A non-backtracking method for long matrix and tensor completion

Ludovic Stephan

ENSAI - CREST

Joint work with Yizhe Zhu (USC)

What is tensor completion ?

What is tensor completion ?

Tensor T

Observed tensor \tilde{T}

- T is an order-k tensor of size $n \times \cdots \times n$
- The observed tensor \tilde{T} is defined as

$$
\tilde{T}_{i_1,\ldots,i_k} = \begin{cases} T_{i_1,\ldots,i_k} & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}
$$

• Goal: Exactly/approximately recover T from \tilde{T} with very few samples (with an efficient algorithm) 1

Too many degrees of freedom!

Too many degrees of freedom! Too localized!

Too many degrees of freedom! Too localized!

• T has low CP-rank:

$$
T = \sum_{i=1}^r \lambda_i \left(w_i^{(1)} \otimes \cdots \otimes w_i^{(k)} \right)
$$

 \Rightarrow r \times kn degrees of freedom

Too many degrees of freedom! Too localized!

• T has low CP-rank:

$$
T = \sum_{i=1}^r \lambda_i \left(w_i^{(1)} \otimes \cdots \otimes w_i^{(k)} \right)
$$

- \Rightarrow r \times kn degrees of freedom
- T is delocalized:

$$
\|w_i^{(j)}\|_\infty \simeq n^{-1/2}
$$

Matrix completion

• Low-rank matrix completion [Candes-Recht '09, Candes-Tao '10, Keshavan-Montanari-Oh '10,...]. When $r = O(1)$, with high probability, uniformly sampling $O(n \log(n))$ entries with convex/ non-convex optimization is sufficient to exactly recover M.

Matrix completion

- Low-rank matrix completion [Candes-Recht '09, Candes-Tao '10, Keshavan-Montanari-Oh '10,...]. When $r = O(1)$, with high probability, uniformly sampling $O(n \log(n))$ entries with convex/ non-convex optimization is sufficient to exactly recover M.
- Information threshold $O(rn \log n)$ [Candes-Tao '10]. Best rank dependence: $O(r \log r \cdot n \log n)$ [Ding-Chen '20].

Computational complexity problem: most tensor problems are hard [Hillar-Lim '09]

- spectral norm
- eigenvalues/singular values
- low-rank approximations

Unfolding

"Grouping" indices:

 $M_{(i_1,...,i_a),(i_{a+1},...,i_k)} = T_{i_1,...,i_k}$

Unfolding

$$
M_{(i_1,\ldots,i_a),(i_{a+1},\ldots,i_k)}=T_{i_1,\ldots,i_k}
$$

Tensor completion on $T \leftarrow$ Matrix completion on M

Unfolding

"Grouping" indices:

$$
M_{(i_1,\ldots,i_a),(i_{a+1},\ldots,i_k)}=T_{i_1,\ldots,i_k}
$$

Tensor completion on $T \leftarrow$ Matrix completion on M

If k is even: square matrix of size $n^{k/2} \implies \tilde{O}(n^{k/2})$ samples suffice If k is odd: matrix of size $n^{\lfloor k/2 \rfloor} \times n^{\lceil k/2 \rceil}$

Statistical-computational gap for random tensors

• NP-hard algorithms [Yuan-Zhang '16, Ghadermarzy et al '19, Harris-Zhu '21]: tensor-based norm minimization methods without unfolding \rightarrow works with $\tilde{O}(n)$ samples

Statistical-computational gap for random tensors

- NP-hard algorithms [Yuan-Zhang '16, Ghadermarzy et al '19, Harris-Zhu '21]: tensor-based norm minimization methods without unfolding \rightarrow works with $\tilde{O}(n)$ samples
- Unfolding-based algorithms with spectral initialization [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...] \rightarrow works with $\tilde{O}(n^{k/2})$ samples

