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Overview

1. Introduction: optimization of random functions

2. Derrida’s CREM and time-inhomogeneous BBM

3. Time-inhomogeneous N-BBM: near the hardness threshold

Toulouse Pascal Maillard (Univ. Toulouse) – N-particle branching Brownian motions 2/33



Introduction: optimization of random functions
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Optimization of random functions

• Ubiquitous computational task:

optimization of a highly non-convex

function on high-dimensional space

(machine learning, combinatorial

optimization,...).

• Average-case complexity vs.

worst-case complexity

• Theoretical framework: spin glasses

in statistical mechanics
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Spin glasses

Typical statistical mechanics model described by (Boltzmann, Gibbs):

• State space Σ
• Hamiltonian H : Σ → R
• Gibbs measure µβ(σ) ∝ e−βH(σ), β ≥ 0 (inverse temperature)

Example: Ising model (on graph G = (V, E), without magnetic field):

Σ = {−1, 1}V , H(σ) = −
∑

v∼w σvσw

Spin glass: the Hamiltonian H is itself random.

Example: (Ising) p-spin model (p ≥ 2, without magnetic field):

Σn = {−1, 1}n, Hn(σ) = n−
p−1
2

n∑
i1,...,ip=1

Ji1,...,ipσi1 · · ·σip ,

where Ji1,...,ip are iid standard Gaussian random variables.
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Parisi measure and Parisi ultrametricity

Overlap between σ, σ′ ∈ Σn: R(σ, σ
′) = 1

n
〈σ, σ′〉 = 1

n

∑n
i=1 σiσ

′
i ∈ [−1, 1].

Mean overlap measure:

νβ,n(dt) = E

 ∑
σ,σ′∈Σn

1(R(σ,σ′)∈dt)µβ,n(σ)µβ,n(σ
′)

 , t ∈ R.

Parisi measure: νβ := limn→∞ νβ,n.

Parisi ultrametricity (Parisi 1980’s)

Emerging hierarchical structure whose statistics are completely determined (in the

limit) by the Parisi measure νβ .
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Optimization algorithms, overlap gap property

Basic question: is it possible to find an approximate ground state, i.e., for a given

ε > 0, to find a state σ ∈ Σn such that∣∣∣∣ Hn(σ)

minσ′∈Σn
Hn(σ′)

− 1

∣∣∣∣ ≤ ε,

in a time polynomial in n, with high probability?

Folklore conjecture (Gamarnik 21) for a wide class of models: Possible if (and only if)

the overlap gap property does not hold.

Addario-Berry–M. 19, Subag 21, Montanari 21, Gamarnik–Jagannath 21, Sellke 24,…

Overlap gap property

We say that the model exhibits the overlap gap property (OGP), if the support of the

Parisi measure νβ is not an interval for sufficiently large β.
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Derrida’s CREM and time-inhomogeneous BBM
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Derrida’s continuous random energy model

The continuous random energy model (CREM) Derrida 1985, Bovier–Kurkova 2004

• a certain Gaussian field indexed by a tree

• a spin glass model with explicit hierarchical structure

• amenable to quite explicit (asymptotic) analysis

Focus of today’s talk: Intrinsic barriers for the efficiency of algorithms for optimizing

the CREM Hamiltonian.

joint work with: Louigi Addario-Berry Alexandre Legrand
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Continuous random energy model (CREM)

• T ∈ N (large)

• TT : rooted binary tree of depth T

• (Xu)u∈TT
: centered Gaussian field

• A : [0, 1] → [0, 1] non-decreasing,
A(0) = 0, A(1) = 1

• |u| = dist(∅, u)
• u ∧ v: most recent common ancestor

of u and v

• Covariance matrix:

Cov(Xu, Xv) = T · A
(
|u ∧ v|

T

)

/
A

↳
j 4/21 bis
&:en

~

T

E
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Time-inhomogeneous branching Brownian motion

Continuous-time version of CREM. Parameters:

• T > 0 (large)

• σ2 : [0, 1] → R+

The time-inhomogeneous branching Brownian

motion (BBM) is a particle system where particles

• diffuse according to independent

(time-inhomogeneous) Brownian motions,

sped up by a factor σ2(t/T) at time t

• split into two particles at (constant) rate 1/2

Essentially equivalent to CREM with

A(t) =
∫ t

0 σ2(s)ds.
Eric Brunet
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Optimization problem

Known (Bovier–Kurkova 2004): First order of ground state of CREM (here, maximum

instead of minimum):

lim
T→∞

1

T
max
|u|=T

Xu =
√
2 log 2

∫ 1

0

√
â(t)dt,

where â: left-derivative of Â, the concave hull of A.

