A non-backtracking method for long matrix and tensor completion

Ludovic Stephan

ENSAI - CREST

Joint work with Yizhe Zhu (USC)

What is tensor completion ?

What is tensor completion ?

Tensor T

Observed tensor \tilde{T}

- T is an order-k tensor of size $n \times \cdots \times n$
- The observed tensor \tilde{T} is defined as

$$ilde{T}_{i_1,...,i_k} = egin{cases} T_{i_1,...,i_k} & ext{with probability } p \ 0 & ext{with probability } 1-p \end{cases}$$

 Goal: Exactly/approximately recover T from T with very few samples (with an efficient algorithm)

Too many degrees of freedom!

Too many degrees of freedom!

Too localized!

Too many degrees of freedom!

Too localized!

• T has low CP-rank:

$$T = \sum_{i=1}^{r} \lambda_i \left(w_i^{(1)} \otimes \cdots \otimes w_i^{(k)} \right)$$

 \Rightarrow *r* \times *kn* degrees of freedom

Too many degrees of freedom!

• T has low CP-rank:

$$T = \sum_{i=1}^{r} \lambda_i \left(w_i^{(1)} \otimes \cdots \otimes w_i^{(k)} \right)$$

 \Rightarrow *r* \times *kn* degrees of freedom

• T is delocalized:

$$\|w_i^{(j)}\|_{\infty} \simeq n^{-1/2}$$

Matrix completion

• Low-rank matrix completion [Candes-Recht '09, Candes-Tao '10, Keshavan-Montanari-Oh '10,...]. When r = O(1), with high probability, uniformly sampling $O(n \log(n))$ entries with convex/ non-convex optimization is sufficient to exactly recover M.

Matrix completion

- Low-rank matrix completion [Candes-Recht '09, Candes-Tao '10, Keshavan-Montanari-Oh '10,...]. When r = O(1), with high probability, uniformly sampling $O(n \log(n))$ entries with convex/ non-convex optimization is sufficient to exactly recover M.
- Information threshold O(rn log n) [Candes-Tao '10]. Best rank dependence: O(r log r · n log n) [Ding-Chen '20].

Computational complexity problem: most tensor problems are hard [Hillar-Lim '09]

- spectral norm
- eigenvalues/singular values
- low-rank approximations

Unfolding

$$M_{(i_1,...,i_a),(i_{a+1},...,i_k)} = T_{i_1,...,i_k}$$

Unfolding

$$M_{(i_1,...,i_a),(i_{a+1},...,i_k)} = T_{i_1,...,i_k}$$

Tensor completion on $T \leftarrow$ Matrix completion on M

Unfolding

"Grouping" indices:

$$M_{(i_1,...,i_a),(i_{a+1},...,i_k)} = T_{i_1,...,i_k}$$

Tensor completion on $T \leftarrow$ Matrix completion on M

If k is even: square matrix of size $n^{k/2} \implies \tilde{O}(n^{k/2})$ samples suffice If k is odd: matrix of size $n^{\lfloor k/2 \rfloor} \times n^{\lceil k/2 \rceil}$

Statistical-computational gap for random tensors

NP-hard algorithms [Yuan-Zhang '16, Ghadermarzy et al '19, Harris-Zhu '21]: tensor-based norm minimization methods without unfolding
 → works with Õ(n) samples

Statistical-computational gap for random tensors

- NP-hard algorithms [Yuan-Zhang '16, Ghadermarzy et al '19, Harris-Zhu '21]: tensor-based norm minimization methods without unfolding
 → works with Õ(n) samples
- Unfolding-based algorithms with spectral initialization [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...] \rightarrow works with $\tilde{O}(n^{k/2})$ samples

Statistical-computational gap for random tensors

- NP-hard algorithms [Yuan-Zhang '16, Ghadermarzy et al '19, Harris-Zhu '21]: tensor-based norm minimization methods without unfolding
 → works with Õ(n) samples
- Unfolding-based algorithms with spectral initialization [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...] \rightarrow works with $\tilde{O}(n^{k/2})$ samples
- Similar gaps in the spiked tensor model $T = \lambda v^{\otimes q} + Z$ [Montanari-Richard '14, Ben Arous-Mei-Montanari-Nica '17, Chen '18, Ben Arous-Gheissari-Jagannath '18, Wein-Alaoui-Moore '19, Perry-Wein-Bandeira '20...]

Commonly poly-time algorithms: unfolding-based [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...]

