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What is tensor completion ?

Tensor T

subsampling−−−−−−→

Observed tensor T̃

• T is an order-k tensor of size n × · · · × n

• The observed tensor T̃ is defined as

T̃i1,...,ik =

Ti1,...,ik with probability p

0 with probability 1− p

• Goal: Exactly/approximately recover T from T̃ with very few samples

(with an efficient algorithm)
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Model assumptions

Too many degrees of freedom!

Too localized!

• T has low CP-rank:

T =
r∑

i=1

λi

(
w

(1)
i ⊗ · · · ⊗ w

(k)
i

)
⇒ r × kn degrees of freedom

• T is delocalized:

∥w (j)
i ∥∞ ≃ n−1/2
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Matrix completion

• Low-rank matrix completion [Candes-Recht ’09, Candes-Tao ’10,

Keshavan-Montanari-Oh ’10,. . . ]. When r = O(1), with high probability,

uniformly sampling O(n log(n)) entries with convex/ non-convex

optimization is sufficient to exactly recover M.

• Information threshold O(rn log n) [Candes-Tao ’10]. Best rank

dependence: O(r log r · n log n) [Ding-Chen ’20].
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Computational hardness

Computational complexity problem: most tensor problems are hard [Hillar-Lim

’09]

• spectral norm

• eigenvalues/singular values

• low-rank approximations
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Unfolding

k-tensor (size n × · · · × n)

unfolda,b−−−−−−→

nb

na

Unfolding matrix (size na × nb)
“Grouping” indices:

M(i1,...,ia),(ia+1,...,ik ) = Ti1,...,ik

Tensor completion on T ⇐ Matrix completion on M

If k is even: square matrix of size nk/2 =⇒ Õ(nk/2) samples suffice

If k is odd: matrix of size n⌊k/2⌋ × n⌈k/2⌉
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Statistical-computational gap for random tensors

• NP-hard algorithms [Yuan-Zhang ’16, Ghadermarzy et al ’19, Harris-Zhu

’21]: tensor-based norm minimization methods without unfolding

→ works with Õ(n) samples

• Unfolding-based algorithms with spectral initialization [Montanari and

Sun ’16, Liu and Moitra ’20, Cai et al. ’21...]

→ works with Õ(nk/2) samples

• Similar gaps in the spiked tensor model T = λv⊗q + Z

[Montanari-Richard ’14, Ben Arous-Mei-Montanari-Nica ’17, Chen ’18,

Ben Arous-Gheissari-Jagannath ’18, Wein-Alaoui-Moore ’19,

Perry-Wein-Bandeira ’20. . . ]

IMPOSSIBLE HARD EASY

SNR∗
Stat SNR∗

Comp

Signal-to-Noise Ratio
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Basic unfolding algorithm

Commonly poly-time algorithms: unfolding-based [Montanari and Sun

’16, Liu and Moitra ’20, Cai et al. ’21...]

• Unfold T̃ into A ∈ Rn×n2 . If T =
∑r

i=1 xi ⊗ yi ⊗ zi , unfold T̃ in 3

different ways.

• Take the SVD of the hollowed matrix h(AA⊤) = AA⊤ − diag(AAT )

(spectral initialization) + postprocessing

• Diagonal removal improved the performance [Cai et al. ’21]

→ works until p = O(n−k/2× polylog(n))

What happens if p ∝ n−k/2 ?
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Not a trivial challenge

Figure: T = v ⊗ v ⊗ v ,AA⊤ − diag(AA⊤), p = 20n−3/2
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Not a trivial challenge

Figure: AA⊤ − diag(AA⊤), p = 2n−3/2
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Not a trivial challenge

Figure: AA⊤ − diag(AA⊤), p = 2n−3/2
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A random graph theory explanation

A ∈ Rn×n2 corresponds to a (weighted) random bipartite graph with

V1 = [n],V2 = [n2].

V2 = [n2]

V1 = [n]
i1 i2 i3

k1 k2 k3 k4 k5

10



A random graph theory explanation

Hollowed matrix counts walks of length 2, V1 → V2 → V1:

(AA⊤)ij =
∑
k

AikAjk .

h(AA⊤) can be seen as the adjacency matrix of a new graph G̃ (dashed edges).

V2 = [n2]

V1 = [n]
i1 i2 i3

k1 k2 k3 k4 k5

11



A random graph theory explanation

Fact: G̃ is still sparse (average degree d2 for p = dn−k/2).