Optimization problem

Given x > 0, is it possible to find vertices u with Xu ≥ xT within a time of order poly(T)

with high probability? In particular, is there a poly(T)-time algorithm which finds an

approximate ground state, i.e. a vertex u with Xu ≥ (1− ε)
√
2 log 2

∫ 1
0

√
â(t)dt× T, for

every ε > 0?

Remark: The related problem of approximately sampling the Gibbs measure was

treated in the thesis of Fu-Hsuan Ho.
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Algorithmic model

Pemantle 09: An algorithm is a random sequence of vertices (v(n))n≥1, such that

v(n+ 1) depends only on

• v(1), . . . , v(n)

• Xv(1), . . . , Xv(n)
• possibly some additional randomness (e.g., U1, . . . ,Un+1, where (Un)n≥1 is a

sequence of iid uniformly distributed r.v., independent of (Xu)u∈TN
)

In other words, v(n)n≥1 is a predictable process w.r.t. the filtration

Fn = σ
(
v(1), . . . , v(n), Xv(1), . . . , Xv(n),U1, . . . ,Un+1

)
.

A stopping time τ is in this context also called the running time of the algorithm. The

output of the algorithm is the vertex v(τ).
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Optimization problem: threshold

A(t) =
∫ t

0 a(s)ds, with a Riemann-integrable.

Define x∗ =
√

2 log 2
∫ 1

0

√
a(t)dt (algorithmic hardness threshold).

Theorem (Addario-Berry–M. 2021)

1. For x < x∗, there exists an algorithm with O(T) runtime, which finds a vertex u

with Xu ≥ xT with high probability.

2. For x > x∗ every algorithm, which finds a vertex u with Xu ≥ xT, has runtime at

least eγT with high probability, for some γ = γ(x) > 0.

Corollary

One can approximate the ground state in a time poly(T) if and only if A is concave.
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Threshold and overlap gap property

Corollary

One can approximate the ground state in a time poly(T) if and only if A is concave.

Known (Bovier–Kurkova 2004-07): Support of Parisi measure (for sufficiently large β) is
the set of extremal points of the concave hull of A. Hence, we have the equivalence:

no overlap gap ⇔ A strictly concave

Hence, we confirm the fact that the overlap gap property is necessary and sufficient

for hardness of approximating the ground state, except for boundary cases.
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Time-inhomogeneous N-BBM: near the hardness

threshold
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https://afst.centre-mersenne.org/
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Optimization problem: near the threshold

Q: what happens near the threshold x∗? (“phase transition”)

Proposed algorithm to probe this: beam-search of beam width N = N(T):

• follow (at most) N paths of vertices down the tree

• at every step, paths split into two, only keep the N paths with highest (terminal)

value, discard the others.

Complexity: N × T.

Interesting regime: log T � logN � T (transition from polynomial to exponential

complexity).
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Time-inhomogeneous N-BBM

Time-inhomogeneous N-particle branching

Brownian motion (N-BBM):

• particle system evolving in continuous time as

follows:

• particles diffuse according to independent

(time-inhomogeneous) Brownian motions,

sped up by a factor σ2(t/T) at time t

• particles split, or “branch” into two particles

at (constant) rate 1/2

• at every branching event, only keep N

particles at highest positions

MT : maximum position at time T.
Eric Brunet
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Running maximum of simulations of time-inhomogeneous N-BBM with varying N.

Parameters: T = 1000, σ(t) = 0.125 + t2.

