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1. Basics in Stochastic Analysis



Brownian Motion [1920’s-30’s, Wiener, Lévy...]

• Continuous random walk in continuous time

• Brownian motion in dimension d⇔ d independent Brownian
motions in dimension 1

Wt =
(
W1

t , · · · ,W
d
t
)

◦ (W1
t )t≥0, · · · , (Wd

t )t≥0 independent

◦ W i
t+dt −W i

t ⊥⊥ of the past before t and N(0, dt) distributed

◦ plot in d = 2

• Probabilistic interpretation of parabolic PDE

∂tu(t, x) + 1
2∆xu(t, x) + f (t, x) = 0, (t, x) ∈ [0,T] × Rd

u(T , x) = g(x)

◦ Kolmogorov equation (1930’s)

u(0, x) = E
[
g(x + WT ) +

∫ T

0
f (s, x + Ws) ds

]
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Restoration of Uniqueness [1970’s–..., Krylov, Flandoli...]

•Well-known illustration of smoothing properties of heat kernel:
ODE driven by bounded non-Lipschitz velocity field

Ẋt = bt(Xt)

◦ b continuous⇒ existence but uniqueness

◦ restore uniqueness by perturbing the dynamics by a Brownian
motion (Bt)t≥0

dXt︸︷︷︸
infinitesimal variation of X

= bt(Xt) dt + dBt︸︷︷︸
infinitesimal variation of B∼

√
dt

• Highly oscillating perturbation{ regularization effect

◦ time averaging{ path by path y 7→
∫ t

0 bs
(
Bs + y

)
ds (almost)

Lipschitz

◦ space averaging{ statistical behavior of solutions



Restoration of Uniqueness [1970’s–..., Krylov, Flandoli...]

•Well-known illustration of smoothing properties of heat kernel:
ODE driven by bounded non-Lipschitz velocity field
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Gradient Descent
•Minimization problem

min
x∈Rd
{V(x)}, V : Rd → R

• Gradient descent
ẋt = −∇xV

(
xt
)

◦ many issues with convergence without convexity of V

• Stochastic gradient descent [Fokker, Planck, 1910’s...]

dXt = −∇xV(Xt) dt + σdBt

◦ under confining properties of V (weaker than convexity
[Bakry-Emery1980’s...])

Law(Xt) −→
t→∞

Z−1 exp
(
−2

V
σ2

)
◦ in long time regime and for σ small, law is concentrated around

the minimizers of V
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2. Some Large Population Models



Prototype [1950-60’s, Kac, McKean...]

• Typical example (see e.g. Sznitman [1990’s])

dXi
t = b

(
Xi

t ,
1
N

N∑
j=1

δXj
t

)
dt + dBi

t, i = 1, · · · ,N

◦ velocity field at point x depends on the state of the population

• Intuitively, particles become independent as N tends to∞ and by
exchangeability, weak limit should satisfy McKean-Vlasov equation

dXt = b(Xt, µt) dt + dBt

◦ with µt = Law(Xt)

• Link with PDEs

◦ nonlinear Fokker-Planck equation

∂tµt − divx
(
b(·, µt)µt) −

1
2

∆xµt = 0, t ≥ 0
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Illustration 1: Gradient Flow on P(Rd)
•Minimization problem

min
µ∈P2(Rd)

{V(µ)}, V : P2(Rd)→ R

• Gradient descent [2000’s, Otto...]

dXt(ω) = −∂µV
(
µt

)(
Xt(ω)

)
dt + σ dBt, ω ∈ Ω ; µt := Law(Xt)

◦ where ∂µV is Wasserstein derivative, i.e.

∂µV
(
L(X)

)(
X(ω)

)
= DL2(Ω;Rd)

[
V
(
L(X)

)]
(ω), ω ∈ Ω

◦ advection-diffusion equation for (µt)t≥0

∂tµt + divx
(
∂µV

(
µt

)
µt

)
−
σ2

2
∆xµt = 0

◦ in general: σ > 0 doesn’t suffice to get long-time convergence
towards minimizers
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Illustration 2: Mean Field Control (2010’s, Lions...)

