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1. Basics in Stochastic Analysis



Brownian Motion [1920’s-30"s, Wiener, Lévy...]

e Continuous random walk in continuous time

e Brownian motion in dimension d < d independent Brownian
motions in dimension 1

W, = (th,... ,W[d)
o (Whis0,- -+ » (W50 independent

o Wi, — W L of the past before 7 and N(0, dr) distributed
oplotind =2




Brownian Motion [1920’s-30"s, Wiener, Lévy...]
e Continuous random walk in continuous time

e Brownian motion in dimension d < d independent Brownian
motions in dimension 1

W, = (th,... ’Wtd)
o (WhHis0, -+ » (W?),50 independent

oW . — W[i 1 of the past before ¢t and N (0, df) distributed

t+dt

e Probabilistic interpretation of parabolic PDE

Ouu(t,x) + Au(t,x) + f(t,x) = 0, (t,x) € [0,T] x R?
u(T,x) = g(x)

o Kolmogorov equation (1930’s)

T
u(0,x) = E[g(x + Wr) + f f(s,x+ Wy)ds
0



Restoration of Uniqueness [1970°s—..., Krylov, Flandoli...]

o Well-known illustration of smoothing properties of heat kernel:
ODE driven by bounded non-Lipschitz velocity field

Xt = bt(Xt)

o b continuous = existence but srigqreness

o restore uniqueness by perturbing the dynamics by a Brownian
motion (By)>0

dX[ = bt(XI) dt + dBf
—— ~——
infinitesimal variation of X infinitesimal variation of B~ Vdr



Restoration of Uniqueness [1970°s—..., Krylov, Flandoli...]

o Well-known illustration of smoothing properties of heat kernel:
ODE driven by bounded non-Lipschitz velocity field

Xt = bt(Xt)

o b continuous = existence but srigqreness

o restore uniqueness by perturbing the dynamics by a Brownian
motion (By)>0

dX[ = bt(XI) dt + dBf
—— ~——
infinitesimal variation of X infinitesimal variation of B~ Vdr

e Highly oscillating perturbation ~» regularization effect

o time averaging ~» path by path y — fot by(Bs + y) ds (almost)
Lipschitz

o space averaging ~» statistical behavior of solutions



Gradient Descent

e Minimization problem

min{V(x)}, V:RY >R

xeRd

e Gradient descent
th = _va(xt)

o many issues with convergence without convexity of V



Gradient Descent

e Minimization problem

min{V(x)}, V:RY >R

xeRd

e Gradient descent
.)'Ct = _va(xt)

o many issues with convergence without convexity of V

e Stochastic gradient descent [Fokker, Planck, 1910’s...]
dX[ = _VXV(XI) dr + (TdBt

o under confining properties of V (weaker than convexity
[Bakry-Emery1980’s...])

Vv
Law(X;) b 7z exp(—ZOTZ)

o in long time regime and for o~ small, law is concentrated around
the minimizers of V



2. Some Large Population Models



Prototype [1950-60’s, Kac, McKean...]
e Typical example (see e.g. Sznitman [1990’s])

1
N

J

dx; = b(X, Sy)dt+dBj, i=1,--- N

t

N
=1

o velocity field at point x depends on the state of the population
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Prototype [1950-60’s, Kac, McKean...]
e Typical example (see e.g. Sznitman [1990’s])

N

R
§ D 0x)di+dB =1 N
J=1

o velocity field at point x depends on the state of the population

o Intuitively, particles become independent as N tends to co and by
exchangeability, weak limit should satisfy McKean-Vlasov equation

dX; = b(X;, ) dr + dB;

o with y; = Law(X;)
e Link with PDEs

o nonlinear Fokker-Planck equation

. 1
Oty — divy(D(, po)ps) — EAxﬂr =0, >0



Ilustration 1: Gradient Flow on P(R%)
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Ilustration 1: Gradient Flow on P(RY)

e Minimization problem

min {V(w)}, V:P,RY) >R
ueP(RY)

e Gradient descent [2000’s, Otto...]
Xi(w) = —(9;,V(/1t)(Xt(a))), w€Q;  p:=Law(X;)

o where 0,V is Wasserstein derivative [Ambrosio-Gigli-Savaré,
Lions...], i.e.

