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Disclaimer

» Today’s talk is not explicitly about “statistical” &

* But, it might be implicitly, and is “beyond classical regimes” &



New Sheriff in town

(J DL success “started” with image classification task

1 Today’s “hot” topic: Language modeling
J LLMs: revolution in natural-language processing and generation
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New Sheriff in town

(J DL success “started” with image classification task

1 Today’s “hot” topic: Language modeling

 LLMs: revolution in natural-language processing and generation

Key ingredients:

1. Architecture: Transformer
 Parallelizable + trainable to huge scale (~®(B) parameters

* Self-Attn: leverage long-range context info

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gu*' and Tri Dao*’

"Machine Learning Department, Carnegie Mellon University
2Department of Computer Science, Princeton University
agu@cs.cmu.edu, tri@tridao.me

Abstract

Foundation models, now powering most of the exciting applications in deep learning, are almost universally
ed on the Transformer architecture and its core attention module. Many subquadratic-time architectures
such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs)
have been developed to address Transformers’ computational inefficiency on long sequences, but they have not
performed as well as attention on important modalities such as language. We identify that a key weakne:
such models is their inability to perform content-based reasoning, and make several improvements. First, simply
letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing
the model to selectively propagate or forget information along the sequence length dimension depending on
the current token. Second, even though this change prevents the use of efficient convolutions, we design a
hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified
end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast
‘e (5% higher throughput than Transformers) and linear scaling in sequence length, and its performance
on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves
state-of-the-art performance across several modalities such as language, audio, and genomics. On language
modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice
its size, both in pretraining and downstream evaluation.
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Abstract

Inthe 19905, the constant error carousel and gating were introduced as the central
ideas of the Long Short-Term Memory (LSTM). Since then, LSTMs have stood
the test of time and contributed to numerous deep leaming success stories, in
particular they constituted the first Large Language Models (LLMs). However,
the advent of the technology with If atits
core marked the dawn of a new era, outpacing LSTMs at scale. We now raise a
simple question: How far do we get in language modeling when scaling LSTMs to
billions of parameters, leveraging the latest techniques from modern LLMs, but
ting known limitations of LSTMs? Firstly, we introduce exponen p
with appropriate normalization and stabilization techniques. Secondly. we modify
the LSTM memory structure, obtaining: (i) SLSTM with a scalar memory, a scalar
update, and new memory mixing, (i) mLSTM that is fully parallelizable with a
matrix memory and a covariance update rule. Integrating these LSTM extensions
into residual block backbones yields xLSTM blocks that are then residually stacked
into XLSTM architectures. Exponential gating and modified memory structures
boost XLSTM capabilities to perform favorably when compared to state-of-the-art
‘Transformers and State Space Models, both in performance and scaling.




New Sheriff in town

(J DL success “started” with image classification task

1 Today’s “hot” topic: Language modeling
 LLMs: revolution in natural-language processing and generation

Key ingredients:

1. Architecture: Transformer
 Parallelizable + trainable to huge scale (~®(B) parameters)
* Self-Attn: leverage long-range context info

2. Training: Autoregressive next-token prediction (NTP)
 (Pre)Train to sequentially predict next-token in a sequence
 Unsupervised method with supervised flavor



Focus: NTP

Toulouse is famous for
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Q: How do the learnt context/word representations
encode the statistics of the data they are trained on?



Implicit Geometry

Q: How distances and angles of the model representations correlate
with linguistic patterns at the end of training?

CORR(H) CORR(WT)

Word
embeddings

Context
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Why?

 Interpretability: transparency on the inner workings of LLMs

O Identify/mitigate sources of errors/biases

d Algorithm improvements upon vanilla NTP paradigm and optimizers

1 Enhance our grasp of language itself



Challenges & key message

J Representations are outputs of training complicated models
(architecture, size) over complex datasets (source, size, tokenization)
with varying choices of optimization hyperparameters (learning
rate, weight decay, number of iterations)

J Message:

In a doubly-asymptotic regime of
Large model + Long training

context/word embeddings are
matrix factorization of a logit matrix

Lsparse + 0 - Ligw—_rank

with components determined solely
by patterns of text training data
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Key Ingredients

1. Correctly framing the next token prediction training task

2. Leveraging the technical framework of implicit optimization bias

3. Assuming large model with unconstrained features



Traditional Setting

J One-hot multiclass classification

 Training Data: T, £ (X;,¥i)ieqm], Yi € [k] £{1,2,..., k}

* Training Loss: ming/
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Traditional setting

(J One-hot multiclass classification
 Training Data: T, £ (X;,¥i)ieqm], Yi € [k] £{1,2,..., k}

. . : 1
* Training Loss: ming ;Zie[n]ﬁ()’i;qy(xi))

| 1Y
mll’lelz(wle) CE(W, 9) = ;z —log (Syl(W hg(xi)))
i=1
 Trained with first-order gradient-based optimizers, e.g. (S)GD

(J Overparameterization — Interpolation (Separability)
—— infy/CE(Q') =0

Questions:
1. Does GD lead to zero loss?

