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Disclaimer

• Today’s talk is not explicitly about “statistical” L

• But, it might be implicitly, and is “beyond classical regimes” J



New Sheriff in town

q DL success “started” with image classification task

q Today’s “hot” topic: Language modeling
q LLMs: revolution in natural-language processing and generation
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Abstract

In the 1990s, the constant error carousel and gating were introduced as the central
ideas of the Long Short-Term Memory (LSTM). Since then, LSTMs have stood
the test of time and contributed to numerous deep learning success stories, in
particular they constituted the first Large Language Models (LLMs). However,
the advent of the Transformer technology with parallelizable self-attention at its
core marked the dawn of a new era, outpacing LSTMs at scale. We now raise a
simple question: How far do we get in language modeling when scaling LSTMs to
billions of parameters, leveraging the latest techniques from modern LLMs, but
mitigating known limitations of LSTMs? Firstly, we introduce exponential gating
with appropriate normalization and stabilization techniques. Secondly, we modify
the LSTM memory structure, obtaining: (i) sLSTM with a scalar memory, a scalar
update, and new memory mixing, (ii) mLSTM that is fully parallelizable with a
matrix memory and a covariance update rule. Integrating these LSTM extensions
into residual block backbones yields xLSTM blocks that are then residually stacked
into xLSTM architectures. Exponential gating and modified memory structures
boost xLSTM capabilities to perform favorably when compared to state-of-the-art
Transformers and State Space Models, both in performance and scaling.

Figure 1: The extended LSTM (xLSTM) family. From left to right: 1. The original LSTM memory
cell with constant error carousel and gating. 2. New sLSTM and mLSTM memory cells that introduce
exponential gating. sLSTM offers a new memory mixing technique. mLSTM is fully parallelizable
with a novel matrix memory cell state and new covariance update rule. 3. mLSTM and sLSTM in
residual blocks yield xLSTM blocks. 4. Stacked xLSTM blocks give an xLSTM architecture.
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Abstract

Foundation models, now powering most of the exciting applications in deep learning, are almost universally

based on the Transformer architecture and its core attention module. Many subquadratic-time architectures

such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs)

have been developed to address Transformers’ computational inefficiency on long sequences, but they have not

performed as well as attention on important modalities such as language. We identify that a key weakness of

such models is their inability to perform content-based reasoning, and make several improvements. First, simply

letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing

the model to selectively propagate or forget information along the sequence length dimension depending on

the current token. Second, even though this change prevents the use of efficient convolutions, we design a

hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified

end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast

inference (5◊ higher throughput than Transformers) and linear scaling in sequence length, and its performance

improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves

state-of-the-art performance across several modalities such as language, audio, and genomics. On language

modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice

its size, both in pretraining and downstream evaluation.

1 Introduction
Foundation models (FMs), or large models pretrained on massive data then adapted for downstream tasks, have
emerged as an effective paradigm in modern machine learning. The backbone of these FMs are often sequence
models, operating on arbitrary sequences of inputs from a wide variety of domains such as language, images,
speech, audio, time series, and genomics (Brown et al. 2020; Dosovitskiy et al. 2020; Ismail Fawaz et al. 2019;
Oord et al. 2016; Poli et al. 2023; Sutskever, Vinyals, and Quoc V Le 2014). While this concept is agnostic to
a particular choice of model architecture, modern FMs are predominantly based on a single type of sequence
model: the Transformer (Vaswani et al. 2017) and its core attention layer (Bahdanau, Cho, and Bengio 2015)
The efficacy of self-attention is attributed to its ability to route information densely within a context window,
allowing it to model complex data. However, this property brings fundamental drawbacks: an inability to model
anything outside of a finite window, and quadratic scaling with respect to the window length. An enormous body
of research has appeared on more efficient variants of attention to overcome these drawbacks (Tay, Dehghani,
Bahri, et al. 2022), but often at the expense of the very properties that makes it effective. As of yet, none of these
variants have been shown to be empirically effective at scale across domains.

Recently, structured state space sequence models (SSMs) (Gu, Goel, and Ré 2022; Gu, Johnson, Goel, et al. 2021)
have emerged as a promising class of architectures for sequence modeling. These models can be interpreted as a
combination of recurrent neural networks (RNNs) and convolutional neural networks (CNNs), with inspiration
from classical state space models (Kalman 1960). This class of models can be computed very efficiently as either a
recurrence or convolution, with linear or near-linear scaling in sequence length. Additionally, they have principled

*Equal contribution.
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New Sheriff in town

q DL success “started” with image classification task

q Today’s “hot” topic: Language modeling
• LLMs: revolution in natural-language processing and generation

Key ingredients:
1. Architecture: Transformer

• Parallelizable + trainable to huge scale (~Θ(B) parameters)
• Self-Attn: leverage long-range context info

2. Training: Autoregressive next-token prediction (NTP)
• (Pre)Train to sequentially predict next-token in a sequence
• Unsupervised method with supervised flavor



`

Focus: NTP 

Q: How do the learnt context/word representations 
encode the statistics of the data they are trained on?
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Implicit Geometry

Q: How distances and angles of the model representations correlate 
with linguistic patterns at the end of training? Published as a conference paper at COLM 2024