Statistical-computational gap for random tensors

- NP-hard algorithms [Yuan-Zhang '16, Ghadermarzy et al '19, Harris-Zhu '21]: tensor-based norm minimization methods without unfolding \rightarrow works with $\tilde{O}(n)$ samples
- Unfolding-based algorithms with spectral initialization [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...] \rightarrow works with $\tilde{O}(n^{k/2})$ samples
- Similar gaps in the spiked tensor model $T = \lambda v^{\otimes q} + Z$ [Montanari-Richard '14, Ben Arous-Mei-Montanari-Nica '17, Chen '18, Ben Arous-Gheissari-Jagannath '18, Wein-Alaoui-Moore '19, Perry-Wein-Bandeira '20...]

Commonly poly-time algorithms: unfolding-based [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...]

- Unfold \tilde{T} into $A \in \mathbb{R}^{n \times n^2}$. If $T = \sum_{i=1}^r x_i \otimes y_i \otimes z_i$, unfold \tilde{T} in 3 different ways.
- Take the SVD of the hollowed matrix $h(AA^{\top}) = AA^{\top} \text{diag}(AA^{\top})$ (spectral initialization) $+$ postprocessing
- Diagonal removal improved the performance [Cai et al. '21]
- \rightarrow works until $p = O(n^{-k/2} \times \text{polylog}(n))$

Commonly poly-time algorithms: unfolding-based [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...]

- Unfold \tilde{T} into $A \in \mathbb{R}^{n \times n^2}$. If $T = \sum_{i=1}^r x_i \otimes y_i \otimes z_i$, unfold \tilde{T} in 3 different ways.
- Take the SVD of the hollowed matrix $h(AA^{\top}) = AA^{\top} \text{diag}(AA^{\top})$ (spectral initialization) $+$ postprocessing
- Diagonal removal improved the performance [Cai et al. '21]
- \rightarrow works until $p = O(n^{-k/2} \times \text{polylog}(n))$

What happens if $p \propto n^{-k/2}$?

Figure: $T = v \otimes v \otimes v$, $AA^{\top} - \text{diag}(AA^{\top})$, $p = 20n^{-3/2}$

Figure: $T = v \otimes v \otimes v$, $AA^{\top} - \text{diag}(AA^{\top})$, $p = 20n^{-3/2}$

Figure: $AA^{\top} - \text{diag}(AA^{\top}), p = 2n^{-3/2}$

Figure: $AA^{\top} - \text{diag}(AA^{\top}), p = 2n^{-3/2}$

 $A \in \mathbb{R}^{n \times n^2}$ corresponds to a (weighted) random bipartite graph with $V_1 = [n], V_2 = [n^2].$

A random graph theory explanation

Hollowed matrix counts walks of length 2, $V_1 \rightarrow V_2 \rightarrow V_1$:

$$
(AA^{\top})_{ij}=\sum_{k}A_{ik}A_{jk}.
$$

 $h(AA^{\top})$ can be seen as the adjacency matrix of a new graph \tilde{G} (dashed edges).

Fact: \tilde{G} is still sparse (average degree d^2 for $p = dn^{-k/2}$).

In the unweighted (Erdős-Rényi) case:

- if $d^2 \gtrsim \sqrt{\frac{\log(n)}{\log\log(n)}}$: spectrum of \tilde{G} concentrates [Feige-Ofek '05, Benaych-Georges-Bordenave-Knowles '20]
- if $d^2 \ll \sqrt{\frac{\log(n)}{\log\log(n)}}$: no concentration, spectrum dominated by high-degree vertices [Benaych-Georges-Bordenave-Knowles '19]

Fact: \tilde{G} is still sparse (average degree d^2 for $p = dn^{-k/2}$).