0 V(LX))X(W)) = Dpzqra) [ VLX) (w), weQ

o advection equation for ()0

Oyt + divi(9, V(e )s) = 0



Ilustration 1: Gradient Flow on P(RY)

e Minimization problem

. 2 d
ﬂerilr’lzl(%d){v(ﬂ) * % »[Rd ln(aﬂ(x)) d,u(x))}, v PZ(Rd) -R

e Gradient descent [2000’s, Otto...]
dX)(w) = =0, V(u)(Xy(w))dt + 0 dB;, weQ; u :=Law(X))
o where 0,V is Wasserstein derivative, i.e.
0 V(LX))X(w)) = Dppra) [ VILX))(w), weQ

o advection-diffusion equation for (u;)s>0

2

. o
atﬂ[ + lex(Q#V(pt)u,) - TAX/JI =0

o in general: o > 0 doesn’t suffice to get long-time convergence
towards minimizers



Illustration 2: Mean Field Control (2010’s, Lions...)

e Minimize cost to ‘society’
Tl
s =G+ [ ([ SlateoPm@) +5n)a
0 R4 2
o infimum taken over Fokker-Planck equations

1
o;m; = 5 Aemy — dive(mea(t, ©))  t € [to, T

with fixed initial condition

o F =0, G(1) = (v, entropic version of optimal transport



IHlustration 2: Mean Field Control (2010°s, Lions...)

e Minimize cost to ‘society’

T
1
s =6+ [ ([ Slatotm@o + 7on)a
0 Rd 2
o infimum taken over Fokker-Planck equations
1
om, = zAxm, —div,(maf(t,-)) t€ [ty, T]
with fixed initial condition

oF =0, G(1) = 0l {ypy,,,): entropic version of optimal transport

e Probabilistic formulation

T
@) =6 (20t + [ (3l dr+ 7 (206)

subject to

dX; = a;dt +dB;, 1€[0,T]; L(Xo) =mo



Illustration 2: Mean Field Control (2010’s, Lions...)

e Minimize cost to ‘society’

T
1
s =G+ [ ([ SlateoPm@) +5n)a
0 R4 2
o infimum taken over Fokker-Planck equations
1
om, = 5 Aymy — divi(madt,-)) t € [ty,T]

with fixed initial condition
o F =0, G(1) = (v, entropic version of optimal transport

e ‘Solution’
Q’(Z, x) = _aﬂ(v(ta /'l)(x)

o V(t, u) optimal cost when population is initialized from u at
time ¢



INlustration 3: Mean Field Game (2010’s, Lions...)

o Selfish individuals may evolve with time
o focus on one typical player within the population
dX; = a,dr+dB;, t€[0,T]

o with a; being the control (in RY)
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IHlustration 3: Mean Field Game (2010’s, Lions...)

o Selfish individuals may evolve with time
dX; = a,dt+dB,, te€][0,T]
e Compromise (or equilibrium) is described in terms of a flow
1 €[0,T] - p; € PR

o equilibrium is unknown, but assuming that the population state
(t1)re0.17 1s given, typical player wants to minimize

/((Xt, a/t,llt)OStsT)
o (Nash) equilibrium should be a fixed point

()eror) = (L pnm))ze[o,r]

e Example

T
A sidnsser) = B| [ (HorP +.£06up0)dr + g0k

o Guess: equilibrium described by a; = —0,U(t, X, i)



3. Randomisation



Philosophy

e General objective

o noisy version for

2
. o
Oty = —dive(be(-, po)pe) + TA.\',Ur

where 1, € P(RY)
o what is noise here? Intuitively, should force y, to be random

o motivation: gradient descent on the space of probability
measures, mean-field games



Philosophy

e General objective

o noisy version for

2
. o
Oty = —dive(be(-, po)pe) + TA.\',Ur

where 11, € P(RY)
o what is noise here? Intuitively, should force y, to be random

o motivation: gradient descent on the space of probability
measures, mean-field games

o Intuitively, use kind of Brownian motion on the space of P,(RY)
o challenging question, even in dimension 1

o no canonical definition: Stannat [02,06], Sturm and Von
Renesse [09], Konarovskyi [15], Dello Schiavo [20]...