CORR(H)

CORR(W>)

Figure 7: Implicit geometry of context (Top) and word (Bottom) embeddings and their associated
text values for Simplified TinyStories dataset. Lighter color indicates higher similarity in the
embedding space.
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Why?

q Interpretability: transparency on the inner workings of LLMs

q Identify/mitigate sources of errors/biases 

q  Algorithm improvements upon vanilla NTP paradigm and optimizers

q Enhance our grasp of language itself



Published as a conference paper at COLM 2024

(a) Deep Network (b) NTP-UFM (c) Theory (d) Proxy
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Figure 1: A 4-layer transformer (TF) trained on the Simplified TinyStories dataset. (a) Cosine
similarity of TF’s context and word embeddings CORR(H) and CORR(W>) at the end of training
(when NTP loss converges to its empirical entropy lower-bound). (b) CORR(H) and CORR(W>) found
by training the log-bilinear model (NTP-UFM) of Eq. (1) on the soft-labels P and support sets S of the
original training set. (c) Geometry of context and word embeddings as specified by our analysis. H

mm

and W
mm are determined by the right/left singular factors (Claim (C2)) of the low-rank/max-margin

component L
mm of logits (Claim (C1)). (d) An easy to compute heuristic proxy for the embeddings’

geometry based on the training support set S (Proxy (P)). Details in Secs. 1.2 and 5.

This inquiry, which we term the implicit geometry of NTP—so named because the NTP
objective does not explicitly impose any such relationship—explores how distances and
angles within the neural network’s d-dimensional representational space correlate with
linguistic patterns at the end of training.

We postulate that understanding this implicit geometry is key to understanding functional
principles of large language models, since NTP is used for training across diverse
architectures, from LSTMs to transformers and state-space models. Specifically, exploring
how optimization under NTP shapes representations of words and contexts, which
empirically mirror complex human-like patterns, not only fosters scientific interest but
could also enhance model interpretability and explainability. Further, revealing how
implicit geometry correlates with language statistics could lead to refined training and
inference methods, addressing challenges like statistical imbalances in language data.
Conversely, understanding how state-of-the-art models internalize language to form
representations might also enhance our grasp of language itself.

This paper develops an analytical framework to characterize the implicit geometry induced
by NTP training on language datasets. Drawing inspiration from seminal studies on the
geometry of deep model representations in image recognition (Papyan et al., 2020), our
framework distinguishes itself from previous studies on language representations by not
concentrating on specific architectures such as transformers. Instead, we assume that the
model has adequate representation capacity and undergoes effective optimization, making
it possible to minimize the NTP loss to its entropy lower-bound. This approach isolates the
influence of NTP itself—rather than architectural nuances—in shaping the implicit geometry
of the language model.

The framework reveals the key role of the sparsity pattern in language statistics on the
implicit geometry (Thrampoulidis, 2024). Concretely, we demonstrate that the recurrence of
only a few tokens from the entire vocabulary as next-tokens in specific contexts leads to an
implicit bias in NTP training. This bias favors a matrix of logits that develops a sparse plus
low-rank structure during training. The sparse component of this matrix captures the proba-
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Challenges & key message

q Representations are outputs of training complicated models 
(architecture, size)  over complex datasets (source, size, tokenization) 
with varying choices of  optimization hyperparameters (learning 
rate, weight decay, number of iterations)

q Message:

In a doubly-asymptotic regime of
Large model + Long training

context/word embeddings are 
matrix factorization of a logit matrix

𝑳𝐬𝐩𝐚𝐫𝐬𝐞 +∞ ⋅ 𝑳𝐥𝐨𝐰)𝐫𝐚𝐧𝐤

with components determined solely 
by patterns of text training data

Prediction Language Model



Key Ingredients

1. Correctly framing the next token prediction training task 

2. Leveraging the technical framework of implicit optimization bias

3. Assuming large model with unconstrained features



Traditional Setting

q One-hot multiclass classification
• Training Data: 𝒯, ≜ 𝒙- , 𝑦- -∈[,],    𝑦- ∈ [𝑘] ≜ {1,2, … , 𝑘}

• Training Loss: min𝜽!
2
,
∑-∈[,]ℒ 𝑦- , 𝑞𝜽!(𝒙𝒊)

min𝜽!4 𝐖,𝜽 CE 𝐖,𝜽 ≜
1
𝑛
A
-42

,

−log 𝕊7" 𝑾	ℎ𝜽 𝒙-

𝒙 Decoder 
𝑾#×𝒅

logits 𝒍
=Softmax

Layer
𝕊

Embedding map	ℎ𝜽 ⋅

𝑞𝜽" ⋅

𝕊!(𝒍) =
𝑒𝒍!

∑#∈[&] 𝑒𝒍"



Traditional setting

q One-hot multiclass classification
• Training Data: 𝒯, ≜ 𝒙- , 𝑦- -∈[,],    𝑦- ∈ [𝑘] ≜ {1,2, … , 𝑘}

• Training Loss: min𝜽!
2
,
∑-∈[,]ℒ 𝑦- , 𝑞𝜽!(𝒙𝒊)

min𝜽!4 𝐖,𝜽 CE 𝐖,𝜽 ≜
1
𝑛
A
-42

,

−log 𝕊7" 𝑾	ℎ𝜽 𝒙-

q Trained with first-order gradient-based optimizers, e.g. (S)GD
q Overparameterization

	
Interpolation (Separability)

	
inf𝜽!CE 𝜽@ = 0

Questions:
1. Does GD lead to zero loss?
2. Among the many possible solutions, which one it “prefers”?