- Unfold \tilde{T} into $A \in \mathbb{R}^{n \times n^2}$. If $T = \sum_{i=1}^r x_i \otimes y_i \otimes z_i$, unfold \tilde{T} in 3 different ways.
- Take the SVD of the hollowed matrix h(AA^T) = AA^T − diag(AA^T) (spectral initialization) + postprocessing
- Diagonal removal improved the performance [Cai et al. '21]
- \rightarrow works until $p = O(n^{-k/2} \times \operatorname{polylog}(n))$

Commonly poly-time algorithms: unfolding-based [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...]

- Unfold \tilde{T} into $A \in \mathbb{R}^{n \times n^2}$. If $T = \sum_{i=1}^r x_i \otimes y_i \otimes z_i$, unfold \tilde{T} in 3 different ways.
- Take the SVD of the hollowed matrix h(AA^T) = AA^T − diag(AA^T) (spectral initialization) + postprocessing
- Diagonal removal improved the performance [Cai et al. '21]
- \rightarrow works until $p = O(n^{-k/2} \times \operatorname{polylog}(n))$

What happens if $p \propto n^{-k/2}$?

Figure: $T = v \otimes v \otimes v, AA^{\top} - \text{diag}(AA^{\top}), p = 20n^{-3/2}$

Figure: $T = v \otimes v \otimes v, AA^{\top} - \text{diag}(AA^{\top}), p = 20n^{-3/2}$

Figure: $AA^{\top} - \operatorname{diag}(AA^{\top}), p = 2n^{-3/2}$

Figure: $AA^{\top} - \operatorname{diag}(AA^{\top}), p = 2n^{-3/2}$

 $A \in \mathbb{R}^{n imes n^2}$ corresponds to a (weighted) random bipartite graph with $V_1 = [n], V_2 = [n^2].$

A random graph theory explanation

Hollowed matrix counts walks of length 2, $V_1 \rightarrow V_2 \rightarrow V_1$:

$$(AA^{\top})_{ij} = \sum_{k} A_{ik} A_{jk}.$$

 $h(AA^{\top})$ can be seen as the adjacency matrix of a new graph \tilde{G} (dashed edges).

Fact: \tilde{G} is still sparse (average degree d^2 for $p = dn^{-k/2}$).

In the unweighted (Erdős-Rényi) case:

- if d² ≳ √ log(n) / log log(n): spectrum of G̃ concentrates [Feige-Ofek '05, Benaych-Georges-Bordenave-Knowles '20]
- if d² ≪ √ log(n)/log log(n): no concentration, spectrum dominated by high-degree vertices [Benaych-Georges-Bordenave-Knowles '19]

Fact: \tilde{G} is still sparse (average degree d^2 for $p = dn^{-k/2}$).

In the unweighted (Erdős-Rényi) case:

- if $d^2 \gtrsim \sqrt{\frac{\log(n)}{\log\log(n)}}$: spectrum of \tilde{G} concentrates [Feige-Ofek '05, Benaych-Georges-Bordenave-Knowles '20]
- if d² ≪ √ log(n)/log log(n): no concentration, spectrum dominated by high-degree vertices [Benaych-Georges-Bordenave-Knowles '19]

\Rightarrow Naive unfolding (probably) doesn't work

Recap:

- existing methods do not reach the exact conjectured threshold for tensor completion (no results for "weak recovery").
- It is not a technical but a conceptual issue
- it suffices to solve matrix completion for a rank-r long matrix

Our solution: a new non-backtracking matrix for sparse long matrices Community detection in stochastic block models $\mathcal{G}(n, \frac{a}{n}, \frac{b}{n})$.

- Unknown partition $\sigma \in \{-1,1\}^n$. Generate a random graph G = ([n], E). *i*, *j* is connected with probability $p = \frac{a}{n}$ if $\sigma_i = \sigma_j$ and with probability $q = \frac{b}{n}$ otherwise.
- goal: recover σ from G

A detour through community detection

 $\mathbb{E}[A]$ is low-rank, and $v_2(\mathbb{E}[A]) = \sigma \Rightarrow$ spectral method on A?

A detour through community detection

 $\mathbb{E}[A]$ is low-rank, and $v_2(\mathbb{E}[A]) = \sigma \Rightarrow$ spectral method on A? No!

 $p = \frac{a}{n}, q = \frac{b}{n}$. High-degree vertices dominate the spectrum. v_2 localized around high-degree vertices.