2. Among the many possible solutions, which one it “prefers”?



“Textbook” result

1 Linear model
*  Fixed embeddings h; £ hg(x;).
» Trainable decoder W € Rk*4

 Linearly-separable data (e.g. d > n)

AW : wy h; —w(h; >0, Vi € [n],c # y; € [k]

= (eyl. — e, )TWhl- = (W, (eyi — ec)hiT> > 0

_0_

0

. 1

— M oentry



“Textbook” result [Soudry et al.”18]

Thm. Assume separability. Run GD withn < 2/L.
Then, llim CE(W,) = 0.

Moreover, Ilim |[|W || = o0 and
. W, |y mm
lim , ] = 1
koo \[[W || ||[Wmm|]

Defn. (max-margin) Let W™™ be the max-margin classifier

W™ = argminy, ||W]|]
subj. to (W, (eyi — ec)hiT) >1, Yc #y; € |k], j € m]



Why nice?

d Insights on:

v"what GD learns (impact of architectures/initializations)
[RZHO3,SHN+18,JT18,GLSS18,JDST20,LL20,JT20] ++++

v" role of optimizers (e.g. adaptive / mirror-descent)
[NLG+19,ALH21,PPVF21,SATA22,AF22] ++++

v stepping stone to generalization (benign overfitting)
[BLLT19,MRSY19,DKT19,MVS19,DL20,DL21,KZSS21,WT21,TPT21,CCBG22] ++++

v loss design and hyperparameter tuning (imbalanced data)
[KPOT21,CLB21,BKVT22]



Stepping stone to generalization

| |
| ? How well does SVM solution generalize? :

P(h,y)~D (min(ey — ec)TWmmh > 0)

C+Yy



Stepping stone to generalization

? How well does SVM solution generalize?

1 Catch: Overparameterization (d>n) makes “classical” margin-based
bounds vacuous

(d Rescue: modern* tools from HD-stats/RMT and universality
 Approximate Message Passing (AMP)
e Gordon’s comparison inequalities

[...]

* Developed for compressed-sensing



Can we push this storyline
and (eventually) its implications
to “new” setting of NTP in LMs



Next-token Prediction (NTP)

[ Training data
* Vocabulary V £ [V] of tokens/words

* (many many) n sequences (Z;q, Ziz, -, Zir )ie[n]» Zit € V

1 Training loss

° mln(W 0) 1 n =1 L (E:E/S(W hB(Zl <t)))

next-word

* For simplicity: focus on last-token

Context (Zi 1) 1 Zi¢—1)

Denote (Zi,<T: Zi,T) 2 (x4, 2)

n

1
mingy g) {CE(W, f) £ EE —log (Szi(W hg (xl)))

i=1



NTP vs one-hot classification

1 Ansatz #1.:
a. Contexts repeat
b. Multiple possible next-tokens with varying frequencies after each

distinct context. [Shannon48]

restaurants 0.05
mountains 0.1

rain 0.4

UBC 0.01
Example: Vancouver is famous for its

culture 0

sun 0

affordability 0O

(1 Ansatz #2: [Sparsity]
Not all vocabulary tokens are possible next-tokens per distinct context




NTP training is sparse soft-label classification

1 Data
e m < n distinct contexts X; each with frequency ﬁj

* Each associated with sparse probabilistic label ’ﬁj e A

* support set §; of p;: |Sj| <V

] Loss wrt distinct contexts

min(w,e) { CE(W,0) £ — z ﬁ'j z ﬁj,z log (SZ(W hg (x])))

JE[m]  z€s;

Questions:
1. Does GD lead to the loss lower bound?

2. Among the many possible solutions, which one it “prefers”?



Entropy Lower-bound

d Empirical (T-gram) entropy:

H 2 By, [logBzla)] = = Y Y 6 10g(p;.)

JE[m] z€s;

0 CE(0') = H + KL(P|lqe)) = CE(0') =X



When is the lower bound reached?

» Consider linear model (fixed embeddings)

Lemma. The NTP loss reaches its lower bound if and only if the
following two conditions hold.

Defn. (NTP;,—compatibility) There exists matrix WP such that for all j € [m]:

N

(Wp, (e, — ezr)h]T) = log(?]'z) Vz +z' € Sj

j,z'

Defn. (NTP—separability) There exists matrix W< such that for all j € [m]:
(W, (e, —e,)h]) =0 Vz 2z €S
(W?, (e, —e,)hj) =1 VzES;,v &S



NTP compatibility & separability

d Need KL(P||qq’) =0

NTP;,—compatibility
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|

(W, (e; —ey)h]) =1

Lemma (Overparameterization). If d > m and generic embeddings, then the two
conditions hold.