“Textbook” result

q Linear model
• Fixed embeddings 𝒉- ≜ ℎA(𝒙-). 
• Trainable decoder 𝑾 ∈ ℝB×D

q Linearly-separable data (e.g. 𝑑 > 𝑛)

∃𝑾 ∶ 	𝒘7"
E 𝒉- −𝒘F

E𝒉- > 0, ∀𝑖 ∈ 𝑛 , 𝑐 ≠ 𝑦- ∈ [𝑘]

	
	

𝒆7" − 𝒆F
E
𝑾𝒉- = 𝑾, 𝒆+! − 𝒆, 𝒉𝒊

.  > 0	

𝒆ℓ =

0
0
…
1
0…
0

ℓ89 entry



“Textbook” result [Soudry et al.’18]

Thm. Assume separability. Run GD with 𝜂 ≤ 2/𝐿. 
Then, lim

B→H
CE 𝑾B = 0.	

Moreover,	 lim
B→H

||𝑾B|| = ∞  and

lim
B→H

𝑾B

𝑾B
,
𝑾𝐦𝐦

𝑾𝐦𝐦 = 1

Defn. (max-margin) Let	 𝑾𝐦𝐦	be	the	max-margin	classifier
	

	 𝑾𝐦𝐦 = argmin𝑾	||𝑾||
	 subj. to	 𝑾, 𝒆𝒚𝒊 − 𝒆𝒄 𝒉𝒊

? ≥ 1,  ∀𝑐 ≠ 𝑦@ ∈ [𝑘], 𝑗 ∈ [𝑚]	



Why nice?

q Insights on:

ü   what GD learns (impact of architectures/initializations)
[RZH03,SHN+18,JT18,GLSS18,JDST20,LL20,JT20] ++++

ü  role of optimizers (e.g. adaptive / mirror-descent)
[NLG+19,ALH21,PPVF21,SATA22,AF22] ++++

ü  stepping stone to generalization (benign overfitting)
[BLLT19,MRSY19,DKT19,MVS19,DL20,DL21,KZSS21,WT21,TPT21,CCBG22] ++++

ü  loss design and hyperparameter tuning (imbalanced data)
[KPOT21,CLB21,BKVT22]

…..



Stepping stone to generalization

? How well does the solution found by GD generalize?

? How well does SVM solution generalize?

ℙ 𝒉,+ ~2 min
,3+

𝒆+ − 𝒆,
𝑻
𝑾𝐦𝐦𝒉 > 0

Implicit bias of GD



Stepping stone to generalization

? How well does SVM solution generalize?

q Catch: Overparameterization (d>n) makes “classical” margin-based 
bounds vacuous

q Rescue: modern* tools from HD-stats/RMT and universality 
• Approximate Message Passing (AMP) [DMM09,MM12++]
• Gordon’s comparison inequalities [Gor88,RV08,Sto09,CRPW’12++]

[Sto13+,TOH15 ++]

[…]

* Developed for compressed-sensing



<?> Can we push this storyline 
and (eventually) its implications 
to “new” setting of NTP in LMs 



Next-token Prediction (NTP) 

q Training data
• Vocabulary 𝒱 ≜ [𝑉] of tokens/words
• (many many) 𝑛	sequences 𝑧-2, 𝑧-J, … , 𝑧-E -∈[,], 𝑧-K ∈ 𝒱

q Training loss

• min(𝑾,𝜽)
2
,E
∑-42, ∑K42E ℒ 𝑧-K , 𝕊 𝑾	ℎ𝜽(𝒛𝒊,M𝒕)

• For simplicity: focus on last-token
Denote 𝒛𝒊,M𝑻, 𝑧-,E ≜ 𝒙- , 𝑧-

min 𝐖,𝜽 CE 𝐖,𝜽 ≜
1
𝑛A
-42

,

−log 𝕊P" 𝑾	ℎA(𝒙𝒊)

Context (𝑧',), … , 𝑧',*+))next-word



NTP vs one-hot classification

q Ansatz #1: 
a.  Contexts repeat  
b.  Multiple possible next-tokens with varying frequencies after each 

distinct context.

Example: Vancouver is famous for its  ____________ 

q Ansatz #2: [Sparsity]
Not all vocabulary tokens are possible next-tokens per distinct context

restaurants 0.05 
mountains   0.1
rain     0.4
UBC         0.01
…
 culture       0
sun        0      
affordability 0

[Shannon48] 



NTP training is sparse soft-label classification

q Data
• 𝑚 < 𝑛 distinct contexts xQ each with frequency j𝜋Q
• Each associated with sparse probabilistic label l𝒑𝒋 ∈ ΔS

• support set 𝒮Q of l𝒑𝒋: 𝒮Q < 𝑉 

q Loss wrt distinct contexts

min 𝐖,𝜽 	CE 𝐖, 𝜽 ≜ − A
Q∈[T]

j𝜋Q A
P∈𝒮,

𝑝̂Q,P	log 𝕊P 𝑾	ℎA(𝒙𝒋) 	

Questions:
1. Does GD lead to the loss lower bound?
2. Among the many possible solutions, which one it “prefers”?



