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Motivation e Neural networks’ complicated landscap

e Training of deep neural networks ~ SGD on a nonconvex loss function
e Lots of minimizers and lots of randomness (initialisation, mini-batching, etc)
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Problem of interest e Constant stepsize SGD

e Objective function f: R?Y — R smooth nonconvex

e Stochastic Gradient Descent (SGD) with constant step-size

Xn+l =Xn — 1] Vf(xn) + Z(anwn+1)

Question: What is the asymptotic behavior of SGD?



Running example e Himmelblau function

o flx,y)=(x2+y—-11)2+ (x+y*-7)?

e constant stepsize + noise ~» No pointwise convergence



Literature e SGD w/ constant stepize

e Lines of work that do not characterize the asymptotic behavior
o Stochastic Approximation when 5,, o« n~(1*#) convergence to local minima
but no information about which one [Bertsekas & Tsitsiklis, 2000]
o Sampling (MCMC, Langevin) scaling of the noise differs from SGD
o Continuous-time limit (SDE) only valid on finite time horizons

e Classical results in optimization

o [ convex average of SGD iterates is near-optimal

; - 1 wN-1 2 1
o f nonconvex near-critical in average E [+ SN V£ (x,) 1] = O (\_W)
[Lan, 2012] and avoids saddle points [Brandiére & Duflo, 1996; Mertikopoulos et al., 2020]



This presentation e Long run behavior of SGD

Which critical points (local minima) are visited the most in the long run?

Theory of large deviations and random perturbations of dynamical systems
o Estimate the probability of rare events, such as SGD escaping a local minima

(Almost) Realistic assumptions on the noise and objective

Joint work with Waiss Azizian, Panayotis Mertikopoulos, Jéréme Malick
o arXiv2406.09241 ICML 2024


https://arxiv.org/abs/2406.09241

Setup & Assumptions



Assumptions e Objective & Noise

e Objective function f
o smooth C? and V£ is B-Lipschitz continuous
o coercive lm ) yjj—eo f(X) = +00
o gradient coercive lim| |- [[Vf(X)] = 400

e Noise term Z
o proper E[Z(x;w)] = 0and cov(Z(x; w)) > 0 forallx € R?
o limited growth Z(x; w) = O(]|x||) almost surely
o sub-Gaussian log E[exp({p,Z(x;w)))] < M

Recall SGD

Xpi1 = Xn =1 [Vf(xn) + Z(xn; wpe1)]



Assumptions e Objective & Noise

e Objective function f
o smooth C? and V£ is B-Lipschitz continuous
o coercive lm ) yjj—eo f(X) = +00
o gradient coercive lim| |- [[Vf(X)] = 400

e Noise term Z
o proper E[Z(x;w)] = 0and cov(Z(x; w)) > 0 forallx € R?
o limited growth Z(x; w) = O(]|x||) almost surely
o sub-Gaussian log E[exp({p,Z(x;w)))] < M

Example Regularized ERM  f(x) = % S (s €i) + §||x||2

SGD by sampling one example leads to Z(x; w) = Vl(x; &) — % X, Ve(x; &)
where w is sampled uniformly at randomiin {1, .., m}.



Assumptions e Critical points

e Critical set crit(f) = {x e R : Vf(x) = 0}
o finite number of smoothly connected components crit(f) = {X1, Ko, ..., Kk }

Not that restrictive Holds for definable functions



Asymptotic behavior e How to characterize the long run of SGD?

e We focus on the invariant measure u.! of SGD
o defining property

x~pd = x=n[Vfx) +Z(x;w)] ~ pd

o weak* limit of the mean occupation measure

Un(8B) = E

1 n—1
- Z ]l{xk € B}
" =0

e We analyze the relative measures of the critical components {‘Ki}{i a

o Concentration near minimizersasn — 0
o Comparison of critical components uJ (%;)/ud (K;)



Discrete <« Continuous Time &
Large Deviations Approach




Discretetime e First guarantees and limitations

Xnat = Xp = 0 [V (Xn) + Z(xn; 0na1)] = x0 =7 D Vf(x1) + Z(xx; i)
k=0

e Markov chain

o (weak) Feller = existence of an invariant measure [Douc et al., 2018]
o No useful characterization of the invariant measure known

e “Discrete-time” Large deviation principle by Cramér’s theorem

P %ZVf(x)+Z(x;wk) €esB

~n—sco €XP (—n inf £(x, v))
=0 veB

o Characterizes the probability of staying in any Borel 8 and in particular minimizers
neighborhoods...
o Relies on some Lagrangian function (more later)



Discretetime e First guarantees and limitations

Xnat = Xp = 0 [V (Xn) + Z(xn; 0na1)] = x0 =7 D Vf(x1) + Z(xx; i)
k=0

e Markov chain

o (weak) Feller = existence of an invariant measure [Douc et al., 2018]
o No useful characterization of the invariant measure known

e “Discrete-time” Large deviation principle by Cramér’s theorem

P %ZVf( x )+Z2( x ;wi) €B

~n—sco EXP (—n inf £L(/x , v))
=0 veB

o Characterizes the probability of staying in any Borel 8 and in particular minimizers
neighborhoods... Butin SGD, x is not fixed but highly correlated!
o Relies on some Lagrangian function (more later)



Discrete to continuoustime e Howto?