In the unweighted (Erdős-Rényi) case:

- if $d^2 \gtrsim \sqrt{\frac{\log(n)}{\log\log(n)}}$: spectrum of \tilde{G} concentrates [Feige-Ofek '05, Benaych-Georges-Bordenave-Knowles '20]
- if $d^2 \ll \sqrt{\frac{\log(n)}{\log\log(n)}}$: no concentration, spectrum dominated by high-degree vertices [Benaych-Georges-Bordenave-Knowles '19]

\Rightarrow Naive unfolding (probably) doesn't work

Recap:

- existing methods do not reach the exact conjectured threshold for tensor completion (no results for "weak recovery").
- It is not a technical but a conceptual issue
- it suffices to solve matrix completion for a rank-r long matrix

[Our solution: a new](#page-27-0) [non-backtracking matrix for](#page-27-0) [sparse long matrices](#page-27-0)

Community detection in stochastic block models $\mathcal{G}(n, \frac{a}{n}, \frac{b}{n})$.

- Unknown partition $\sigma \in \{-1,1\}^n$. Generate a random graph $G = ([n], E)$. *i*, *j* is connected with probability $p = \frac{a}{n}$ if $\sigma_i = \sigma_j$ and with probability $q = \frac{b}{n}$ otherwise.
- goal: recover σ from G

A detour through community detection

 $\mathbb{E}[A]$ is low-rank, and $v_2(\mathbb{E}[A]) = \sigma \Rightarrow$ spectral method on A?

A detour through community detection

 $\mathbb{E}[A]$ is low-rank, and $v_2(\mathbb{E}[A]) = \sigma \Rightarrow$ spectral method on A? No!

 $p = \frac{a}{n}, q = \frac{b}{n}$. High-degree vertices dominate the spectrum. v_2 localized around high-degree vertices.

[Krivelevich-Sudakov '01,Benaych-Georges, Bordenave, Knowles '19, Alt-Ducatez-Knowles '23]

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

$$
\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.
$$

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

$$
\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.
$$

The non-backtracking matrix B is defined: for $u \to v, x \to y \in \vec{E}$,

$$
B_{u\to v,x\to y}=\mathbf{1}_{v=x}\mathbf{1}_{u\neq y}.
$$

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

$$
\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.
$$

The non-backtracking matrix B is defined: for $u \to v, x \to y \in \vec{E}$,

$$
B_{u\to v,x\to y} = \mathbf{1}_{v=x}\mathbf{1}_{u\neq y}.
$$

Non-backtracking spectral method

• If $(a - b)^2 > 2(a + b)$, then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]

Non-backtracking spectral method

- If $(a b)^2 > 2(a + b)$, then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]
- \bullet B is non-Hermitian: avoid the localization effect from high degree vertices when G is very sparse.

Non-backtracking spectral method

- If $(a b)^2 > 2(a + b)$, then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]
- \bullet B is non-Hermitian: avoid the localization effect from high degree vertices when G is very sparse.
- Can be generalized for very sparse matrix completion: estimate a low-rank structure from sparse observations with $O(n)$ many samples. [Bordenave-Coste-Nadakuditi '23]

Long matrix reconstruction

• Rectangular matrix M of size $n \times m$ ($m \gg n$), with SVD

$$
M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\top}, \quad MM^{\top} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\top}
$$

- Masking matrix X with $X_{ij} \sim \text{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$.
- Observed matrix:

$$
A = \frac{X \circ M}{p} \quad \text{so that} \quad \mathbb{E}[A] = M
$$

Long matrix reconstruction

• Rectangular matrix M of size $n \times m$ ($m \gg n$), with SVD

$$
M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\top}, \quad MM^{\top} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\top}
$$

- Masking matrix X with $X_{ij} \sim \text{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$.
- Observed matrix:

$$
A = \frac{X \circ M}{p} \quad \text{so that} \quad \mathbb{E}[A] = M
$$

Assumptions:

$$
r, \sqrt{n} \|\phi_i\|_{\infty} = O(\text{polylog}(n))
$$

Goal: estimate singular values and left singular vectors of M: v_i , ϕ_i , with sample size $O(\sqrt{mn})$