In the unweighted (Erdős-Rényi) case:

• if d2 ≳
√

log(n)
log log(n)

: spectrum of G̃ concentrates [Feige-Ofek ’05,

Benaych-Georges-Bordenave-Knowles ’20]

• if d2 ≪
√

log(n)
log log(n)

: no concentration, spectrum dominated by high-degree

vertices [Benaych-Georges-Bordenave-Knowles ’19]

⇒ Naive unfolding (probably) doesn’t work
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Where are we so far?

Recap:

• existing methods do not reach the exact conjectured threshold for tensor

completion (no results for “weak recovery”).

• It is not a technical but a conceptual issue

• it suffices to solve matrix completion for a rank-r long matrix

13



Our solution: a new

non-backtracking matrix for

sparse long matrices



A detour through community detection

Community detection in stochastic block models G(n, a
n
, b
n
).

• Unknown partition σ ∈ {−1, 1}n. Generate a random graph G = ([n],E).

i , j is connected with probability p = a
n
if σi = σj and with probability

q = b
n
otherwise.

• goal: recover σ from G

=⇒

14



A detour through community detection

E[A] is low-rank, and v2(E[A]) = σ ⇒ spectral method on A?

No!

−2 0 2
0

0.5

1

1.5

2

0 500 1,000 1,500 2,000 2,500 3,000

−0.4

−0.2

0

0.2

p = a
n
, q = b

n
. High-degree vertices dominate the spectrum. v2 localized around

high-degree vertices.

[Krivelevich-Sudakov ’01,Benaych-Georges, Bordenave, Knowles ’19, Alt-Ducatez-Knowles ’23]
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Non-backtracking matrix for graphs

Proposed in [Krzakala et al. ’13]

Defined on the oriented edges of G :

E⃗ = {u → v : {u, v} ∈ E}, |E⃗ | = 2|E |.

The non-backtracking matrix B is defined: for u → v , x → y ∈ E⃗ ,

Bu→v,x→y = 1v=x1u ̸=y .

✓ ✗
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Non-backtracking spectral method

−2 −1 0 1 2 3 4

−2

−1

0

1

2

λ2 λ1

√
d+ o(1)

0 500 1,000 1,500 2,000

−4

−2

0

2

4

• If (a− b)2 > 2(a+ b), then the second eigenvector of B can be used to

detect the community structure. [Bordenave, Lelarge, Massoulié ’18]

• B is non-Hermitian: avoid the localization effect from high degree

vertices when G is very sparse.

• Can be generalized for very sparse matrix completion: estimate a

low-rank structure from sparse observations with O(n) many samples.

[Bordenave-Coste-Nadakuditi ’23]
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Long matrix reconstruction

• Rectangular matrix M of size n ×m (m ≫ n), with SVD

M =
r∑

i=1

νiϕiψ
⊤
i , MM⊤ =

r∑
i=1

ν2i ϕiϕ
⊤
i

• Masking matrix X with Xij ∼ Ber(p), p = d√
mn

.

• Observed matrix:

A =
X ◦M

p
so that E[A] = M

Assumptions:

r ,
√
n∥ϕi∥∞ = O(polylog(n))

Goal: estimate singular values and left singular vectors of M: νi , ϕi , with

sample size O(
√
mn)

Estimating the full SVD of M needs O(m) [Bordenave-Coste-Nadakuditi ’23]!
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Non-backtracking wedge matrix

First idea: take the non-backtracking matrix of G̃ ⇒ doesn’t work

Better idea: work directly on oriented wedges in G

E⃗2 = {(x , y , z) ∈ V1 × V2 × V1, z ̸= x}

x

y

z

⇒ B has size ∼ n2mp2 = d2n: independent from m

19
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Non-backtracking wedge matrix

Defined B index by E⃗ as

Bef =

Af1f2Af3f2 if e3 = f1 and e2 ̸= f2

0 otherwise

e1

e2

f1

f2

f3

e f

e, f form a non-backtracking walk of length 4, starting from V1, ending in V1.

20
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Thresholds

ρ =
√
mn∥M ◦M∥, L =

√
mn max

x∈[n],y∈[m]
|Mxy |.