Implicit bias

F = span{(e, —e,)h] :z+z €5;,j€[m] } <R

Thm. Assume NTP compatibility and separability. Run GD withn < 2/L.
Then, (i) I}im CE(WWy) =H

(i) lim Pr(Wy) = W*

(iii) hm [|P, (W;)|| = oo with lim <

k—oo

Wi wmm > — 1
Wl lwm™m|

Defn. (subspace component) W* € F is the unique solution of:

A

(W*, (e, — /)hT) =lo g(;; ’Z> vz #z' €S8;,j € [m]
j.z

Defn. (orthogonal component) W™™ € F+ is the unique solution of:
W™ = argminy, [|W]] (NTP-SVM)
subj.to (W, (e, —e,)hj) =0, Vz # 2z’ €;
(W,(e, —e,)h]) =1, VZES,v €S, j€E[m]



How to go beyond
linear models?



Unconstrained features

Softmax
S(1
ey embecting m Ho O o’ [TagRL N taver |
kxd S
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Treat the rest of the layers as a
powerful black-box that can generate

unconstrained context embeddings h
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[YDSC17, MPP20, LS20]



NTP-UFM

[ Unconstrained-features model (UFM):

min(W,H) { CE(W, H) = — z ﬁ'J 2 ﬁj,z lOg (Sz(W h])) }

JE[mM]  z€S;

0 W e R"*%: word embeddings
Q H = [hy, ..., h,,] € RY™: context embeddings

d P = [{ﬁj,z}] € RY*™: sparse next-token probability matrix



What is the geometry of context/word embeddings in terms
of the language statistics as encoded in the
sparse conditional probability mtx P?

If | were to optimize the log-bilinear NTP-UFM model,
where does GD converge?



Proxy: Regularization path

minmm{— > &) Bz log(SA(W hy)) +AAIWIR + 1HIP)

JElm]  z€S;
1 Goal: Compute the solutionas 4 — 0

O A proxy for GD-path (“4 — 0” = “k — ")
 Formal equivalence in linear settings



Logit-space relaxation

minmm{ > & ) Bz log(S.(W hy)) +A<||W||2+||H||2>}

JElm]  z€S;

Q L = WH € R"*%: |ogit matrix

Lemma. The following relaxation to the RY*™ |ogit-space is tight:

L:rgrrllli?L)sd{_ 2 7 2 pjz log (Sz(lf)) +4 ”L”*}

JE[mM]  zE€S;

If L, has SVD L; = UZV7, then for partially orthogonal matrix R € R"*¢
W,=UVEZR and H,=R"VZIV



Large embedding space

LERVXJL‘GL‘;@&{— Z A ) Brzlog(So(1)) +AIILII.

ZES

1 Assumption: d >V
* Under this we can characterize regularization path
* Limiting but nontrivial:
1. “# of contexts m” > “dimension d”
2. how geometry depends on language statistics?



Regularization-path of NTP-UFM

F =span{(e, —e,) & :z#z €5,j€[m]}cR>™

Thm. Assumed >V — 1.
Then, (i) %in% CE(Ly) =H

(i) lim Pr(Ly) = L’

(iii) llm ||P, (Ly)]|| = oo with 11m< Lp L™ > 1
(LAl [y

Defn. L* € F is the unique solution of:

e s
L,j—L,,;= log< 1

p]z

) vz #z' €S8;,j €[m]

Defn. L™™ e F+ is a solution of:
min,  ||L][, (NTP-SVM)
subj. to LZ] L,;=0,Vz+2z €S;
L,,—L,; =1, VZES,v &S, )€ [m]



Regularization-path of NTP-UFM

F : matrices with same
support as P

As A — 0, for some p(4) - oo:
L), = Lsparse + ,0(/1) | Llow—rank

L)
L* ——————————————— =

v
T

me

d L™ £ Lgparse inherits sparsity of P and depends on frequencies of
in-support tokens

O L™ & L ,w—rank Minimizes nuclear-norm promoting low-rankness
and only depends on sparsity pattern § (not on frequencies)

Dominantas A —> 0




NTP max-margin logits

 In some special cases, can compute L™ in closed form

Prop. Suppose $ contains allm = (Z) support sets of size k.
Then, (i) L™ = (I, — 117)S & §.
(ii) Word embeddings form equiangular tight frame
(iii) Context embeddings are equinorm and h; is colinear to ZzESj w,

1 1

1 0 1

0 1 1
g = .