Long matrix reconstruction

• Rectangular matrix M of size $n \times m$ ($m \gg n$), with SVD

$$
M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\top}, \quad MM^{\top} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\top}
$$

- Masking matrix X with $X_{ij} \sim \text{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$.
- Observed matrix:

$$
A = \frac{X \circ M}{p} \quad \text{so that} \quad \mathbb{E}[A] = M
$$

Assumptions:

$$
r, \sqrt{n} \|\phi_i\|_{\infty} = O(\text{polylog}(n))
$$

Goal: estimate singular values and left singular vectors of $M: \nu_i, \phi_i$, with sample size $O(\sqrt{mn})$

Estimating the full SVD of M needs $O(m)$ [Bordenave-Coste-Nadakuditi '23]!

First idea: take the non-backtracking matrix of $\tilde{G} \Rightarrow$ doesn't work

First idea: take the non-backtracking matrix of $\tilde{G} \Rightarrow$ doesn't work Better idea: work directly on oriented wedges in G

$$
\vec{E_2} = \{(x,y,z) \in V_1 \times V_2 \times V_1, z \neq x\}
$$

First idea: take the non-backtracking matrix of $\tilde{G} \Rightarrow$ doesn't work Better idea: work directly on oriented wedges in G

$$
\vec{E_2} = \{(x,y,z) \in V_1 \times V_2 \times V_1, z \neq x\}
$$

First idea: take the non-backtracking matrix of $\tilde{G} \Rightarrow$ doesn't work Better idea: work directly on oriented wedges in G

$$
\vec{E_2} = \{(x,y,z) \in V_1 \times V_2 \times V_1, z \neq x\}
$$

 \Rightarrow B has size \sim $n^2mp^2=d^2n$: independent from m

Defined B index by \vec{E} as

$$
B_{ef} = \begin{cases} A_{f_1 f_2} A_{f_3 f_2} & \text{if } e_3 = f_1 \text{ and } e_2 \neq f_2 \\ 0 & \text{otherwise} \end{cases}
$$

Defined B index by \vec{E} as

e, f form a non-backtracking walk of length 4, starting from V_1 , ending in V_1 .

Defined B index by \vec{E} as

e, f form a non-backtracking walk of length 4, starting from V_1 , ending in V_1 .

$$
\rho = \sqrt{mn} ||M \circ M||, \qquad L = \sqrt{mn} \max_{x \in [n], y \in [m]} |M_{xy}|.
$$

$$
\rho = \sqrt{mn} ||M \circ M||, \qquad L = \sqrt{mn} \max_{x \in [n], y \in [m]} |M_{xy}|.
$$

Two important thresholds:

$$
\vartheta_1=\sqrt{\rho/d}
$$

• decreases as $d^{-1/2}$

$$
\rho = \sqrt{mn} ||M \circ M||, \qquad L = \sqrt{mn} \max_{x \in [n], y \in [m]} |M_{xy}|.
$$

Two important thresholds:

$$
\vartheta_1=\sqrt{\rho/d}
$$

• decreases as $d^{-1/2}$

$$
\vartheta_2 = L/d
$$

• decreases as d^{-1}

$$
\rho = \sqrt{mn} ||M \circ M||, \qquad L = \sqrt{mn} \max_{x \in [n], y \in [m]} |M_{xy}|.
$$

Two important thresholds:

$$
\vartheta_1 = \sqrt{\rho/d} \qquad \qquad \vartheta_2 = L/d
$$
\n• decreases as $d^{-1/2}$ • decreases as d^{-1}

Total threshold (Signal-to-noise ratio):

 $\vartheta = \max(\vartheta_1, \vartheta_2)$

Theorem (Stephan-Z. '24)