•Minimize cost to ‘society’

J(α) = G(mT ) +

∫ T

0

(∫
Rd

1
2
|α(t, x)|2mt(dx) + F (mt)

)
dt

◦ infimum taken over Fokker-Planck equations

∂tmt =
1
2

∆xmt − divx
(
mtα(t, ·)

)
t ∈ [t0,T]

with fixed initial condition

◦ F ≡ 0, G(µ) = ∞1{µ,νtarget}: entropic version of optimal transport

• ‘Solution’
α(t, x) = −∂µV(t, µ)(x)

◦ V(t, µ) optimal cost when population is initialized from µ at
time t
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Illustration 3: Mean Field Game (2010’s, Lions...)

• Selfish individuals may evolve with time

◦ focus on one typical player within the population

dXt = αt dt + dBt, t ∈ [0,T]

◦ with αt being the control (in Rd)

• Compromise (or equilibrium) is described in terms of a flow

t ∈ [0,T] 7→ µt ∈ P(Rd)

◦ equilibrium is unknown, but assuming that the population state
(µt)t∈[0,T] is given, typical player wants to minimize

J
(
(Xt, αt, µt)0≤t≤T

)
◦ (Nash) equilibrium should be a fixed point

(µt)t∈[0,T] 7→
(
L(Xoptim

t )
)
t∈[0,T]

• Example

J
(
(Xt, αt, µt)0≤t≤T

)
= E

[∫ T

0

(
1
2 |αt|

2 + f (Xt, µt)
)

dt + g(XT , µT )
]

◦ Guess: equilibrium described by αt = −∂xU(t,Xt, µt)
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3. Randomisation



Philosophy
• General objective

◦ noisy version for

∂tµt = −divx
(
bt(·, µt)µt

)
+
σ2

2
∆xµt

where µt ∈ P(Rd)

◦ what is noise here? Intuitively, should force µt to be random

◦ motivation: gradient descent on the space of probability
measures, mean-field games

• Intuitively, use kind of Brownian motion on the space of P2(Rd)

◦ challenging question, even in dimension 1

◦ no canonical definition: Stannat [02,06], Sturm and Von
Renesse [09], Konarovskyi [15], Dello Schiavo [20]...
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Degenerate Model [2010’s, Lasry-Lions...]

•Mean field game with common noise W

◦ asymptotic formulation for a finite player game with

dXi
t = b

(
Wt,Xi

t , µ̄
N
t
)

dt + σ dBi
t

◦ uncontrolled version{ asymptotic SDE with µ̄N
t replaced by

L(Xt|(Ws)0≤s≤T ) = L(Xt|(Ws)0≤s≤t)

◦ particles become independent conditional on W and converge to
the solution

dXt = b
(
Wt,Xt,L(Xt|W)

)
dt + σ dBt

• Stochastic Fokker-Planck equation

∂tµt − divx
(
b(·, µt)µt) −

(1
2

+
1
2

)
∆xµt − divx

(
µtḂt

)︸     ︷︷     ︸
∇xµt ·Ḃt

= 0

◦ completely degenerate model: noise is d-dimensional whilst
state variable is infinite dimensional (locally, translation of the mean)
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Ex. 1: Time Asymptotic Dictated by the Mean
(with Maillet & Tanré)

• Stationary regimes to

∂tµt − divx
([
∇V + ∇W ∗ µt

]
µt

)
+ σ2

2 ∆xµt = 0

◦ case of interest

V symmetric non-convex (e.g., V(x) = x4

4 −
x2

2 , 1d), W(x) = α
2 |x|

2

◦ probabilistic interpretation

dXt = −∇xV(Xt) dt − α
(
Xt − E(Xt)

)
dt + σ dBt

◦ competition between α and σ: σ small⇒ non-uniqueness of
stationary measures including one with 0 mean