Entropy Lower-bound

q  Empirical (T-gram) entropy:

ℋ ≜ 𝔼 𝒙,P ∼𝒯- −log 𝑝̂(𝑧|𝒙) = − A
Q∈[T]

A
P∈𝒮,

j𝜋Q 	𝑝̂Q,P	log 𝑝̂Q,P

q CE 𝜽@ = ℋ + KL(𝑝̂| q𝜽! 	⇒ 	 CE(𝜽@) ≥ ℋ



When is the lower bound reached? 

Ø Consider linear model (fixed embeddings)

Defn. (𝐍𝐓𝐏𝓗—compatibility) There exists matrix 𝑾𝒑 such that for all 𝑗 ∈ [𝑚]: 

𝑾𝒑, 𝒆0 − 𝒆0" 𝒉𝒋2 = log
𝑝̂3,0
𝑝̂3,0"

	 ∀𝑧 ≠ 𝑧4 ∈ 𝒮3

Defn. (𝐍𝐓𝐏—separability) There exists matrix 𝑾𝒅 such that for all 𝑗 ∈ [𝑚]: 
𝑾𝒅, 𝒆0 − 𝒆0" 𝒉𝒋2 = 0	 ∀𝑧 ≠ 𝑧4 ∈ 𝒮3

	 𝑾𝒅, 𝒆0 − 𝒆𝒗 𝒉𝒋2 ≥ 1	 ∀𝑧 ∈ 𝒮3 , 𝑣 ∉ 𝒮3

Lemma. The NTP loss reaches its lower bound if and only if the 
following two conditions hold.



NTP	compatibility & separability

 qNeed KL(𝑝̂| q𝜽! = 0

1. 𝕊P 𝑾𝒉𝒋 = 𝑝̂Q,P, ∀𝑧 ∈ 𝒮Q

2. 𝕊Y 𝑾𝒉𝒋 = 0, ∀𝑣 ∉ 𝒮Q

𝕊) 𝒂 =
exp 𝒆)*𝒂

∑+∈𝒱 exp 𝒆+*𝒂

=
1

∑+∈𝒱 exp − 𝒆) − 𝒆+ *𝒂

𝐍𝐓𝐏𝓗—compatibility

𝑾𝒑, 𝒆) − 𝒆)$ 𝒉𝒋* = log
𝑝̂/,)
𝑝̂/,)$

𝐍𝐓𝐏—separability
𝑾𝒅, 𝒆) − 𝒆)$ 𝒉𝒋* = 0

                          	 𝑾𝒅, 𝒆) − 𝒆𝒗 𝒉𝒋* ≥ 1

Lemma (Overparameterization). If 𝑑 > 𝑚 and generic embeddings, then the two 
conditions hold.



Implicit bias

Defn. (subspace component) 𝑾∗ ∈ ℱ	is	the	unique	solution	of:

𝑾∗, 𝒆0 − 𝒆0" 𝒉𝒋2 = log
𝑝̂3,0
𝑝̂3,0"

	 ∀𝑧 ≠ 𝑧4 ∈ 𝒮3 , 𝑗 ∈ 𝑚

Defn. (orthogonal component) 𝑾𝐦𝐦 ∈ ℱ8	is	the	unique	solution	of:	
	 𝑾𝐦𝐦 = argmin𝑾	||𝑾||	 	 	 	 	 	 	 (NTP-SVM)
	 subj. to	 𝑾, 𝒆0 − 𝒆0" 𝒉𝒋2 = 0,  ∀𝑧 ≠ 𝑧4 ∈ 𝒮3
	 𝑾, 𝒆0 − 𝒆𝒗 𝒉𝒋2 ≥ 1, 	 ∀𝑧 ∈ 𝒮3 , 𝑣 ∉ 𝒮3 , 𝑗 ∈ [𝑚]	

Thm. Assume NTP compatibility and separability. Run GD with 𝜂 ≤ 2/𝐿.
Then,	(i)   lim

A→C
CE 𝑾𝒌 = ℋ.	

 		(ii)			 lim
A→C

ℙℱ 𝑾𝒌 = 𝑾∗	

										(iii)	 lim
A→C

||ℙG 𝑾𝒌 || = ∞ with  lim
A→C

𝑾𝒌
𝑾𝒌

, 𝑾
𝐦𝐦

𝑾𝐦𝐦 = 1

ℱ = span 𝒆0 − 𝒆0" 𝒉𝒋2 	 ∶ 𝑧 ≠ 𝑧4 ∈ 𝒮3 , 𝑗 ∈ 𝑚 	 ⊆ ℝ:×;



<?> How to go beyond 
 linear models?