• (Outliers) For any ν_i satisfying $\nu_i > \vartheta$, there exists an eigenvalue λ_i of B with

$$
|\lambda_i-\nu_i^2|=O(n^{-c})
$$

• (Bulk) All other eigenvalues are asymptotically confined in a circle of radius ϑ^2

Theorem (Stephan-Z. '24)

• (Outliers) For any ν_i satisfying $\nu_i > \vartheta$, there exists an eigenvalue λ_i of B with

$$
|\lambda_i-\nu_i^2|=O(n^{-c})
$$

• (Bulk) All other eigenvalues are asymptotically confined in a circle of radius ϑ^2

Similar to the Kesten-Stigum threshold in community detection [Bordenave-Lelarge-Massoulié '18, Mossel-Neeman-Sly '18]

Results: eigenvalues

Figure: *M* is of rank-2, spectrum of $B, d = 3$

Need an embedding procedure from $\mathbb{R}^{\vec{E_2}}$ to \mathbb{R}^n

Need an embedding procedure from $\mathbb{R}^{\vec{E_2}}$ to \mathbb{R}^n

• For a right eigenvector ξ^R of B:

$$
\zeta^R(x) = \sum_{e:e_1=x} A_{e_1e_2} A_{e_3e_2} \xi^R(e), \quad \forall x \in [n].
$$

• For a left eigenvector ξ^L :

$$
\zeta^L(x) = \sum_{e: e_1 = x} \xi^L(e)
$$

Theorem (Stephan-Z. '24)

Assume that $\nu_i > \vartheta$, and let $\xi_i^{L/R}$ the left/right eigenvectors associated to λ_i . Then, there exists a γ_i such that

$$
\gamma_i=1-O(d^{-1})
$$

and

$$
\left| \langle \zeta_i^{L/R}, \phi_i \rangle - \sqrt{\gamma_i} \right| = O(n^{-c})
$$

Theorem (Stephan-Z. '24)

Assume that $\nu_i > \vartheta$, and let $\xi_i^{L/R}$ the left/right eigenvectors associated to λ_i . Then, there exists a γ_i such that

$$
\gamma_i=1-O(d^{-1})
$$

and

$$
\left| \langle \zeta_i^{L/R}, \phi_i \rangle - \sqrt{\gamma_i} \right| = O(n^{-c})
$$

Weak recovery when $d \to \infty$. Explicit γ_i when d is fixed.

Our results: eigenvectors

Figure: $B, d = 3$

- $T = x_1 \otimes \cdots \otimes x_k$, $x_i \in \frac{1}{\sqrt{n}} \{\pm 1\}$. Sample with probability $p = \frac{d}{n^{k/2}}$.
- Unfold \tilde{T} in k different ways (the most unbalanced unfolding) [Ben Arous, Huang, Huang '23]. Apply the non-backtracking method to Unfold $(\tilde{\tau})$.
- $T = x_1 \otimes \cdots \otimes x_k$, $x_i \in \frac{1}{\sqrt{n}} \{\pm 1\}$. Sample with probability $p = \frac{d}{n^{k/2}}$.
- Unfold \tilde{T} in k different ways (the most unbalanced unfolding) [Ben Arous, Huang, Huang '23]. Apply the non-backtracking method to Unfold $(\tilde{\tau})$.
- When sample size is $\alpha n^{k/2}$ with $\alpha > 1$, one can find unit eigenvectors such that √

$$
\langle v_i, x_i \rangle = \frac{\sqrt{\alpha^2 - 1}}{\alpha} + O(n^{-c}).
$$

- $T = x_1 \otimes \cdots \otimes x_k$, $x_i \in \frac{1}{\sqrt{n}} \{\pm 1\}$. Sample with probability $p = \frac{d}{n^{k/2}}$.
- Unfold \tilde{T} in k different ways (the most unbalanced unfolding) [Ben Arous, Huang, Huang '23]. Apply the non-backtracking method to Unfold $(\tilde{\tau})$.
- When sample size is $\alpha n^{k/2}$ with $\alpha > 1$, one can find unit eigenvectors such that √

