoder and the
model-based components.

Training of the value function is done with DDQN

30/48

When learning the transition function there is a pressure to
decrease the amount of information being represented.
In our model, we introduce an entropy loss :

Ld1(θe) = exp(−Cd‖e(s1; θe)− e(s2; θe)‖2),

where s1 and s2 are random past states of the agent and Cd is a
constant.

31/48

Interpretability
Interpretability can mean that some features of the state
representation are distinctly affected by some actions. The
following optional loss makes the predicted abstract state change
aligned with the chosen embedding vector v(a) :

Linterpr (θe , θτ) = −cos
(
τ(e(s; θe), a; θτ)0:n, v(a)

)
,

where cos stands for the cosine similarity.

1.0 0.5 0.0 0.5 1.0
X1

1.0

0.5

0.0

0.5

1.0

X 2

 Estimated transitions (action 0, 1, 2 and 3):

Figure – With enforcing Linterpr and v(a0) = [1, 0]

32/48

Planning
The trajectories for some sequence of actions are estimated
recursively as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

A set A∗ of best potential actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Expansion from x̂0 until a certain depth.
33/48

Planning
The trajectories for some sequence of actions are estimated
recursively as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

A set A∗ of best potential actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Expansion from x̂0 until a certain depth.
33/48

Planning
The trajectories for some sequence of actions are estimated
recursively as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

A set A∗ of best potential actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Expansion from x̂0 until a certain depth.
33/48

Planning
The trajectories for some sequence of actions are estimated
recursively as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

A set A∗ of best potential actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Expansion from x̂0 until a certain depth.
33/48

We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Q̂d

Q̂d−1

Q̂d−2

Q̂d−3

Backup

34/48

We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Q̂d

Q̂d−1

Q̂d−2

Q̂d−3

Backup

34/48

We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Q̂d

Q̂d−1

Q̂d−2

Q̂d−3

Backup

34/48

We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

x̂0

x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

x̂1 x̂1 x̂1

x̂2

x̂3 x̂3 x̂3 x̂3

x̂2 x̂2 x̂2

x̂3 x̂3 x̂3 x̂3

Q̂d

Q̂d−1

Q̂d−2

Q̂d−3

Backup

34/48

Planning - summary

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ), if t ′ > t

Q̂d(x̂t , a) =

ρ(x̂t , a; θρ) + g(x̂t , a; θg) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

To obtain the action selected at time t, we use a hyper-parameter D ∈ N
and use a simple sum of the Q-values obtained with planning up to a
depth D :

QD
plan(x̂t , a) =

D∑
d=0

Q̂d(x̂t , a).

The optimal action is given by argmax
a∈A

QD
plan(x̂t , a).

35/48

Generalization

0 50 100 150 200 250
Number of epochs

−5

−4

−3

−2

−1

0

1

Av
er

ag
e

sc
or

e
pe

r e
pi

so
de

 a
t t

es
t t

im
e

D= 1
D= 3
D= 6
DDQN

Figure – Meta-learning score on a distribution of labyrinths where the
training is done with a limited number of transitions obtained by a
random policy. 2× 105 tuples, ∼ 500 labyrinths.

More details : Combined Reinforcement Learning via Abstract Representations,
V. Francois-Lavet, Y. Bengio, D. Precup, J. Pineau (AAAI 2019).

36/48

Another important challenge : exploration

I Undirected exploration (e.g. ε-greedy)

I Directed exploration

I When rewards are not sparse, a measure of the
uncertainty on the value function can be used ;

I If sparse rewards or no rewards, some exploration rewards
have to be used.

37/48

Exploration

Given a point x in representation space, we define a reward
function for novelty that considers the sparsity of states around
x - with the average distance between x and its
k-nearest-neighbors in its visitation history buffer B :

ρ̂X (x) =
1

k

k∑
i=1

d(x , xi), (6)

where x is a given encoded state, k ∈ Z+, d(·, ·) is some distance
metric in RnX and xi are the k nearest neighbors (by encoding
states in B to representational space).

More details : Novelty Search in representational space for sample efficient
exploration, D. Tao, V. Francois-Lavet, J. Pineau (NeurIPS 2020).

38/48

Exploration

Figure : Multi step environment (left) and the abstract
representations of states (right)

39/48

Exploration
This technique can also be used for control tasks such as the
double pendulum (acrobot), where only intrinsic rewards allows the
agent to solve the task.

Figure : acrobot.

40/48

Transfer learning

Figure – Set up : the agent is trained in a distribution of MDPs and
evaluation is done in new domains with unknown backgrounds.

More details : Domain adversarial reinforcement learning, B. Li, V.
Francois-Lavet, T. Doan, J. Pineau (2020).

41/48

Component transfer learning

Figure – Set up : the agent is trained in a distribution of MDPs and
evaluation is done in new domains with unknown backgrounds.

More details : Component Transfer Learning for Deep RL Based on Abstract
Representations, Geoffrey van Driessel, V. Francois-Lavet (2021).

42/48

A few other challenges for RL
(disentanglement of controllable

and uncontrollable feature + causal
representations)

43/48

Disentangled (un-)controllable features

Figure – The disentangled latent state representations of four different
random maze observations. The left column represents the controllable
latent representation. The middle column represents the uncontrollable
latent representation and the right column is the original state.