Unconstrained features

𝒙 Decoder 
𝑾#×𝒅

logits 𝒍
=Softmax

Layer
𝕊

Embedding map	ℎ𝜽 ⋅

𝑞𝜽" ⋅

𝕊(𝒍)

Treat the rest of the layers as a 
powerful black-box that can generate 
unconstrained context embeddings 𝒉 

[YDSC17, MPP20, LS20]



NTP-UFM

q Unconstrained-features model (UFM):

min 𝐖,𝑯 	CE 𝐖,𝑯 ≜ − A
Q∈[T]

j𝜋Q A
P∈𝒮,

𝑝̂Q,P	log 𝕊P 𝑾	𝒉𝒋 	

q 𝐖 ∈ ℝS×D: word embeddings
q 	𝑯 = [𝒉𝟏, … , 𝒉𝒎] ∈ ℝD×T: context embeddings
q  𝑷 = [ 𝑝̂Q,P ] ∈ ℝS×T: sparse next-token probability matrix



NTP-UFM

q Unconstrained-features model (UFM):

min 𝐖,𝑯 	CE 𝐖,𝑯 ≜ − A
Q∈[T]

j𝜋Q A
P∈𝒮,

𝑝̂Q,P	log 𝕊P 𝑾	𝒉𝒋 	

q 𝐖 ∈ ℝS×D: word embeddings
q 	𝑯 ∈ ℝD×T: context embeddings

Input: sparse conditional probabilities mtx 𝑷 ∈ ℝ^×`

  and corresponding support-set mtx  𝐒 ∈ {0,1}p×r

Output: The implicit geometry of word/context embeddings
i.e., angles between ctx-ctx / word-word / ctx-word vectors in ℝD

What is the geometry of context/word embeddings in terms 
of the language statistics as encoded in the 

sparse conditional probability mtx 𝑷?

If I were to optimize the log-bilinear NTP-UFM model, 
where does GD converge?



Proxy: Regularization path

min 𝐖,𝑯 	− A
Q∈ T

j𝜋Q A
P∈𝒮,

𝑝̂Q,P	log 𝕊P 𝑾	𝒉𝒋 	 + 𝜆 ||𝑾||J + ||𝑯||J

 
q Goal: Compute the solution as 𝜆 → 0

q A proxy for GD-path (“𝜆 → 0” ≡ “𝑘 → ∞” )
• Formal equivalence in linear settings [Ji et al. 20] [Rosset et al. ‘03]



Logit-space relaxation

min 𝐖,𝑯 	− A
Q∈ T

j𝜋Q A
P∈𝒮,

𝑝̂Q,P	log 𝕊P 𝑾	𝒉𝒋 	 + 𝜆 ||𝑾||J + ||𝑯||J

q 𝑳 = 𝑾𝑯 ∈ ℝS×D: logit matrix 

Lemma. The following relaxation to the ℝ𝑽×𝒎 logit-space is tight:

min
𝑳	∶	opqr 𝑳 sD

	− A
Q∈ T

j𝜋Q A
P∈𝒮,

𝑝̂Q,P	log 𝕊P 𝒍Q 	 + 𝜆	||𝑳||∗  

If 𝑳u has SVD 𝑳u = 𝑼𝚺𝐕E, then for partially orthogonal matrix 𝐑 ∈ ℝv×D

𝑾u = 𝑼 𝚺	𝐑   and   𝑯u = 𝑹E 𝚺	𝐕



Large embedding space

min
𝑳∈ℝ"×$:	tuvw 𝑳 xy

	− 2
z∈ r

3𝜋z 2
{∈𝒮%

𝑝̂z,{	log 𝕊{ 𝒍z 	 + 𝜆	||𝑳||∗  

q Assumption: 𝑑 ≥ 𝑉
• Under this we can characterize regularization path
• Limiting but nontrivial:

1.  “# of contexts 𝑚”  ≫  “dimension 𝑑”
2. how geometry depends on language statistics?



Regularization-path of NTP-UFM

Defn. 𝑳∗ ∈ ℱ	is	the	unique	solution	of:

𝑳0,3 − 𝑳04,3 = log
𝑝̂3,0
𝑝̂3,0"

	 ∀𝑧 ≠ 𝑧4 ∈ 𝒮3 , 𝑗 ∈ 𝑚

Defn. 𝑳𝐦𝐦 ∈ ℱ8	is	a	solution	of:	
     	 min𝑳	 ||𝑳||∗	 	 	 	 	 	 	 (NTP-SVM)
	 subj. to	 𝑳0,3 − 𝑳04,3 = 0,  ∀𝑧 ≠ 𝑧4 ∈ 𝒮3
       	𝑳0,3 − 𝑳=,3 ≥ 1, 	 ∀𝑧 ∈ 𝒮3 , 𝑣 ∉ 𝒮3 , 𝑗 ∈ [𝑚]	

Thm. Assume 𝑑 ≥ 𝑉 − 1.
Then,	(i)   lim

H→I
CE 𝑳H = ℋ.	