[Krivelevich-Sudakov '01, Benaych-Georges, Bordenave, Knowles '19, Alt-Ducatez-Knowles '23]

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

$$\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.$$

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

$$\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.$$

The non-backtracking matrix *B* is defined: for $u \rightarrow v, x \rightarrow y \in \vec{E}$,

$$B_{u\to v,x\to y}=\mathbf{1}_{v=x}\mathbf{1}_{u\neq y}.$$

Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

$$\vec{E} = \{u \to v : \{u, v\} \in E\}, |\vec{E}| = 2|E|.$$

The non-backtracking matrix *B* is defined: for $u \rightarrow v, x \rightarrow y \in \vec{E}$,

$$B_{u\to v,x\to y}=\mathbf{1}_{v=x}\mathbf{1}_{u\neq y}.$$

Non-backtracking spectral method

 If (a - b)² > 2(a + b), then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]

Non-backtracking spectral method

- If (a b)² > 2(a + b), then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]
- *B* is non-Hermitian: avoid the localization effect from high degree vertices when *G* is very sparse.

Non-backtracking spectral method

- If (a b)² > 2(a + b), then the second eigenvector of B can be used to detect the community structure. [Bordenave, Lelarge, Massoulié '18]
- *B* is non-Hermitian: avoid the localization effect from high degree vertices when *G* is very sparse.
- Can be generalized for very sparse matrix completion: estimate a low-rank structure from sparse observations with O(n) many samples.
 [Bordenave-Coste-Nadakuditi '23]

Long matrix reconstruction

• Rectangular matrix M of size $n \times m$ ($m \gg n$), with SVD

$$M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\top}, \quad MM^{\top} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\top}$$

- Masking matrix X with $X_{ij} \sim \text{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$.
- Observed matrix:

$$A = rac{X \circ M}{p}$$
 so that $\mathbb{E}[A] = M$

Long matrix reconstruction

• Rectangular matrix M of size $n \times m$ ($m \gg n$), with SVD

$$M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\top}, \quad MM^{\top} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\top}$$

- Masking matrix X with $X_{ij} \sim \text{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$.
- Observed matrix:

$$A = rac{X \circ M}{p}$$
 so that $\mathbb{E}[A] = M$

Assumptions:

$$r, \sqrt{n} \|\phi_i\|_{\infty} = O(\mathsf{polylog}(n))$$

Goal: estimate singular values and left singular vectors of M: ν_i, ϕ_i , with sample size $O(\sqrt{mn})$

Long matrix reconstruction

• Rectangular matrix M of size $n \times m$ ($m \gg n$), with SVD

$$M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\top}, \quad MM^{\top} = \sum_{i=1}^{r} \nu_i^2 \phi_i \phi_i^{\top}$$

- Masking matrix X with $X_{ij} \sim \text{Ber}(p)$, $p = \frac{d}{\sqrt{mn}}$.
- Observed matrix:

$$A = rac{X \circ M}{p}$$
 so that $\mathbb{E}[A] = M$

Assumptions:

$$r, \sqrt{n} \|\phi_i\|_{\infty} = O(\operatorname{polylog}(n))$$

Goal: estimate singular values and left singular vectors of M: ν_i , ϕ_i , with sample size $O(\sqrt{mn})$

Estimating the full SVD of M needs O(m) [Bordenave-Coste-Nadakuditi '23]!

First idea: take the non-backtracking matrix of $\tilde{G} \Rightarrow$ doesn't work

First idea: take the non-backtracking matrix of $\tilde{G} \Rightarrow$ doesn't work Better idea: work directly on *oriented wedges* in G

$$ec{E_2} = \{(x,y,z) \in V_1 imes V_2 imes V_1, z
eq x\}$$

First idea: take the non-backtracking matrix of $\tilde{G} \Rightarrow$ doesn't work Better idea: work directly on *oriented wedges* in G

$$ec{E_2} = \{(x,y,z) \in V_1 imes V_2 imes V_1, z
eq x\}$$

First idea: take the non-backtracking matrix of $\tilde{G} \Rightarrow$ doesn't work Better idea: work directly on *oriented wedges* in *G*

$$ec{E_2} = \{(x,y,z) \in V_1 imes V_2 imes V_1, z
eq x\}$$

 \Rightarrow B has size $\sim n^2 m p^2 = d^2 n$: independent from m

Defined B index by \vec{E} as

$$B_{ef} = \begin{cases} A_{f_1f_2}A_{f_3f_2} & \text{if } e_3 = f_1 \text{ and } e_2 \neq f_2 \\ 0 & \text{otherwise} \end{cases}$$

Defined B index by \vec{E} as

e, f form a non-backtracking walk of length 4, starting from V_1 , ending in V_1 .