Two important thresholds:

ϑ1 =
√
ρ/d

• decreases as d−1/2

ϑ2 = L/d

• decreases as d−1

Total threshold (Signal-to-noise ratio):

ϑ = max(ϑ1, ϑ2)

21
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Our results: eigenvalues

Theorem (Stephan-Z. ’24)

• (Outliers) For any νi satisfying νi > ϑ, there exists an eigenvalue λi of B

with

|λi − ν2i | = O(n−c)

• (Bulk) All other eigenvalues are asymptotically confined in a circle of radius

ϑ2

Similar to the Kesten-Stigum threshold in community detection

[Bordenave-Lelarge-Massoulié ’18, Mossel-Neeman-Sly ’18]
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Results: eigenvalues

Figure: M is of rank-2, spectrum of B, d = 3
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Embedding eigenvectors

Need an embedding procedure from RE⃗2 to Rn

• For a right eigenvector ξR of B:

ζR(x) =
∑

e:e1=x

Ae1e2Ae3e2ξ
R(e), ∀x ∈ [n].

• For a left eigenvector ξL:

ζL(x) =
∑

e:e1=x

ξL(e)

24
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Our results: eigenvectors

Theorem (Stephan-Z. ’24)

Assume that νi > ϑ, and let ξ
L/R
i the left/right eigenvectors associated to λi .

Then, there exists a γi such that

γi = 1− O(d−1)

and ∣∣∣⟨ζL/Ri , ϕi ⟩ −
√
γi

∣∣∣ = O(n−c)

Weak recovery when d → ∞. Explicit γi when d is fixed.
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Our results: eigenvectors

Figure: B, d = 3

26



Application in tensor completion

• T = x1 ⊗ · · · ⊗ xk , xi ∈ 1√
n
{±1}. Sample with probability p = d

nk/2
.

• Unfold T̃ in k different ways ( the most unbalanced unfolding) [Ben

Arous, Huang, Huang ’23]. Apply the non-backtracking method to

Unfold(T̃ ).

• When sample size is αnk/2 with α > 1, one can find unit eigenvectors

such that

⟨vi , xi ⟩ =
√
α2 − 1

α
+ O(n−c).

• T =
∑r

i=1 λi

(
w

(1)
i ⊗ · · · ⊗ w

(k)
i

)
, under the orthonormal condition on

w
(j)
1 , . . . ,w

(j)
r , the same analysis apply. O(nk/2) samples for nontrivial

approximation.
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Application in tensor completion

• T = x1 ⊗ · · · ⊗ xk , xi ∈ 1√
n
{±1}. Sample with probability p = d
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.
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Proof idea

x

y

z

• deg(y) = 2 w.h.p

• “independent” wedges

• Associated weight:

We = AxyAzy

≃

x z
(y)

• Erdős-Rényi graph

G ∼ G(n, d2/n)

• Associated weight:

We = AxYAzY ,Y ∼ Unif([m])

• Extract information from a sparse Erdős-Rényi bipartite graph with

random edge weights

• Bulk eigenvalues: high moment methods on random bipartite graphs.

• Top eigenvalues and eigenvectors: local tree approximation.

Galton-Watson tree with random weights [Stephan and Massoulié ’20]
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• Erdős-Rényi graph

G ∼ G(n, d2/n)

• Associated weight:

We = AxYAzY ,Y ∼ Unif([m])

• Extract information from a sparse Erdős-Rényi bipartite graph with
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Conclusions

• Very sparse and long matrices are not standard in random matrix theory.

We define a new non-backtracking matrix tailored for it (random bipartite

graphs with more attention to V1).

• The corresponding spectral method for tensor completion reaches the

conjectured threshold in [Barak-Moitra ’15].

• Does not work for finite aspect ratio (m = O(n)) considered in

[Bordenave-Coste-Nadakuditi ’23]. Is there a unified spectral algorithm

for all aspect ratios?

• Statistical-computational gap between O(n) and O(nk/2) samples:

• Possible with O(n) samples and polynomial-time algorithms with

non-uniform/ adaptive sampling [Haselby-Iwen-Karnik-Wang ’24]

• Rank-1 case is different, can be estimated with O(n) samples

[Stephan-Z. ’24, Gomez-Leos, López ’24] by solving linear systems.

• can we justify this gap with a hardness proxy ?
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Thank you!

• L. Stephan, Y. Zhu, A non-backtracking method for long matrix and

tensor completion, COLT 2024.
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