0 O 0

0 O 0

° 9




NTP max-margin logits

me

1 In some special cases, can compute in closed form

Prop. Suppose $ contains allm = (Z) support sets of size k.
Then, (i) L™ = (I, — 117)S & §.
(ii) Word embeddings form equiangular tight frame
(iii) Context embeddings are equinorm and h; is colinear to ZZES]- w,

1 1
[ Special case k = 1, recovers the 10 ... 1
Neural Collapse geometry by 0 1 1
[Papyan,Han,Donoho’21] wi hy s=| |
0 0 0
0 0 0

o O




NTP max-margin logits

me

1 In some special cases, can compute in closed form

Prop. Suppose $ contains allm = (Z) support sets of size k.
Then, (i) L™ = (I, — 117)S & §.
(ii) Word embeddings form equiangular tight frame
(iii) Context embeddings are equinorm and h; is colinear to ZzESj w,

1 In general, need to solve SDP.
 But, experimentally S is a good “proxy”



Experiment

Data:
* Synthetic extracted from TinyStories™ °®
e n = 3050 contexts of lengthT =5 B
« m = 400 distinct contexts '
e V=104

"
|1l
I|I[|

]

*

“a little girl named 1ily” ... {“and”, “was”, “found”, “had”, “went”, “”}
“there was a little boy” ....{"named”, “called”, “and”, “”, “who”, “had”, “with”}



Experiment

Data:
* Synthetic extracted from TinyStories  °B
* n = 3050 contexts of lengthT =5 N

 m = 400 distinct contexts
e V=104

|

|1l
[
]

L(W¢Hy) —H
Lan ua e MOdeI: 10_1- CE loss - Entropy TFM
* 4-layer TF
e d=128 10

* Trained with Adam-W for 30k epochs \

1073
1070 1 y T T T T T
0 5000 10000 15000 20000 25000 30000
Iteration
Analysis Model:
n a S | S 0 e . UEFM on Tinystory Context Transformer on Tinystory Context

04— [IW_tll

* Unconstrained features model (UFM) |
« d=128 . - o

* Trained with Adam-W for 30k epochs ﬁ "

00000000000000000000000000000000000000000000000000000000000




Numerical Example

v" UFM is a good proxy
v Eigenfactors of NTP-max-margin L™™ predict geometry
v Support overlaps already give a good proxy for geometry
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Numerical Example

v" UFM is a good proxy
v Eigenfactors of NTP-max-margin predict geometry
v Support overlaps already give a good proxy for geometry
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Numerical Example

v" UFM is a good proxy
v Eigenfactors of NTP-max-margin predict geometry
v Support overlaps already give a good proxy for geometry

me

UFM: cos (H, H) cos (H™™, H™™)

[

° 1.00 1.00
50 0.75 50 0.75
100 0.50 100 050
150 0.25 150 025
200 0.00 200 0.00

250 -025 250 ~0.25

300 ~0.50 300 ~0.50

350 -0.75 350 -0.75

4003 -1.00 4003 -1.00

400

TF: cos (H, H)

0 100 200 300 400

TF:cos (W', WT) UFM cos ( WT WT cos ( WmmT WmmT

1.00 1.00 0 1.00
0.75 075 g 0.75
20 RN
0.50 0.50 0.50
0.25 s T 0.25
0.25 40 '

0.00 0.00 0.00
0.25 025 60 : E —0.25
0.50 0.50 ., 0.50

80 :
0.75 0.75 0.75
1.00 -1.00 100 1.00

0 20 40 60 80 100 0 20 40 60 80

Context 1: “boy named timmy . timmy” Subspace collapse:
Context 2: “kid called 1lilly. she”




Summary

A framework for mapping language patterns to
embeddings geometry via:

1. Framing NTP as sparse soft labels classification
2. Applying unconstrained features
3. Leveraging implicit bias viewpoint

=>» Word/context embeddings as mtx factorization
of L) = Lsparse + p(4) - Liow—rank

Transformer

“theory”



NTP: Open questions

d Directly-related questions:
? Gradient-descent convergence
? What is the impact of Zipf-law imbalances on convergence?
? d<V: Do linguistics sparsity patterns lead to low-rank solutions?
? Geometry at higher layers of linguistic understanding, e.g. concepts

d The setting is clearly “statistical”:
? How do these optimization results inform generalization?
? What is the statistical role of margin btwn in/out-of-support tokens?
? What are good data models to study these
? When is it good to train long or is better to stop early?



Summary

A framework for mapping language patterns to
embeddings geometry via:

1. Framing NTP as sparse soft labels classification
2. Applying unconstrained features
3. Leveraging implicit bias viewpoint

=>» Word/context embeddings as mtx factorization
of L) = Lgparse + p(4) - Liow—rank

1. CT, Implicit Bias of Next-token Prediction, NeurIPS 2024
2. Zhao, Behnia, Vakilan, CT, Implicit Geometry of Next-token Prediction: From
Language Sparsity Patterns to Model Representations, COLM 2024.