 		(ii)			lim
H→I

ℙℱ 𝑳H = 𝑳∗	

										(iii)	 lim
H→I

||ℙG 𝑳H || = ∞ with  lim
H→I

𝑳5
𝑳5

, 𝑳
𝐦𝐦

𝑳𝐦𝐦
= 1

ℱ = span 𝒆K − 𝒆K6 	f𝒆L
? 	 ∶ 𝑧 ≠ 𝑧M ∈ 𝒮L, 𝑗 ∈ 𝑚 	 ⊆ ℝN×P



Regularization-path of NTP-UFM

𝑳∗As 𝜆 → 0, for some 𝜌 𝜆  → ∞:

𝑳u ≈ 𝑳wxpowy + 𝜌 𝜆 ⋅ 𝑳z{|)opqr

q 𝑳∗ ≝ 𝑳wxpowy inherits sparsity of 𝑷	and	depends	on	frequencies	of	
in-support	tokens

q 𝑳𝐦𝐦 ≝ 𝑳z{|)opqr minimizes nuclear-norm promoting low-rankness 
and only depends on sparsity pattern 𝑺 (not on frequencies)

𝑳𝐦𝐦

ℱ : matrices with same 
support as 𝑷 

ℱ8

𝑳>

Dominant as 𝝀 → 𝟎 



NTP max-margin logits

Prop. Suppose 𝑺	contains all 𝑚 = N
A  support sets of size 𝑘.

Then,	(i)	𝑳𝐦𝐦 = 𝐈N − 11? 𝑺 ≝ p𝑺.	
 		(ii)	Word embeddings form equiangular tight frame
										(iii)	Context embeddings are equinorm and 𝒉L is colinear to ∑K∈R7𝑤K

q In some special cases, can compute 𝑳𝐦𝐦 in closed form

𝑺 =

1 1
1 0
0 1

0
. . .	 1 0

1 0.
.
.

.

.

.
0 0
0 0

.

.

.
…

.

.

.
. . .	 0 1

0 1

𝑉

𝑚 =
𝑉
2



NTP max-margin logits

Prop. Suppose 𝑺	contains all 𝑚 = N
A  support sets of size 𝑘.

Then,	(i)	𝑳𝐦𝐦 = 𝐈N − 11? 𝑺 ≝ p𝑺.	
 		(ii)	Word embeddings form equiangular tight frame
										(iii)	Context embeddings are equinorm and 𝒉L is colinear to ∑K∈R7𝑤K

q In some special cases, can compute 𝑳𝐦𝐦 in closed form

q Special case 𝑘 = 1, recovers the
Neural Collapse geometry by 
[Papyan,Han,Donoho’21] 𝑺 =

1 1
1 0
0 1

0
. . .	 1 0

1 0.
.
.

.

.

.
0 0
0 0

.

.

.
…

.

.

.
. . .	 0 1

0 1

𝑉

𝑚 =
𝑉
2

𝒉𝟏

𝒉𝟐𝒉𝟑

𝒉𝟒𝒘𝟒

𝒘𝟐𝒘𝟑

𝒘𝟏



NTP max-margin logits

Prop. Suppose 𝑺	contains all 𝑚 = N
A  support sets of size 𝑘.

Then,	(i)	𝑳𝐦𝐦 = 𝐈N − 11? 𝑺 ≝ p𝑺.	
 		(ii)	Word embeddings form equiangular tight frame
										(iii)	Context embeddings are equinorm and 𝒉L is colinear to ∑K∈R7𝑤K

q In some special cases, can compute 𝑳𝐦𝐦 in closed form

q In general, need to solve SDP.
q But, experimentally C𝑺 is a good “proxy”
 



Experiment

Data:
• Synthetic extracted from TinyStories*
• 𝑛 = 3050 contexts of length	𝑇 = 5
• 𝑚 = 400 distinct contexts
• 𝑉 = 104
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Figure 3: Embedding geometries on TinyStories dataset. Column-wise similarities of context em-
beddings H, row-wise similarities of word embeddings W and logits L

mm trained with UFM and
transformer (TF), compared to the max-margin solution W

mm, H
mm, L

mm and the support matrix S.

as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
also inspect the theoretical prediction of Thm. 1: we find the optimal solution L

mm of
NTP-SVM? using CVXPY (Diamond & Boyd, 2016), and find W

mm and H
mm as in Cor. 1 so

that W
mm

W
mm> = G

mm
W

and H
mm>

H
mm = G

mm
H

. We observe that UFM, despite being an
simplified abstraction of over-parameterized models, learns the same geometrical structure
for both word and context embedding as that of the TF. This geometry also aligns well
with that of the max-margin solution of Thm. 1. Comparing the geometric structure of H

(resp. W) with the column-wise (resp. row-wise) pairwise similarity of the support matrix
S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
larger intersection in the support set of their next-tokens exhibit larger correlation in the
embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.

5 Related work

We pinpoint three main areas related to our results; see App. B for more in-depth discussion.

