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e T is an order-k tensor of size n X --- X n

e The observed tensor T is defined as

Ti,...i, with probability p

0 with probability 1 — p

e Goal: Exactly/approximately recover T from T with very few samples
(with an efficient algorithm) 1
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Model assumptions

Too many degrees of freedom!

Too localized!
e T has low CP-rank:

T=>x(we - ow?)
i=1

= r x kn degrees of freedom
e T is delocalized:

W oo =~ ™/
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e Low-rank matrix completion [Candes-Recht '09, Candes-Tao '10,
Keshavan-Montanari-Oh '10,...]. When r = O(1), with high probability,
uniformly sampling O(nlog(n)) entries with convex,/ non-convex
optimization is sufficient to exactly recover M.
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e Low-rank matrix completion [Candes-Recht '09, Candes-Tao '10,
Keshavan-Montanari-Oh '10,...]. When r = O(1), with high probability,
uniformly sampling O(nlog(n)) entries with convex,/ non-convex
optimization is sufficient to exactly recover M.

e Information threshold O(rnlog n) [Candes-Tao '10]. Best rank
dependence: O(rlogr - nlog n) [Ding-Chen '20].



Computational hardness

Computational complexity problem: most tensor problems are hard [Hillar-Lim
'09]

e spectral norm

e cigenvalues/singular values

e low-rank approximations
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Unfolding

unfold, 1, a

Sy
b
k-tensor (size n X --- X n)

Unfolding matrix (size n® x n®)
“Grouping” indices:
M

i1yeeesia) (a4 150 osik) —

Tensor completion on T Matrix completion on M

If k is even: square matrix of size n“/2 = O(n*/?) samples suffice
If k is odd: matrix of size nt</2) x pl*/2]



Statistical-computational gap for random tensors

e NP-hard algorithms [Yuan-Zhang '16, Ghadermarzy et al '19, Harris-Zhu
'21]: tensor-based norm minimization methods without unfolding
— works with O(n) samples
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Statistical-computational gap for random tensors

e NP-hard algorithms [Yuan-Zhang '16, Ghadermarzy et al '19, Harris-Zhu
'21]: tensor-based norm minimization methods without unfolding
— works with O(n) samples

e Unfolding-based algorithms with spectral initialization [Montanari and
Sun '16, Liu and Moitra '20, Cai et al. '21...]
— works with O(n*/?) samples

o Similar gaps in the spiked tensor model T = Av®7 + Z
[Montanari-Richard '14, Ben Arous-Mei-Montanari-Nica '17, Chen '18,
Ben Arous-Gheissari-Jagannath '18, Wein-Alaoui-Moore '19,
Perry-Wein-Bandeira '20. . .]

IMPOSSIBLE | HARD | EASY

SNRg. SNR¢omp

Signal-to-Noise Ratio



Basic unfolding algorithm

Commonly poly-time algorithms: unfolding-based [Montanari and Sun
'16, Liu and Moitra '20, Cai et al. '21...]

e Unfold Tinto A€ R™" If T=31_, x;®y; ® z, unfold T in 3
different ways.

e Take the SVD of the hollowed matrix h(AAT) = AAT — diag(AAT)
(spectral initialization) + postprocessing

e Diagonal removal improved the performance [Cai et al. '21]

— works until p = O(n=%/2x polylog(n))



Basic unfolding algorithm

Commonly poly-time algorithms: unfolding-based [Montanari and Sun
'16, Liu and Moitra '20, Cai et al. '21...]

e Unfold Tinto A€ R™" If T=31_, x;®y; ® z, unfold T in 3

different ways.

e Take the SVD of the hollowed matrix h(AAT) = AAT — diag(AAT)
(spectral initialization) + postprocessing

e Diagonal removal improved the performance [Cai et al. '21]
— works until p = O(n=%/2x polylog(n))

What happens if p oc n=%/2 2



Not a trivial challenge
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Figure: T=v®v®v,AAT —diag(AAT), p = 20n=3/?
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Not a trivial challenge

Figure: AAT — diag(AAT), p =2n=3/2
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Figure: AAT — diag(AAT), p =2n=3/2



A random graph theory explanation

A e R corresponds to a (weighted) random bipartite graph with
Vi= [n]7 Vo = [nz]‘

Vs = [n?]

10



A random graph theory explanation

Hollowed matrix counts walks of length 2, Vi — Vo, — Vi:

(AAT); = AwAi.
k

h(AAT) can be seen as the adjacency matrix of a new graph G (dashed edges).

Vs = [n?]

11



A random graph theory explanation

Fact: G is still sparse (average degree d for p = dn=*/?).

In the unweighted (Erd8s-Rényi) case:

o if d®> Iolgolgo(gn()n): spectrum of G concentrates [Feige-Ofek '05,

Benaych-Georges-Bordenave-Knowles '20]

o if d®> < Io;go(g”()n): no concentration, spectrum dominated by high-degree

vertices [Benaych-Georges-Bordenave-Knowles '19]
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A random graph theory explanation

Fact: G is still sparse (average degree d for p = dn=*/?).