e Discrete time
Xp+1 = Xn = [V f(xn) + Z(xp; Wps1)]
e Continuous time
o “interpolated” trajectory foranyn > 0, t € [nn,n(n + 1)]
t
X =xp+ (; - n)(xn+1 —Xp)
o continuous “discretized noise” trajectory for any ¢ > 0 with Zy = xq

2t = -VF(Z) + Z(Zs, (1))

Remarks X; is natural but Z; goes better with Lagrangians in the analysis
Time is accelerated as At = 1 <> An = 1/n to have “enough noise” fromzto ¢ + 1

The SDEY; = -V f(Y;) + U(Y;) dW; is different, has the wrong scale for the noise (y7instead of 1), and
the discretization or the convergence is exponentially bad in i [ Raginsky et al., 2017 ; Li et al., 2019]



Continuous time e Randomly perturbed dynamical systems

e Idea inspired from [Freidlin and Wentzell, 1998]
o {0,1/n,..,T/n} iterates of SGD ~ [0, T] trajectory of Z, = =V f(Z,) + Z(Zi, w|1/n))
o Trajectory of Z, is a point in the space of continuous curves Cr := C([0, T], RY)
o Derive a large deviations principle for curves y € Cr

e Ingredients
o Cumulant Generating Function K (x, p) = log E[exp({p, Z(x; w)))] + (Vf(x), p)
o Lagrangian £(x,v) = K*(x, —v) is its convex conjugate (in v)
o Action functional Sy[y] = /o L(y(t),v(1)) dt

Proposition Asn — 0,

T
Asnp—0, P ; steps of SGD ~ y | ~ P(disto,r(Z,y) < 6) = eXp(—STn[y])

Gaussian case £(x,v) = M and S7[y] = fOT W dt m



Step1 e alLDPforSGD

Proposition Asn — 0

IP(% steps of SGD ~ y) ~ exp(_‘M)

e Interpretation
o Trajectories of SGD tend to concentrate near action-minimizing curves
o Gradient flows are privileged as £L(x,v) > 0and L(x,v) =0 < v=Vf(x)



Step1 e alLDPforSGD

Proposition Asn — 0

IP(% steps of SGD ~ y) ~ exp(_‘M)

e What about critical components? crit(f) = {x € R? : Vf(x) = 0} = {K1, Ko, ..., Kk }
o SGD does concentrates on critical points by following the flow
o Next step is to compare paths between critical components

Lemma Given crit(f) ¢ U c C with U
open, C compact, for n > 0 small enough

P( SGD reaches U in > n steps) < e~ R(n/n)




Transitions between critical
components




Quasi-potentials e A transitioning cost

e Definition following [Kifer, 1988]
B(x,x") =inf{Sr[y] : v € Cr,y(0) = x,y(T) =x",T € N}

o fixes some transition time T
o if there is a gradient flow going from x to x’, then B(x,x’) = 0
o equivalence classes of x ~x’ < B(x,x’) = B(x’,x) = 0are {K1, Ko, ..., Kx }

e Potentials for transitioning between critical components
B;j =inf{Sr[y] : ¥y € Cr,y(0) e K;, ¥(T) € K;, T € N}

o From Step 1, we have for n > 0 small enough

Bi;
P(SGD transitions from K; to K;) ~ exp(——j)
n



Induced chain e on critical components

e Consider the homogeneous discrete chainon {1, .., K}
zn = i if the n-th visited component is K; (up to a small neighborhood)

o From Step 1, critical neighborhoods are exponentially more visited so
the invariant distribution of z,, captures the long-run behavior of SGD

o Transitions probabilities are given by the B;;
:

Lemma The invariant distribution r of z,, for n > 0 small enough satisfies

E; .
7 (i) ocexp(——l) with E; = min Z B
n T;€7; j,keT;

the energy of K; defined as the minimal weight of a spanning tree rooted at i




Main Result




Mainresult e How to characterize the long run of SGD?

 Theorem Given ¢ > 0 and U; sufficiently small neighborhoods of the components of |
crit(f). Then, for sufficiently small > 0, we have

e Concentration on crit( f) thereissome 1 > 0s.t.
pE (UK U 21— eV
e Boltzmann-Gibbs distribution for all i

peh (U;) o eXp(—EiJr—O(S))

n

e Concentration on ground states given U neighborhood of arg min; E;

ul? (Up) > 1 - e/ forsome A9 >0




Example e Himmelblau with Gaussian noise

e Assume that Z(x; w) ~ N(0, o)
o E; =2f(x;)/o? forany x; € K;
o B51 =0 Bis=2(f(x5) - f(x1))/o? for (x1,x5) € K1 x K5




Example e Himmelblau with Gaussian noise

e Assume that Z(x; w) ~ N(0, o)
o E; =2f(x;)/o? forany x; € K;
© Bs1 =0 Bis=2(f(xs5) — f(x1))/0? for (x1,x5) € K1 X K




Conclusion e Whatis the long-run behavior of SGD?

e We introduce a theory of large deviations for SGD in nonconvex problems
o Sound approach for the long-run of SGD
o Precise adaptation of random perturbations of dynamical systems’ theory
e We characterize the asymptotic distribution of SGD
o Critical regions are visited exponentially more often than non-critical regions
o Critical components are visited with probability exponentially proportional to
their energy, not necessarily their function value
e Future steps in the comprehension of stochastic methods in nonconvex landscapes

o More realistic algorithms (momentum, adam)
o Links with neural networks landscape and generalization



Thank you for your attention
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