Degenerate Model [2010’s, Lasry-Lions...]

e Mean field game with common noise W

o asymptotic formulation for a finite player game with
dx' = (W, X!, @) dt + o dB!
o uncontrolled version ~» asymptotic SDE with j¥ replaced by

-L(th(W\')OSSST) = L(XIKW\')OSSSF)

o particles become independent conditional on W and converge to
the solution
dXt = b(Wt, X[, .L(X[lW)) dr + O'dB[
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Degenerate Model [2010’s, Lasry-Lions...]

e Mean field game with common noise W

o asymptotic formulation for a finite player game with
dx! = b(X!, i) dt + o dB! + ndW,

o particles become independent conditional on W and converge to
the solution

dXz = b(Xz, .E(XAW)) dr + O'dBt +7n dW[
e Stochastic Fokker-Planck equation
I 1
Outty — divy (b, u)py) — ( ) oy — dive (B, =
2 2 g
Vxll1'B1

o completely degenerate model: noise is d-dimensional whilst
state variable is infinite dimensional (locally, translation of the mean)



Ex. 1: Time Asymptotic Dictated by the Mean
(with Maillet & Tanré)

e Stationary regimes to
Orpte — divy([VV + VW o puJpas) + S Ay = 0
o case of interest
V symmetric non-convex (e.g., V(x) = %4 - "72, 1d), W(x) = %lxlz
o probabilistic interpretation
dX; = -V,\V(Xy) dt — a(X, — E(X,)) dt + o-dB,

o competition between a and o: o small = non-uniqueness of
stationary measures including one with 0 mean
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Ex. 1: Time Asymptotic Dictated by the Mean
(with Maillet & Tanré)

e When o = 0, minimize

f V00 du() + 5 f f Wi~ y) du) du()
Rd Rd Rd

o W quadratic = variance

o get  masses at minima of V

2
4




Ex. 1: Time Asymptotic Dictated by the Mean
(with Maillet & Tanré)

e Stationary regimes to

2

Oupty = divo([VV + VW s ) + (5 + Té)Axut W =0
oe.g.,

V symmetric non-convex (e.g., V(x) = %4 - "72, 1d), W(x) = %lxlz
o probabilistic interpretation

e a large, 09 > 0 and o small, unique invariant regime (law on

PRY))
o a large and o small = X; ~ E(X;| W) and

dEX,| W) ~ =V, . V(E(X,| W))dt + oo dW,



Ex. 2: Game with Gaussian Equilibria (with Foguen)

e Mean Field Game with dynamics of the form
dX, = (X, + b(uy) + ;| dt + o dW,
o cost functional of the form
@ =23+ g+ [ 13X+ + el a
o coefficients ¢y, ¢y, ¢, may be arbitrarily chosen (say 1)
o (Up)o<s<r flow of probability measures
e Look for fixed point (u)o</<7 such that
ur = Law(X;), te€[0,T]

o in general, no uniqueness (even smooth coefficients)
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Ex. 2: Game with Gaussian Equilibria (with Foguen)

e Mean Field Game with dynamics of the form

dX; = [(cuX; + b(u(B) + a;| dt + o dW, + o B,

o cost functional of the form
s = 5[k + g+ [ 13k ram? + ozl
o (1;(B))o<i<t random flow of probability measures
e Look for fixed point (u;(B))o<;<r such that
1/(B) = Law(X/|B), t€[0,T]
o uniqueness (smooth coefficients...)
e General form of the optimizer over @ when y is fixed
a; = - Xy — Iy
o n and h ~» deterministic and n independent of !

o X* is Gaussian with fixed variance ~» fixed point on the mean
only!