In the unweighted (Erd8s-Rényi) case:

o if d®> Iolgolgo(gn()n): spectrum of G concentrates [Feige-Ofek '05,

Benaych-Georges-Bordenave-Knowles '20]

o if d®> < Io;go(g”()n): no concentration, spectrum dominated by high-degree

vertices [Benaych-Georges-Bordenave-Knowles '19]

= Naive unfolding (probably) doesn't work

12



Where are we so far?

Recap:

e existing methods do not reach the exact conjectured threshold for tensor
completion (no results for “weak recovery”).

e [t is not a technical but a conceptual issue

e it suffices to solve matrix completion for a rank-r long matrix

13



Our solution: a new
non-backtracking matrix for
sparse long matrices




A detour through community detection

Community detection in stochastic block models G(n, 2, S)

e Unknown partition o € {—1,1}". Generate a random graph G = ([n], E).
i,j is connected with probability p = 2 if o; = o; and with probability

q= l;’ otherwise.

e goal: recover o from G

14



A detour through community detection

E[A] is low-rank, and v»(E[A]) = o = spectral method on A?

ii5)



A detour through community detection

E[A] is low-rank, and v2(E[A]) = o = spectral method on A? No!

2
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= 0 2 0 500 1,000 1,500 2,000 2,500 3,000
p=12,9= %. High-degree vertices dominate the spectrum. v» localized around

high-degree vertices.
[Krivelevich-Sudakov '01,Benaych-Georges, Bordenave, Knowles '19, Alt-Ducatez-Knowles '23]

ii5)



Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

E={u—v:{uv}eE}I|E =2|E|

16



Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

E={u—v:{uv}eE}I|E =2|E|

The non-backtracking matrix B is defined: for u — v,x = y € E

Bu~>v,x~>y = 1v:x1u;éy~

-

v



Non-backtracking matrix for graphs

Proposed in [Krzakala et al. '13]

Defined on the oriented edges of G:

E={u—v:{uv}eE}I|E =2|E|

The non-backtracking matrix B is defined: for u — v,x = y € E

Bu~>v,x~>y = 1v:x1u#y‘
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Non-backtracking spectral method
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-2 -1 0 1 2 3 4 0 500 1,000 1,500 2,000

o If (a— b)? > 2(a+ b), then the second eigenvector of B can be used to
detect the community structure. [Bordenave, Lelarge, Massoulié 18]
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Non-backtracking spectral method

T T T T
-2 -1 0 1 2 3 4 0 500 1,000 1,500 2,000

o If (a— b)? > 2(a+ b), then the second eigenvector of B can be used to
detect the community structure. [Bordenave, Lelarge, Massoulié 18]

e B is non-Hermitian: avoid the localization effect from high degree
vertices when G is very sparse.

e Can be generalized for very sparse matrix completion: estimate a
low-rank structure from sparse observations with O(n) many samples.
[Bordenave-Coste-Nadakuditi '23]

17



Long matrix reconstruction

e Rectangular matrix M of size n x m (m > n), with SVD

M = Z vigii , MM = Z vidid]
i=1 i=1

e Masking matrix X with Xj ~ Ber(p), p= =

o Observed matrix:

A:XOM

so that E[A] =M

18
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Long matrix reconstruction

e Rectangular matrix M of size n x m (m > n), with SVD
M=>"vig’, MMT =31
i=1 i=1

e Masking matrix X with Xj ~ Ber(p), p= J%'

o Observed matrix:

A:XOM

so that E[A] =M

Assumptions:

r,vV/nll¢ille = O(polylog(n))

Goal: estimate singular values and left singular vectors of M: v, ¢;, with

sample size O(y/mn)
Estimating the full SVD of M needs O(m) [Bordenave-Coste-Nadakuditi '23]!
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Non-backtracking wedge matrix

First idea: take the non-backtracking matrix of G = doesn’t work
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First idea: take the non-backtracking matrix of G = doesn’t work

Better idea: work directly on oriented wedges in G
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Non-backtracking wedge matrix

First idea: take the non-backtracking matrix of G = doesn’t work

Better idea: work directly on oriented wedges in G

5:{(X7y72)€ Vi x Vo x Wi,z # x}

®

= B has size ~ n°’mp? = d’n: independent from m

19



Non-backtracking wedge matrix

Defined B index by E as

AfleAfoz if €3 — f1 and €9, 3& f2

0 otherwise

Bef -
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Non-backtracking wedge matrix

Defined B index by E as

AfleAfoz if €3 — f1 and €9, 3& f2

0 otherwise

Bef -

e, f form a non-backtracking walk of length 4, starting from V4, ending in V;.
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Non-backtracking wedge matrix

Defined B index by E as

= ArnAsn ifes=fiand & # £
ef —
0 otherwise

e, f form a non-backtracking walk of length 4, starting from V4, ending in V;.