• Stationary regimes to

∂tµt − divx
([
∇V + ∇W ∗ µt

]
µt

)
+

(
σ2

2 +
σ2

0
2

)
∆xµt + µt · Ẇt = 0

◦ e.g.,

V symmetric non-convex (e.g., V(x) = x4

4 −
x2

2 , 1d), W(x) = α
2 |x|

2

◦ probabilistic interpretation

dXt = −∇xV(Xt) dt − α
(
Xt − E(Xt|W)

)
dt + σ dBt + σ0 dWt

• α large, σ0 > 0 and σ small, unique invariant regime (law on
P(Rd))

◦ α large and σ small⇒ Xt ∼ E(Xt|W) and

dE(Xt|W) ∼ −∇xV
(
E(Xt|W)

)
dt + σ0 dWt
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P(Rd))

◦ α large and σ small⇒ Xt ∼ E(Xt|W) and

dE(Xt|W) ∼ −∇xV
(
E(Xt|W)

)
dt + σ0 dWt



Ex. 2: Game with Gaussian Equilibria (with Foguen)

•Mean Field Game with dynamics of the form

dXt =
[(

cbXt + b(µt)
)

+ αt
]

dt + σ dWt

◦ cost functional of the form

J(α) = E
[1
2
(
cgXT + g(µT )

)2
+

∫ T

0

[1
2
(
cf Xt + f (µt)

)2
+

1
2
α2

t
]
dt

]
◦ coefficients cb, cf , cg may be arbitrarily chosen (say 1)

◦ (µt)0≤t≤T flow of probability measures

• Look for fixed point (µt)0≤t≤T such that

µt = Law(X∗t ), t ∈ [0,T]

◦ in general, no uniqueness (even smooth coefficients)

dXt =
[(

cbXt + b(µt(B))
)

+ αt
]

dt + σ dWt + σ0 dBt

◦ cost functional of the form

J(α) = E
[1
2
(
cgXT + g(µT (B))

)2
+

∫ T

0

[1
2
(
cf Xt + f (µt(B))

)2
+

1
2
α2

t
]
dt

]
◦ (µt(B))0≤t≤T random flow of probability measures

• Look for fixed point (µt(B))0≤t≤T such that

µt(B) = Law(X∗t |B), t ∈ [0,T]

◦ uniqueness (smooth coefficients...)

• General form of the optimizer over α when µ is fixed

αt = −ηtXt − ht

◦ η and h deterministic and η independent of µ!

◦ X∗ is Gaussian with fixed variance fixed point on the mean
only!
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Selection (in Learning): illustration (with Vasileiadis)

• Potential mean field game: d = 1, f ≡ 0, equilibria vs. minimizers

• Selection by randomisation of the population

◦ evolution of the random mean state at terminal time



4. Infinite Dimensional Noise
(with Hammersley)



Form of the noise
• Throughout, dimension is 1 (work on P2(R))

• Here, follow P.L. Lions’ approach to differential calculus on P2(R)

◦ see function ϕ : P2(R) 3 µ 7→ ϕ(µ) ∈ R as

L2(S = R/Z, dx) 3 X 7→ ϕ
(
L(X)

)

• Proceed here in the same way for smoothing out ϕ:

L2(S, dx) 3 X 7→ ϕ
(
L(Xt)

)
, t > 0,

with (Xt(x))t≥0,x∈S Gaussian process with values in L2(S, dx)

◦ but destroys the mean-field structure!

• In order to make it intrinsic{ RE-ARRANGE

◦ intuitively

Xt { Gaussian step{ re-arrangement = Xt+dt
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Re-arrangement in 1d
• Take a probability measure µ on R

µ↔ quantile function F−1
µ

◦ where x ∈ (0, 1) 7→ F−1
µ (x) is the quantile function

◦ x ∈ (0, 1) 7→ F−1
µ (x) is the canonical random variable for

representing µ, i.e.