Selection (in Learning): illustration (with Vasileiadis)

e Potential mean field game: d = 1, f = 0, equilibria vs. minimizers

e Selection by randomisation of the population

Viscosity: 1 Viscosity: 0.9 Viscosity: 08 Viscosity: 0.7 Viscosity: 0.6
— — 06— — o7 08 r —
05 07
04 o8 g : 08 *
04 ) 05 06
08 04 4
03 03 ¢ 04
02 02 02
02 02 i3
o1 01 o1 01 ’
00 | 0L y - 0. . ol —
20 10 00 10 20 °°30 -0 oo 1o 2o %% -0 00 10 2o %25 -0 oo 10 20 °%26 -0 00 10 20
Viscosity: 0.5 Viscosity: 0.4 Viscosity: 0.3 Viscosity: 0.2 _ Viscosity: 0.1 -
14 35
10 20
12 30 g:
08 $
o ; vg 15 zg by
06 0 15/ s
o 04 10 5
g 05 | 10
02 02 05 05
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o evolution of the random mean state at terminal time



4. Infinite Dimensional Noise
(with Hammersley)



Form of the noise

e Throughout, dimension is 1 (work on $,(R))
e Here, follow P.L. Lions’ approach to differential calculus on $»(R)

o see function ¢ : P>(R) > u — ¢(u) € R as

L3S =R/Z,dx) 3 X - o(L(X))
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e Here, follow P.L. Lions’ approach to differential calculus on $»(R)
o see function ¢ : Pr(R) > u — (1) € R as
L3S =R/Z,dx) > X — o(L(X))
... and then define derivative as Fréchet derivative in L*(S, dx)
e Proceed here in the same way for smoothing out ¢:
L(S,dx) 3 X — o(L(X), t>0,

with (X;(x))>0.4es Gaussian process with values in L*(S, dx)

o but destroys the mean-field structure!



Form of the noise

e Throughout, dimension is 1 (work on $,(R))
e Here, follow P.L. Lions’ approach to differential calculus on $»(R)

o see function ¢ : Pr(R) > u — (1) € R as
L3S =R/Z,dx) 3 X - o(L(X))
e Proceed here in the same way for smoothing out ¢:
L*(S,dx) > X - o(L(Xy), t>0,

with (X;(x))r>0.xes Gaussian process with values in L*(S, dx)
o but destroys the mean-field structure!

e In order to make it intrinsic ~ | RE-ARRANGE ‘

o intuitively

X, ~» Gaussian step ~» re-arrangement = X, q;



Re-arrangement in 1d

e Take a probability measure ¢ on R
u < quantile function F, !

o where x € (0,1) — F;l(x) is the quantile function
oxe (0, 1) F;l (x) is the canonical random variable for
representing y, i.e.

-1
Leb.py o (x € (0.1) = F,'(v)) =



Re-arrangement in 1d

e Take a probability measure ¢ on R
u < quantile function F, !

owherex € (0,1) — F;l(x) is the quantile function
oxe (0, 1) F;l (x) is the canonical random variable for
representing y, i.e.

-1
Leb.py o (x € (0.1) = F,'(v)) =

e Conversely, re-arranging X;(x) in Gaussian dynamics is choosing
canonical representative of

Lebo (x €S — X, (x)) !

o on [0, 1), choose quantile function of law of x — X;(x)

oon S = [0, 1], choose non-decreasing on [0, 1/2] and reflect
w.r.t. 1/2 to get it periodic



Re-arrangement in 1d — plots

N-1
. 1
e Simplest example: X(x) = — Z ailin i+1)/n)(x)
N i=0
N-1
o rearrangement on [0, 1): X'(x) = — Z a(,‘)l[l'/N,(H])/N)(X)
N i=0
o where a1y < ap) < ... < ag) is the non-decreasing

rearrangement of ap, - -+ ,ay

o to get it on S, use contraction of rate 1/2 and symmetrize
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N-1