Defined B index by \vec{E} as

e, f form a non-backtracking walk of length 4, starting from V_1 , ending in V_1 .

$$\rho = \sqrt{mn} \| M \circ M \|, \qquad L = \sqrt{mn} \max_{x \in [n], y \in [m]} |M_{xy}|.$$

$$\rho = \sqrt{mn} \| \boldsymbol{M} \circ \boldsymbol{M} \|, \qquad \boldsymbol{L} = \sqrt{mn} \max_{\boldsymbol{x} \in [n], \boldsymbol{y} \in [m]} | \boldsymbol{M}_{\boldsymbol{x} \boldsymbol{y}} |.$$

Two important thresholds:

$$\vartheta_1 = \sqrt{\rho/d}$$

• decreases as $d^{-1/2}$

$$\rho = \sqrt{mn} ||M \circ M||, \qquad L = \sqrt{mn} \max_{x \in [n], y \in [m]} |M_{xy}|.$$

Two important thresholds:

$$\vartheta_1 = \sqrt{\rho/d}$$

• decreases as $d^{-1/2}$

 $\vartheta_2 = L/d$

• decreases as d^{-1}

$$\rho = \sqrt{mn} \| M \circ M \|, \qquad L = \sqrt{mn} \max_{x \in [n], y \in [m]} | M_{xy} |.$$

Two important thresholds:

$$artheta_1 = \sqrt{
ho/d}$$
 $artheta_2 = L/d$ decreases as $d^{-1/2}$ $ullet$ decreases as d^{-1}

Total threshold (Signal-to-noise ratio):

 $\vartheta = \max(\vartheta_1, \vartheta_2)$

Theorem (Stephan-Z. '24)

(Outliers) For any ν_i satisfying ν_i > ϑ, there exists an eigenvalue λ_i of B with

$$|\lambda_i - \nu_i^2| = O(n^{-c})$$

• (Bulk) All other eigenvalues are asymptotically confined in a circle of radius ϑ^2

Theorem (Stephan-Z. '24)

(Outliers) For any ν_i satisfying ν_i > ϑ, there exists an eigenvalue λ_i of B with

$$|\lambda_i - \nu_i^2| = O(n^{-c})$$

• (Bulk) All other eigenvalues are asymptotically confined in a circle of radius ϑ^2

Similar to the Kesten-Stigum threshold in community detection [Bordenave-Lelarge-Massoulié '18, Mossel-Neeman-Sly '18]

Results: eigenvalues

Figure: *M* is of rank-2, spectrum of B, d = 3

Need an embedding procedure from $\mathbb{R}^{\vec{E_2}}$ to \mathbb{R}^n

Need an embedding procedure from $\mathbb{R}^{\vec{E}_2}$ to \mathbb{R}^n

• For a right eigenvector ξ^R of *B*:

$$\zeta^R(x) = \sum_{e:e_1=x} A_{e_1e_2} A_{e_3e_2} \xi^R(e), \quad \forall x \in [n].$$

• For a left eigenvector ξ^L :

$$\zeta^{L}(x) = \sum_{e:e_{1}=x} \xi^{L}(e)$$

Theorem (Stephan-Z. '24)

Assume that $\nu_i > \vartheta$, and let $\xi_i^{L/R}$ the left/right eigenvectors associated to λ_i . Then, there exists a γ_i such that

$$\gamma_i = 1 - O(d^{-1})$$

and

$$\left|\langle \zeta_i^{L/R}, \phi_i \rangle - \sqrt{\gamma_i} \right| = O(n^{-c})$$

Theorem (Stephan-Z. '24)

Assume that $\nu_i > \vartheta$, and let $\xi_i^{L/R}$ the left/right eigenvectors associated to λ_i . Then, there exists a γ_i such that

$$\gamma_i = 1 - O(d^{-1})$$

and

$$\left|\langle \zeta_i^{L/R}, \phi_i \rangle - \sqrt{\gamma_i} \right| = O(n^{-c})$$

Weak recovery when $d \rightarrow \infty$. Explicit γ_i when d is fixed.

