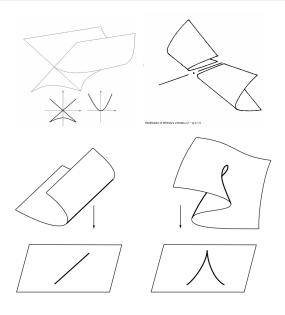
Singularités à Nice de 1970 à 1973.

Souvenirs de mon arrivée au LJAD et quelques portraits de mathématiciens.

André GALLIGO (LJAD, Université Côte d'Azur, France.)

Colloquium, Nice, 25 Septembre 2023.

Des singularités



Jean Alexandre Dieudonné (1906 – 1992)

- Prof à Nancy de 1948 à 1952, puis au Michigan, il revient en 1959 à l'IHES et devient doyen de la nouvelle Faculté des Sciences de Nice en 1964.
- Il recrute M. Berger de 1964 à 1966, et des jeunes profs : Douady, Zerner, Martineau, Houzel, Kree, Grisvard, Boutet de Monvel, Frisch. Il les acceuille, ainsi que leurs élèves et leurs invités, au "Grand Chateau".
- Le triomphe de Dieudonné fut l'organisation de l'ICM en 1970 ; puis il prit sa retraite.

Premières photos

ICM et médailles Fields

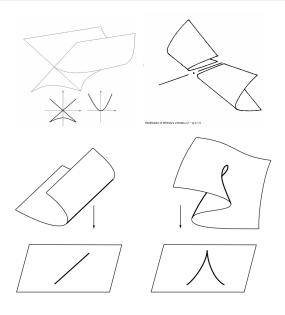
A chaque ICM les thèmes porteurs sont indiqués par les conférenciers invités, mais surtout par les médailles.

- 1950, Laurent SCHWARTZ; Atle SELBERG.
- 1954, Jean-Pierre SERRE ; Kunihiko KODAIRA.
- 1958, Klaus ROTH; René THOM.
- 1962, Lars HöRMANDER; John MILNOR.
- 1966, Michael ATIYAH; Paul COHEN;
 Stephen SMALE; Alexander GROTHENDIECK.
- 1970, Alan BAKER; John THOMPSON; Sergei NOVIKOV; Heisuke HIRONAKA.
- 1974, Enrico BOMBIERI; David MUMFORD.

Frédéric PHAM

- F. Pham dénote, il est physicien .
 Pour étudier le comportement de certaines intégrales singulières, il a généralisé des formules de monodromie de Picard-Lefschetz.
- E. Brieskorn fait le lien avec des questions de J. Milnor et de S. Smale. ⇒ les "polynômes de Pham-Brieskorn" et la première "sphère exotique".
- Il collabore avec B. Teissier sur des questions de Zariski et présente leur résultat à ICM1970.

Des singularités



Simplifions ..

- La géométrie algébrique (resp. analytique) étudie les solutions de systèmes d'équations et les "recolle".
- Localement, on a des séries de Taylor et des "germes".
- Outils de recollements : cartes, fibrés, faisceaux.
- Objectifs: représenter, classer, déformer; espaces classifiants.

Une démonstration de Weierstrass (1866)

Idée de la démonstration

On munit les ensembles $k(\rho)$, ρ = (ρ_1,\ldots,ρ_n) des séries convergentes dans le polydisque de polyrayon ρ de structures d'espaces de Banach. Puis on perturbe l'isomorphisme " division par a x_n^m " :

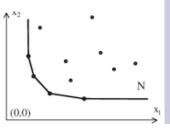
en l'homomorphisme $(q, r) \xrightarrow{} a x_n^m q + r + (f - a x_n^m) q = g$ qui reste un isomorphisme si on a pris la précaution de choisir le polydisque de polyrayon ρ assez "effilé" en ρ_n pour que $\left|\left|f - a x_n^m\right|\right|$ soit suffisamment petit.

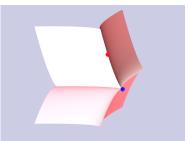
Un groupe de travail ambitieux

- F. Pham nous a proposé d'étudier simultanément :
 - Désingularisation analytique locale et équisingularité, à la Zariski et Hironaka.
 - ② Densité et classification des germes d'applications differentiables stables, $f: \mathbb{R}^n \to \mathbb{R}^p$, à la Thom-Mather ; $n < p, p = 1, n \ge p$. Stratifications de Whitney.
 - Oéformation semi-universelle de germes d'espaces analytiques à singularité isolée, à la Tjurina puis Grauert.