. 1
e Simplest example: X(x) = — Z ailin i+1)/n)(x)
N
N-1
o rearrangement on [0, 1: X*(¥) = 1 > a) L1y )
i=0
o where a1y < ap) < ... < ag) is the non-decreasing

rearrangement of ap, - -+ ,ay
o to get it on S, use contraction of rate 1/2 and symmetrize

Jay




Euler scheme with colored noise

e Replace white noise by colored noise

W) = Y m W ep(x)

mez

where A € (1/2, 1] and ((W;")>0)mez are independent Brownian
motions

o B[IIW,()I] = ct < oo

o the noise takes values in L3(S, Leb)



Euler scheme with colored noise

e Replace white noise by colored noise

Wi(x) = Z m_ﬁWt’"em(x)

mez

where A € (1/2, 1] and ((W;")>0)mez are independent Brownian
motions

o B[IIW,()I3] = et < o0
o the noise takes values in L3(S, Leb)

e Scheme
n+l =

h *
X = [ AN 4 f A gy
0

o h > 0 is a time step

o get tightness in any C([0, T; L*(S, dx))



Smoothing effect

e Semi-group of limiting dynamics
P, : Xo € LA(S, Leb) - E[g(X;°)]

o for g : L*(S,Leb) — R bounded and measurable
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Smoothing effect

e Semi-group of limiting dynamics
P, : Xo € LA(S, Leb) > E[g(X,")]

o for ¢ : L*(S,Leb) — R bounded and measurable

¢ Bound on the Lipschitz constant

. ‘ Cr
[Pip((Xo + ) = Prp(Xp)| < 75 Iellolllze

oforte (0,T]

¢ Discussion on the rate
o blow-up exponent (1 + 1)/2 € (3/4,1), close to 3/4 for A ~ 1/2
o NOT AS GOOD as in finite dimension (blow up like 7~!/?)

o but INTEGRABLE in small time, which is crucial for nonlinear
models



5. Applications



Stochastic Gradient Descent on 5> (R) (with

Hammersley)

e Assume V is smooth potential that confines the mean, typically
2
V40 = Vol + A f xdu()

R

for Vi smooth (with bounded derivatives)

X; ~ —Gradient step + Gaussian move ~» re-arrangement = X, 4,

o solution to SGD, unique invariant measure and convergence



Stochastic Gradient Descent on 5> (R) (with

Hammersley)

e Assume V is smooth potential that confines the mean, typically
2
V40 = Vol + A f xdu()

R

for Vi smooth (with bounded derivatives)

X; ~ —Gradient step + Gaussian move ~» re-arrangement = X, 4,

o solution to SGD, unique invariant measure and convergence

e No explicit shape of the invariant measure but metastability for
rescaled Gaussian move

o same result

o mean time to exit from convex well is of order exp(a/ &%) fora
the height of the well



Application to MFG (with Ouknine)

e Back to the first section ~ MFG without idiosyncratic noise
o 1d representative player ~ dX; = o, dt

o cost functional with f, g convex in x

T
J(@) = E[g(XT,ﬂT) + j; (f(th,ut) + %|at|2) dl]
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e Back to the first section ~ MFG without idiosyncratic noise
o 1d representative player ~ dX; = o, dt

o cost functional with f, g convex in x

T
J(@) = E[g(XT,ﬂT) + j; (f(th,ut) + %|at|2) dl]

e Optimal trajectories with i, = £(X,) (on L*(S, dx))
dX,(x) = =Y;(x)dr + noise
dY,(x) = =9 f(X,(x), Lebg o X, 1) + ...
Yr(x) = d,8(X7(x),Lebs 0 X;'), xe€S

o dyf and 0,g smooth, then existence and uniqueness hold for
stochastic system! Solution is distributed:

Y:(x) = v(t, Xx), Lebg o X; )