Our results: eigenvectors

Figure: B, d = 3

- $T = x_1 \otimes \cdots \otimes x_k$, $x_i \in \frac{1}{\sqrt{n}} \{\pm 1\}$. Sample with probability $p = \frac{d}{n^{k/2}}$.
- Unfold T
 in k different ways (the most unbalanced unfolding) [Ben Arous, Huang, Huang '23]. Apply the non-backtracking method to Unfold(T

- $T = x_1 \otimes \cdots \otimes x_k$, $x_i \in \frac{1}{\sqrt{n}} \{\pm 1\}$. Sample with probability $p = \frac{d}{n^{k/2}}$.
- Unfold T in k different ways (the most unbalanced unfolding) [Ben Arous, Huang, Huang '23]. Apply the non-backtracking method to Unfold(T).
- When sample size is $\alpha n^{k/2}$ with $\alpha > 1$, one can find unit eigenvectors such that

$$\langle v_i, x_i \rangle = \frac{\sqrt{\alpha^2 - 1}}{\alpha} + O(n^{-c}).$$

- $T = x_1 \otimes \cdots \otimes x_k$, $x_i \in \frac{1}{\sqrt{n}} \{\pm 1\}$. Sample with probability $p = \frac{d}{n^{k/2}}$.
- Unfold T
 in k different ways (the most unbalanced unfolding) [Ben Arous, Huang, Huang '23]. Apply the non-backtracking method to Unfold(T
- When sample size is αn^{k/2} with α > 1, one can find unit eigenvectors such that

$$\langle v_i, x_i \rangle = \frac{\sqrt{\alpha^2 - 1}}{\alpha} + O(n^{-c}).$$

• $T = \sum_{i=1}^{r} \lambda_i \left(w_i^{(1)} \otimes \cdots \otimes w_i^{(k)} \right)$, under the orthonormal condition on $w_1^{(j)}, \ldots, w_r^{(j)}$, the same analysis apply. $O(n^{k/2})$ samples for nontrivial approximation.

- $\deg(y) = 2 \text{ w.h.p}$
- "independent" wedges
- Associated weight:

 $W_e = A_{xy}A_{zy}$

- $\deg(y) = 2 \text{ w.h.p}$
- "independent" wedges
- Associated weight:

 $W_e = A_{xy}A_{zy}$

Erdős-Rényi graph
 G ~ G(n, d²/n)

 \simeq

Associated weight:
 W_e = A_{xY}A_{zY}, Y ~ Unif([m])

- $\deg(y) = 2 \text{ w.h.p}$
- "independent" wedges
- Associated weight:

 $W_e = A_{xy}A_{zy}$

- Erdős-Rényi graph
 G ~ G(n, d²/n)
- Associated weight: $W_e = A_{xY}A_{zY}, Y \sim \text{Unif}([m])$
- Extract information from a sparse Erdős-Rényi bipartite graph with random edge weights

- $\deg(y) = 2 \text{ w.h.p}$
- "independent" wedges
- Associated weight:

 $W_e = A_{xy}A_{zy}$

- Erdős-Rényi graph
 G ~ G(n, d²/n)
- Associated weight:
 W_e = A_{xY}A_{zY}, Y ~ Unif([m])
- Extract information from a sparse Erdős-Rényi bipartite graph with random edge weights
- Bulk eigenvalues: high moment methods on random bipartite graphs.
- Top eigenvalues and eigenvectors: local tree approximation. Galton-Watson tree with random weights [Stephan and Massoulié '20]

Conclusions

- Very sparse and long matrices are not standard in random matrix theory.
 We define a new non-backtracking matrix tailored for it (random bipartite graphs with more attention to V₁).
- The corresponding spectral method for tensor completion reaches the conjectured threshold in [Barak-Moitra '15].

Conclusions

- Very sparse and long matrices are not standard in random matrix theory.
 We define a new non-backtracking matrix tailored for it (random bipartite graphs with more attention to V₁).
- The corresponding spectral method for tensor completion reaches the conjectured threshold in [Barak-Moitra '15].
- Does not work for finite aspect ratio (m = O(n)) considered in [Bordenave-Coste-Nadakuditi '23]. Is there a unified spectral algorithm for all aspect ratios?

Conclusions

- Very sparse and long matrices are not standard in random matrix theory.
 We define a new non-backtracking matrix tailored for it (random bipartite graphs with more attention to V₁).
- The corresponding spectral method for tensor completion reaches the conjectured threshold in [Barak-Moitra '15].
- Does not work for finite aspect ratio (m = O(n)) considered in [Bordenave-Coste-Nadakuditi '23]. Is there a unified spectral algorithm for all aspect ratios?
- Statistical-computational gap between O(n) and $O(n^{k/2})$ samples:
 - Possible with O(n) samples and polynomial-time algorithms with non-uniform/ adaptive sampling [Haselby-Iwen-Karnik-Wang '24]
 - Rank-1 case is different, can be estimated with O(n) samples
 [Stephan-Z. '24, Gomez-Leos, López '24] by solving linear systems.
 - can we justify this gap with a hardness proxy ?

Thank you!

L. Stephan, Y. Zhu, A non-backtracking method for long matrix and tensor completion, COLT 2024.