Toulouse Pascal Maillard (Univ. Toulouse) – N-particle branching Brownian motions 21/33



Time-inhomogeneous N-BBM: main result

Assume σ2 smooth, bounded away from 0 and∞. Set v :=
∫ 1
0 σ(t)dt.

Theorem (Legrand–M. (2024+))

1. (subcritical phase) logN � T1/3:

MT = vT
(
1− π2

2(logN)2

)
+ · · · .

2. (supercritical phase) logN � T1/3:

MT = vT +
∫ 1
0 (σ

′(t))+ dt × logN + · · ·
3. (critical phase) logN � T1/3:

MT = vT +Φ((logN)/T1/3;σ)T1/3 + · · · ,
for some explicit function Φ(·;σ).

Same result holds also for CREM.
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Numerical experiments

Numerical experiments on a discrete model (time-inhomogeneous N-particle

branching random walk with Bernoulli increments) with varying N.
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Subcritical phase (logN � T1/3)

Recall result:

MT = vT

(
1− π2

2(logN)2

)
+ · · ·

Reminiscent of Brunet-Derrida correction.

Theorem (Brunet–Derrida 1997, Bérard–Gouéré 2010)

Assume σ2 ≡ 1 (homogeneous N-BBM). Then,

lim
T→∞

MT

T
= 1− π2

2(logN)2
+ · · · .

Time-inhomogeneous N-BBM behaves like a concatenation of homogeneous N-BBM

living each on a time scale of order o(T).
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Supercritical phase (logN � T1/3)

Recall result:

MT = vT +

∫ 1

0
(σ′(t))+ dt × logN + · · ·

Why second term of order logN?
• Particles in the N-BBM are atypical (large deviation event needed for a

trajectory to survive)

• As a consequence, particle density decreases exponentially.

• When N large enough, expect a logarithmic increase in the maximum as a

function of N.
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Critical phase (logN � T1/3)

Recall result:

MT = vT +Φ((logN)/T1/3;σ)× T1/3 + · · · ,
for some explicit functional Φ(·;σ).

Why T1/3? Match corrections in subcritical and supercritical phases:

T

(logN)2
� logN ⇐⇒ logN � T1/3

Expression of Φ(·;σ) involving a functionΨ defined in Mallein 2015:

Φ(α;σ) =

∫ 1

0

σ(u)

α2
Ψ
(
− α3σ

′(u)

σ(u)

)
du, Ψ(q)


∼ −q, q → −∞
= −π2

2 , q = 0

∼ −a1q2/3
21/3

, q → +∞
,

where−a1 = −2.33811 . . . is the largest root of the Airy function Ai.
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T1/3 scaling in branching Brownian motion

T1/3 scaling appears in many articles involving extremal particles of branching

Brownian motion/branching random walks

Kesten 1978, Aldous 1998, Pemantle 2009, Fang–Zeitouni 2010, Faraud–Hu–Shi 2012, Jaffuel

2012, Mallein 2015, M.–Zeitouni 2016,…

But it appears to our knowledge here for the first time for non-extremal particles.
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Proof methods

Guiding principle: make use of trajectories!

1. Comparison of the N-BBM with BBM killed outside some well-chosen space-time

tube (“barrier method”), over time scale T (critical, supercritical phases) or over

a smaller time scale (subcritical phase)

2. Estimates on number of particles staying inside such tubes (truncation!)

through first- and second moment estimates

3. Critical phase: eigenvalue problem of Laplacian killed outside an interval in a

linear (Airy) potential, Mallein 2015
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·
Toulouse Pascal Maillard (Univ. Toulouse) – N-particle branching Brownian motions 31/33



Conclusion

• We have introduced a beam search algorithm for the CREM and a

continuous-time counterpart.

• We have rigorously studied the performance of the algorithm when T and the

beam width N are large

• Critical phase: logN � T1/3. Below this critical phase, the gain in the

performance when increasing the beam width is notable, above the critical

phase it becomes negligible (logarithmic increase in N)

• Results quite precise, but still rough for BBM standards.

Open problems:

• Prove algorithmic lower bound for a wide class of algorithms

• Study similar behavior in “true” models (spin glasses, combinatorial

optimization,…)
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Thank you for your attention!
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