20



Thresholds
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Thresholds

p=+mn|Mo M|, L=+vmn max |My].

x€[n],y€[m]

Two important thresholds:

ﬁl:\/p/d 192:L/d

1/2

e decreases as d~ e decreases as d !

Total threshold (Signal-to-noise ratio):

¥ = max(791, 192)

21



Our results: eigenvalues

Theorem (Stephan-Z. '24)

o ( ) For any v; satisfying vj > ¥, there exists an eigenvalue \; of B
with
[\ — 7| = O(n™°)
o ( ) All other eigenvalues are asymptotically confined in a circle of radius
192

22



Our results: eigenvalues

Theorem (Stephan-Z. '24)

o ( ) For any v; satisfying vj > ¥, there exists an eigenvalue \; of B
with
[\ — 7| = O(n™°)
o ( ) All other eigenvalues are asymptotically confined in a circle of radius
192

Similar to the Kesten-Stigum threshold in community detection
[Bordenave-Lelarge-Massoulié '18, Mossel-Neeman-Sly '18]

22



Results: eigenvalues

Figure: M is of rank-2, spectrum of B,d =3

23



Embedding eigenvectors

Need an embedding procedure from RE to R”
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Embedding eigenvectors

Need an embedding procedure from RE to R”

e For a right eigenvector £F of B:

CR(X) = Z A€192A6‘362§R(e)7 Vx € [n]

ele1=x
e For a left eigenvector &5

)= (e

ele=x

24



Our results: eigenvectors

Theorem (Stephan-Z. '24)

Assume that v; > ¥, and let fiL/R the left/right eigenvectors associated to \;.
Then, there exists a ; such that

yi=1-0(d"")

and

('R, ¢i) — V1| = O(n™)
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Our results: eigenvectors

Theorem (Stephan-Z. '24)

Assume that v; > ¥, and let fiL/R the left/right eigenvectors associated to \;.
Then, there exists a ; such that

yi=1-0(d"")

and

('R, ¢i) — V1| = O(n™)

Weak recovery when d — oo. Explicit v; when d is fixed.

25



Our results: eigenvectors

0 10000 20000 30000

Figure: B,d =3
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Application in tensor completion

o T =x1Q - Qxk, Xi € ﬁ{il}. Sample with probability p = ﬁ'

e Unfold T in k different ways ( the most unbalanced unfolding) [Ben
Arous, Huang, Huang '23]. Apply the non-backtracking method to

Unfold(T).
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Application in tensor completion

o T =x1Q - Qxk, Xi € ﬁ{il}. Sample with probability p = ﬁ'

e Unfold T in k different ways ( the most unbalanced unfolding) [Ben
Arous, Huang, Huang '23]. Apply the non-backtracking method to

Unfold(T).
e When sample size is an”/? with o > 1, one can find unit eigenvectors
such that
2 _
(vi,xi) = aTl +0(n™°).

o T = Z;:l i (W/»(l) R ® W/.(k)), under the orthonormal condition on

W{j), ceey W,(j), the same analysis apply. O(nk/2) samples for nontrivial

approximation.

27



Proof idea

e deg(y) =2 w.h.p
e ‘“independent” wedges

e Associated weight:
Ws S AxyAzy
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Proof idea

C (v) C

o deg(y) =2 w.hp e Erdés-Rényi graph

e ‘“independent” wedges G ~G(n, d2/’7)
e Associated weight: e Associated weight:
We = Ay Az We = Ay Azy, Y ~ Unif([m])

e Extract information from a sparse Erdés-Rényi bipartite graph with
random edge weights

e Bulk eigenvalues: high moment methods on random bipartite graphs.

e Top eigenvalues and eigenvectors: local tree approximation.
Galton-Watson tree with random weights [Stephan and Massoulié '20] 28



Conclusions

e \ery sparse and long matrices are not standard in random matrix theory.
We define a new non-backtracking matrix tailored for it (random bipartite
graphs with more attention to V4).

e The corresponding spectral method for tensor completion reaches the
conjectured threshold in [Barak-Moitra '15].
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Conclusions

e \ery sparse and long matrices are not standard in random matrix theory.
We define a new non-backtracking matrix tailored for it (random bipartite
graphs with more attention to V4).

e The corresponding spectral method for tensor completion reaches the
conjectured threshold in [Barak-Moitra '15].

e Does not work for finite aspect ratio (m = O(n)) considered in
[Bordenave-Coste-Nadakuditi '23]. Is there a unified spectral algorithm
for all aspect ratios?

e Statistical-computational gap between O(n) and O(n*/?) samples:

e Possible with O(n) samples and polynomial-time algorithms with
non-uniform/ adaptive sampling [Haselby-lwen-Karnik-Wang '24]
e Rank-1 case is different, can be estimated with O(n) samples
[Stephan-Z. '24, Gomez-Leos, Lépez '24] by solving linear systems.
e can we justify this gap with a hardness proxy ?
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Thank youl!

L. Stephan, Y. Zhu, A non-backtracking method for long matrix and
tensor completion, COLT 2024.
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