First, our research conceptually mirrors the seminal work by Levy & Goldberg (2014) who
framed the Skip-Gram with Negative Sampling (SGNS) training objective of Word2Vec
(Mikolov et al., 2013b;a) as weighted matrix factorization. Specifically for large d, they
demonstrated that SGNS implicitly factorizes the pointwise mutual information (PMI)

8

*
“a little girl named lily”  …. {“and”, “was”, “found”, “had”, “went”, “.”}
“there was a little boy”  …. {“named”, “called”, “and”, “.”, “who”, “had”, “with”}



Experiment

Data:
• Synthetic extracted from TinyStories
• 𝑛 = 3050 contexts of length	𝑇 = 5
• 𝑚 = 400 distinct contexts
• 𝑉 = 104
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Figure 3: Embedding geometries on TinyStories dataset. Column-wise similarities of context em-
beddings H, row-wise similarities of word embeddings W and logits L

mm trained with UFM and
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
also inspect the theoretical prediction of Thm. 1: we find the optimal solution L

mm of
NTP-SVM? using CVXPY (Diamond & Boyd, 2016), and find W

mm and H
mm as in Cor. 1 so

that W
mm

W
mm> = G

mm
W

and H
mm>

H
mm = G

mm
H

. We observe that UFM, despite being an
simplified abstraction of over-parameterized models, learns the same geometrical structure
for both word and context embedding as that of the TF. This geometry also aligns well
with that of the max-margin solution of Thm. 1. Comparing the geometric structure of H

(resp. W) with the column-wise (resp. row-wise) pairwise similarity of the support matrix
S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
larger intersection in the support set of their next-tokens exhibit larger correlation in the
embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.

5 Related work

We pinpoint three main areas related to our results; see App. B for more in-depth discussion.

First, our research conceptually mirrors the seminal work by Levy & Goldberg (2014) who
framed the Skip-Gram with Negative Sampling (SGNS) training objective of Word2Vec
(Mikolov et al., 2013b;a) as weighted matrix factorization. Specifically for large d, they
demonstrated that SGNS implicitly factorizes the pointwise mutual information (PMI)

8

Language Model:
• 4-layer TF
• 𝑑 = 128
• Trained with Adam-W for 30k epochs

Analysis Model:
• Unconstrained features model (UFM) 
• 𝑑 = 128
• Trained with Adam-W for 30k epochs
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Figure 6: The contexts, supports, and repeats of each support in synthetic dataset.

L(Wk Hk)�H

(a) Small synthetic dataset

L(Wk Hk)�H

(b) Synthetic data from Tiny Stories

Figure 7: Loss convergence to the lower-bound H: Experiments on syntheic setup of
Sec. 4.2. a) H = 1.10 nats, (b) H = 1.65 nats.

In the smaller setup the number of unique contexts m ⇠ 104 and in the larger one m ⇠ 105.
For visualization, we choose 10 unique contexts from the dataset which have the support
set size |Sj| > 2. For each of the chosen support sets S , we choose 10 unique contexts j such
that Sj = S (a total of 100 samples), and illustrate the Gram matrix of support matrix S and
context embeddings H for this subset of the contexts.
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UFM on small synthetic Transformer on small synthetic UFM on Tinystory Context Transformer on Tinystory Context

Figure 8: Embeddings grow in norm: Experiments on the synthetic setup of Sec. 4.2.
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Figure 9: Illustrations of embedding geometries on small synthetic dataset. We show column-wise
similarities of context embeddings H, row-wise similarities of word embeddings W and logits L

mm

trained with UFM and transformer(TF), comparing to the max-margin solution W
mm, H

mm, L
mm and

support S .
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beddings H, row-wise similarities of word embeddings W and logits L

mm trained with UFM and
transformer (TF), compared to the max-margin solution W

mm, H
mm, L
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
also inspect the theoretical prediction of Thm. 1: we find the optimal solution L

mm of
NTP-SVM? using CVXPY (Diamond & Boyd, 2016), and find W

mm and H
mm as in Cor. 1 so

that W
mm

W
mm> = G

mm
W

and H
mm>

H
mm = G

mm
H

. We observe that UFM, despite being an
simplified abstraction of over-parameterized models, learns the same geometrical structure
for both word and context embedding as that of the TF. This geometry also aligns well
with that of the max-margin solution of Thm. 1. Comparing the geometric structure of H

(resp. W) with the column-wise (resp. row-wise) pairwise similarity of the support matrix
S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
larger intersection in the support set of their next-tokens exhibit larger correlation in the
embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.

5 Related work

We pinpoint three main areas related to our results; see App. B for more in-depth discussion.

First, our research conceptually mirrors the seminal work by Levy & Goldberg (2014) who
framed the Skip-Gram with Negative Sampling (SGNS) training objective of Word2Vec
(Mikolov et al., 2013b;a) as weighted matrix factorization. Specifically for large d, they
demonstrated that SGNS implicitly factorizes the pointwise mutual information (PMI)
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
also inspect the theoretical prediction of Thm. 1: we find the optimal solution L

mm of
NTP-SVM? using CVXPY (Diamond & Boyd, 2016), and find W

mm and H
mm as in Cor. 1 so

that W
mm

W
mm> = G

mm
W

and H
mm>

H
mm = G

mm
H

. We observe that UFM, despite being an
simplified abstraction of over-parameterized models, learns the same geometrical structure
for both word and context embedding as that of the TF. This geometry also aligns well
with that of the max-margin solution of Thm. 1. Comparing the geometric structure of H

(resp. W) with the column-wise (resp. row-wise) pairwise similarity of the support matrix
S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
larger intersection in the support set of their next-tokens exhibit larger correlation in the
embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.

5 Related work

We pinpoint three main areas related to our results; see App. B for more in-depth discussion.