44/48

Disentangled (un-)controllable features

Figure – The disentangled latent state representations of four different
random maze observations. The left column represents the controllable
latent representation. The middle column represents the uncontrollable
latent representation and the right column is the original state.

More details : Disentangled (Un) Controllable Features. JE Kooi, M
Hoogendoorn, V François-Lavet (2022).

45/48

Causality

Figure – Learning to learn causal graphs.

More details : A Meta-Reinforcement Learning Algorithm for Causal Discovery.
Andreas Sauter, Erman Acar, Vincent François-Lavet (2022).

46/48

Conclusions

Introduction

Generalization in deep RL
Using self-supervised learning and abstract representations

Abstract representations for reasoning, exploration and transfer
learning

A few other challenges for RL (disentanglement of controllable and
uncontrollable feature + causal representations)

Model-based methods (planning-based techniques)
Model-free techniques

47/48

Questions ?

Overview of the techniques used for finding the optimal
policy π∗

In general, an RL agent may include one or more of the following
components :

→ a model of the environment in conjunction with a planning
algorithm.

I a representation of a value function that provides a prediction
of how good is each state or each couple state/action,

I a direct representation of the policy π(s) or π(s, a), or

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

Model-based methods
(planning-based techniques)

Motivation for planning with tree search

Given that you’re playing the crosses, what would be your next
move ?

Figure – Illustration of a state in the tic-tac-toe game.

→ how did you come up with that choice ?

Monte-Carlo Tree Search methods

The overall idea is to estimate the action with the highest
expected return.

V ∗(s) = Q∗(s, a = π∗) = Eπ∗ [r0 + γr1 + · · ·]
st

st+1

st+2

at , rt

at+1, rt+1

π∗,
r = r0

π∗,
r = r1

π∗

Figure – Illustration of model-based planning with tree search.

Motivation

MCTS algorithms need (only) a generative model of the
environment (i.e. model-based) :

st+1, rt ∼ G (st , at)

Advantages :

I it is possible to obtain samples without having the whole
transition function for the model in an explicit form.

I it can learn a strong policy only where needed (from the
current state s).

I it is useful for a sequence of decisions.

MCTS

MCTS can converge to the optimal policy (finite action space,
finite horizon) from any state s as long as the generative model is
accurate.
However,

• The breath of search grows with the actions space.

• The depth of search grows with the horizon considered.

Applications
I Tree search algorithms can be used along with different

heuristics as well as model-free deep RL techniques.

→ MCTS has been a key part of alpha Go for instance.

Strengths and weaknesses of model-based methods

The respective strengths of the model-free versus model-based
approaches depend on different factors.

X For some tasks, the model of the environment is available or
can be learned efficiently due to the particular structure of the
task.

7 If the agent does not have access to a generative model of the
environment, the learned model will have some inaccuracies.

7 A model-based approach requires working in conjunction with
a planning algorithm, which is computationally demanding.

Model-free techniques

Overview of deep RL
In general, the learning algorithm in RL may include one or more of
the following components :

I a model of the environment in conjunction with a planning
algorithm.

→ a value function that provides a prediction of how good is
each state or each couple state/action (main focus), or

→ a direct representation of the policy π(s) or π(s, a)

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

Deep learning has brought its generalization capabilities to RL.

Convergence Q-learning

Theorem : Given a finite MDP, the Q-learning algorithm given by
the update rule

Q(st , at)← Q(st , at) + αt [rt + γ max
a′∈A

Qt(st+1, a
′)− Qt(st , at)],

converges w.p.1 to the optimal Q-function as long as

I
∑

t αt =∞ and
∑

t α
2
t <∞, and

I the exploration policy π is such that
Pπ[at = a|st = s] > 0,∀(s, a).

Convergence Q-learning

Theorem : Given a finite MDP, the Q-learning algorithm given by
the update rule

Q(st , at)← Q(st , at) + αt [rt + γ max
a′∈A

Qt(st+1, a
′)− Qt(st , at)],

converges w.p.1 to the optimal Q-function as long as

.
∑

t αt =∞ and
∑

t α
2
t <∞, and

. the exploration policy π is such that
Pπ[at = a|st = s] > 0,∀(s, a).

Limitations of tabular approaches

A tabular approach fails for large scale problems due to the curse
of dimensionality.

I Robot states with 10 features (e.g. position, speed, angle of
joints) discretized into 100 bins → 10010 = 1020 states.

I Chess : ≈ 10120 states

I Go : ≈ 10170 statess

Three problems

• Memory

• Compute time

• No generalization in the limited data context

Limitations of tabular approaches

A tabular approach fails for large scale problems due to the curse
of dimensionality.

I Robot states with 10 features (e.g. position, speed, angle of
joints) discretized into 100 bins → 10010 = 1020 states.

I Chess : ≈ 10120 states

I Go : ≈ 10170 statess

Three problems

• Memory

• Compute time

• No generalization in the limited data context

	Why deep RL?
	Introduction
	Generalization in deep RL
	Generalisation from limited data in supervised learning
	Generalisation from limited data in reinforcement learning
	Using self-supervised learning and abstract representations

	Abstract representations for reasoning, exploration and transfer learning
	Generalization
	Exploration
	Transfer learning
	A few other challenges for RL (disentanglement of controllable and uncontrollable feature + causal representations)
	Conclusions
	Different families of techniques in Reinforcement learning
	Model-based methods (planning-based techniques)
	Model-free techniques