$$
\langle v_i, x_i \rangle = \frac{\sqrt{\alpha^2 - 1}}{\alpha} + O(n^{-c}).
$$

 \bullet $\mathcal{T} = \sum_{i=1}^r \lambda_i \left(w_i^{(1)} \otimes \cdots \otimes w_i^{(k)} \right)$, under the orthonormal condition on $w_1^{(j)}, \ldots, w_r^{(j)}$, the same analysis apply. $O(n^{k/2})$ samples for nontrivial approximation.

- deg $(y) = 2$ w.h.p
- "independent" wedges
- Associated weight:

 $W_e = A_{xy} A_{zy}$

- deg $(y) = 2$ w.h.p
- "independent" wedges
- Associated weight:

 $W_e = A_{xy}A_{zy}$

• Erdős-Rényi graph $G \sim \mathcal{G}(n, d^2/n)$

≃

• Associated weight: $W_e = A_{XY} A_{ZY}$, $Y \sim \text{Unif}([m])$

- deg(y) = 2 w.h.p
- "independent" wedges
- Associated weight:

 $W_e = A_{xy}A_{zy}$

- Erdős-Rényi graph $G \sim \mathcal{G}(n, d^2/n)$
- Associated weight: $W_e = A_{xY}A_{zY}$, $Y \sim$ Unif([*m*])
- Extract information from a sparse Erdős-Rényi bipartite graph with random edge weights

≃

- deg(y) = 2 w.h.p
- "independent" wedges
- Associated weight:

 $W_e = A_{xy}A_{zy}$

- Erdős-Rényi graph $G \sim \mathcal{G}(n, d^2/n)$
- Associated weight: $W_e = A_{rr}A_{rr}$, Y \sim Unif([m])
- Extract information from a sparse Erdős-Rényi bipartite graph with random edge weights

≃

- Bulk eigenvalues: high moment methods on random bipartite graphs.
- Top eigenvalues and eigenvectors: local tree approximation. Galton-Watson tree with random weights [Stephan and Massoulié '20] 28

Conclusions

- Very sparse and long matrices are not standard in random matrix theory. We define a new non-backtracking matrix tailored for it (random bipartite graphs with more attention to V_1).
- The corresponding spectral method for tensor completion reaches the conjectured threshold in [Barak-Moitra '15].

Conclusions

- Very sparse and long matrices are not standard in random matrix theory. We define a new non-backtracking matrix tailored for it (random bipartite graphs with more attention to V_1).
- The corresponding spectral method for tensor completion reaches the conjectured threshold in [Barak-Moitra '15].
- Does not work for finite aspect ratio $(m = O(n))$ considered in [Bordenave-Coste-Nadakuditi '23]. Is there a unified spectral algorithm for all aspect ratios?

Conclusions

- Very sparse and long matrices are not standard in random matrix theory. We define a new non-backtracking matrix tailored for it (random bipartite graphs with more attention to V_1).
- The corresponding spectral method for tensor completion reaches the conjectured threshold in [Barak-Moitra '15].
- Does not work for finite aspect ratio $(m = O(n))$ considered in [Bordenave-Coste-Nadakuditi '23]. Is there a unified spectral algorithm for all aspect ratios?
- Statistical-computational gap between $O(n)$ and $O(n^{k/2})$ samples:
	- Possible with $O(n)$ samples and polynomial-time algorithms with non-uniform/ adaptive sampling [Haselby-Iwen-Karnik-Wang '24]
	- Rank-1 case is different, can be estimated with $O(n)$ samples [Stephan-Z. '24, Gomez-Leos, López '24] by solving linear systems.
	- can we justify this gap with a hardness proxy?

Thank you!

• L. Stephan, Y. Zhu, A non-backtracking method for long matrix and tensor completion, COLT 2024.