First, our research conceptually mirrors the seminal work by Levy & Goldberg (2014) who
framed the Skip-Gram with Negative Sampling (SGNS) training objective of Word2Vec
(Mikolov et al., 2013b;a) as weighted matrix factorization. Specifically for large d, they
demonstrated that SGNS implicitly factorizes the pointwise mutual information (PMI)
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
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word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.
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such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
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have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.
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curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
also inspect the theoretical prediction of Thm. 1: we find the optimal solution L
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with that of the max-margin solution of Thm. 1. Comparing the geometric structure of H
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S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
larger intersection in the support set of their next-tokens exhibit larger correlation in the
embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.
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framed the Skip-Gram with Negative Sampling (SGNS) training objective of Word2Vec
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
also inspect the theoretical prediction of Thm. 1: we find the optimal solution L
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for both word and context embedding as that of the TF. This geometry also aligns well
with that of the max-margin solution of Thm. 1. Comparing the geometric structure of H

(resp. W) with the column-wise (resp. row-wise) pairwise similarity of the support matrix
S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
larger intersection in the support set of their next-tokens exhibit larger correlation in the
embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.
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We pinpoint three main areas related to our results; see App. B for more in-depth discussion.

First, our research conceptually mirrors the seminal work by Levy & Goldberg (2014) who
framed the Skip-Gram with Negative Sampling (SGNS) training objective of Word2Vec
(Mikolov et al., 2013b;a) as weighted matrix factorization. Specifically for large d, they
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curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
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and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
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S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
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embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
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curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
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such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
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larger intersection in the support set of their next-tokens exhibit larger correlation in the
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word embeddings. We note that this observations are made in a regime where the loss is
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
also inspect the theoretical prediction of Thm. 1: we find the optimal solution L
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with that of the max-margin solution of Thm. 1. Comparing the geometric structure of H

(resp. W) with the column-wise (resp. row-wise) pairwise similarity of the support matrix
S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
larger intersection in the support set of their next-tokens exhibit larger correlation in the
embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.
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We pinpoint three main areas related to our results; see App. B for more in-depth discussion.
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
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and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
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S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
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embeddings space. 2) Words that appear as the next token of similar contexts have closer
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as specified by Cor. 1. We focus on the T = 6-th token prediction task in this section, and we
use word-level tokenization. We generate the synthetic data in two ways: 1) by manually
curating a small dataset of simple sentences (see App. E.2 for details), 2) by choosing and
adjusting a subset of most frequent contexts from the Tiny Stories (Eldan & Li, 2023) dataset:
For the second case, we derive contexts x̄j and support sets Sj from the Tiny Stories dataset
and we create the training data from the most frequent word-level contexts with length 5,
such as x̄j = [“once”, “upon”, “a”, “time”, “,”]. For the support sets Sj, we record all
next tokens of x̄j in the original dataset. Then, we replace the words in the contexts with
their synonymous to generate new contexts with identical support sets. This allows us to
have multiple contexts sharing common support sets, while controlling the vocabulary size,
which is set to V = 104. The final dataset consists of n ⇡ 3050 samples with m ⇡ 400 unique
contexts. The frequencies p̂j are determined by independently sampling each next token
from Sj several times. We train a 4-layer TF, with embedding dimension d = 128 on these
synthetic datasets. To compare training dynamics of TFs to NTP-UFM, we also train UFM
on the probability matrix of each dataset. See Sec. E.2 for training details.

In Fig. 3, for the dataset curated from Tiny Stories, we illustarte the pairwise cosine-similarity
of the word and context embeddings for TF and UFM at the final training iteration. We
also inspect the theoretical prediction of Thm. 1: we find the optimal solution L
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. We observe that UFM, despite being an
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for both word and context embedding as that of the TF. This geometry also aligns well
with that of the max-margin solution of Thm. 1. Comparing the geometric structure of H

(resp. W) with the column-wise (resp. row-wise) pairwise similarity of the support matrix
S, we verify the observations made in the UFM experiments of Sec. 4.1: 1) Contexts with a
larger intersection in the support set of their next-tokens exhibit larger correlation in the
embeddings space. 2) Words that appear as the next token of similar contexts have closer
word embeddings. We note that this observations are made in a regime where the loss is
close to the entropy lower bound, as illustrated in Fig. 7. See Sec. E.2 for more results.
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Figure 12: Similar setup to that of Fig. 1 expect we train the transformer on 100 stories and smaller
vocabulary size (64).Here, given the total number of contexts encountered are reduced, the model
converges more easily to the data entropy and the pattern similarity between the support set and the
feature space is more prominent.
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NTP: Open questions

q Directly-related questions:
? Gradient-descent convergence
? What is the impact of Zipf-law imbalances on convergence?
? d<V: Do linguistics sparsity patterns lead to low-rank solutions?
? Geometry at higher layers of linguistic understanding, e.g. concepts

q The setting is clearly “statistical”: 
? How do these optimization results inform generalization? 
? What is the statistical role of margin btwn in/out-of-support tokens?
? What are good data models to study these
? When is it good to train long or is better to stop early?



Summary

A framework for mapping language patterns to
embeddings geometry via:

1. Framing NTP as sparse soft labels classification
2. Applying unconstrained features
3. Leveraging implicit bias viewpoint

èWord/context embeddings as mtx factorization
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Thank you! 
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