Leb(0,1) ◦
(
x ∈ (0, 1) 7→ F−1

µ (x)
)−1

= µ

• Conversely, re-arranging Xt(x) in Gaussian dynamics is choosing
canonical representative of

Leb ◦
(
x ∈ S 7→ Xt(x)

)−1

◦ on [0, 1), choose quantile function of law of x 7→ Xt(x)

◦ on S ' [0, 1], choose non-decreasing on [0, 1/2] and reflect
w.r.t. 1/2 to get it periodic
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Re-arrangement in 1d – plots

• Simplest example: X(x) =
1
N

N−1∑
i=0

ai1[i/N,(i+1)/N)(x)

◦ rearrangement on [0, 1): X∗(x) =
1
N

N−1∑
i=0

a(i)1[i/N,(i+1)/N)(x)

◦ where a(1) ≤ a(2) ≤ ... ≤ a(N) is the non-decreasing
rearrangement of a1, · · · , aN

◦ to get it on S, use contraction of rate 1/2 and symmetrize
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Euler scheme with colored noise
• Replace white noise by colored noise

W̃t(x) =
∑
m∈Z

m−λWm
t em(x)

where λ ∈ (1/2, 1] and ((Wm
t )t≥0)m∈Z are independent Brownian

motions

◦ E
[
‖W̃t(·)‖22

]
= ct < ∞

◦ the noise takes values in L2(S,Leb)

• Scheme

Xh
n+1 =

[
eh∆Xh

n +

∫ h

0
e(h−s)∆ dW̃nh+s

]∗
◦ h > 0 is a time step

◦ get tightness in any C([0,T]; L2(S, dx))
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Smoothing effect
• Semi-group of limiting dynamics

Pt : X0 ∈ L2(S,Leb) 7→ E
[
ϕ
(
X

X∗0
t

)]
◦ for ϕ : L2(S,Leb)→ R bounded and measurable

• Bound on the Lipschitz constant∣∣∣Ptϕ
(
(X0 + z)∗

)
− Ptϕ(X∗0)

∣∣∣ ≤ CT

t(1+λ)/2 ‖ϕ‖∞‖z‖L2

◦ for t ∈ (0,T]

• Discussion on the rate

◦ blow-up exponent (1 + λ)/2 ∈ (3/4, 1), close to 3/4 for λ ∼ 1/2

◦ NOT AS GOOD as in finite dimension (blow up like t−1/2)

◦ but INTEGRABLE in small time, which is crucial for nonlinear
models
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5. Applications



Stochastic Gradient Descent on P2(R) (with
Hammersley)

• Assume V is smooth potential that confines the mean, typically

V(µ) = V0(µ) + λ
(∫
R

xdµ(x)
)2
,

for V0 smooth (with bounded derivatives)

Xt { −Gradient step + Gaussian move{ re-arrangement = Xt+dt

◦ solution to SGD, unique invariant measure and convergence

• No explicit shape of the invariant measure but metastability for
rescaled Gaussian move

◦ same result

◦ mean time to exit from convex well is of order exp(a/ε2) for a
the height of the well
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Application to MFG (with Ouknine)

• Back to the first section{MFG without idiosyncratic noise

◦ 1d representative player{ dXt = αt dt

◦ cost functional with f , g convex in x

J
(
α
)

= E
[
g
(
XT , µT

)
+

∫ T

0

(
f
(
Xt, µt

)
+ 1

2 |αt|
2
)

dt
]

• Optimal trajectories with µt = L(Xt) (on L2(S, dx))

dXt(x) = −Yt(x) dt

+ noise

dYt(x) = −∂xf
(
Xt(x),LebS ◦ X−1

t
)

+ ...

YT (x) = ∂xg
(
XT (x),LebS ◦ X−1

T
)
, x ∈ S

◦ ∂xf and ∂xg smooth, then existence and uniqueness hold for
stochastic system! Solution is distributed:

Yt(x) = v(t,X(x),LebS ◦ X−1
t )
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