Désingularisation et équisingularité

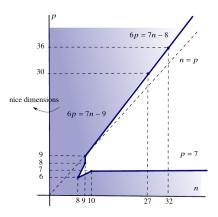
- "Connue" pour un germe de courbe plane : diagramme de Newton, suite d'éclatements, paires de Puiseux.
- Stratégie de Zariski pour une surface : balayer par un plan pour desingulariser en famille 'équisingulière'.
 Equimultiplicité, equisingularité, questions.
- Stratégie de Hironaka: suite d'éclatements (normalisés) ayant la propriété de "contact maximal".
- Celui-ci se detecte à l'aide d'un thm de division, qui généralise Weierstrass à un idéal de séries.





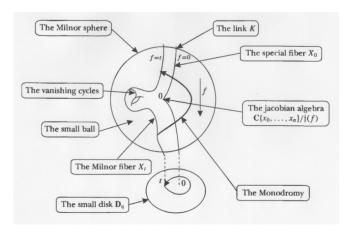
Déploiements d'applications différentiables

- Un déploiement de $f: R^n, 0 \to R^p, 0$ est une déformation de f du type $F: R^n \times R^k, (0,0) \to R^p \times R^k, (0,0)$, telle que F(x,t) = (g(x,t),t) et g(x,0) = f(x).
- f est stable (resp. topologiquement stable) si tout déploiement est trivial par changements différentiables de coordonnées (resp. par homéomorphismes).
- Thm : Densité des différentiablement stables, pour (n, p) en la "nice dimensions" et classification. $Q(f) = R\{x\}/(f)$.
- Thm : Densité des topologiquement stables.
 (Via Stratifications de Whitney et de Thom).



- En "nice dimensions, n < p", $dim_R Q(f)$ est un invariant topologique, Damon-Galligo (1974). Puis, Damon (1979), les deux classifications coincident.
- En "nice dimensions", $n \ge p$ ": intersections complètes.

La fibre de Milnor pour une hypersurface



$$\mu = \dim_{\mathbb{C}} \mathbb{C}\{\underline{x}\}/(\frac{\partial f}{\partial x_i})$$

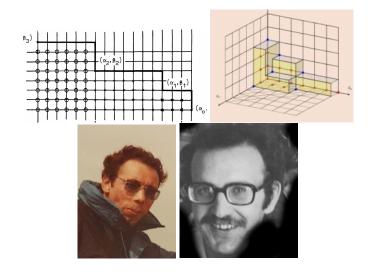
Stratifications de Whitney

- Speder démontre que l'equisingularité de Zariski entre 2 strates implique les conditions géométriques (a et b) de Whitney. Une conjecture de Zariski.
- Teissier montre que pour une hypersurface, son μ^* constant implique les conditions de Whitney .
- Briançon et Speder montre la réciproque.

Schemas de Hilbert ponctuels

- En 1972, Briançon et moi, montrons, de façon explicite, que tout système d'équations $\{f_1, ..., f_k\}$, tel que $dim_{\mathbb{C}}\mathbb{C}\{x,y\}/(f)=m$, peut être déformé en un système $\{F_1, ..., F_k\}$ qui s'annule en m points simples.
- Helas, le résultat était déjà connu!
- Mais, cela nous lance : Briançon a montré en 1975, que Hilb^mC{x, y} est irreductible. Moi j'ai étendu notre approche "algorithmique' en toute dimension.

Escaliers



Déformations plates

• Soit $X_0 \subset (C^n, 0)$ d'équations $\{f_1, ..., f_k\}$; alors $X \subset (C^n \times S, (0, 0))$ d'équations $\{F_1, ..., F_k\}$ avec $F_j(x, 0) = f_j(x)$, est une **déformation plate** ssi

toute relation $\{g_1,...,g_k\}$ avec $\sum f_jg_j=0$ se prolonge en une relation $\{G_1,...,G_k\}$ avec $\sum F_jG_j=0$, et $G_j(x,0)=g_j(x)$.

 Un thm de division peut expliciter des générateurs des relations.

Déformations semi universelles de singularité isolée

- Thm (Grauert, 1971): Si X₀ est à singularité isolée, il existe une déformation semi-universelle, dont toutes les déformations plates se déduisent.
- En 1972, C. Houzel et moi rédigeons en détail le thm de division de Grauert, ainsi qu'une preuve, d'après JL Verdier.
- Puis, j'ai "synthétisé" les thms de division de Hironaka et de Grauert, ⇒ escalier générique, un nouvel invariant.

ANDRÉ GALLIGO

Singularités à Nice de 1970 à 1973.

Colloque(s) de Cargèse

- Pham a organisé un colloque de 3 semaines en Juillet 1972, avec 50 invités (d0nt Zariski et Hironaka), sur la plage de Cargèse en Corse (on campait!).
- Asterisque n. 7 et 8 (1973).
- Pham a aussi organisé un 2ème colloque 'singularités' à Cargèse en 1975. Puis, ... il a dérivé vers d'autres sujets.

MERCI POUR VOTRE ATTENTION

