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Why deep neural networks work better than other machine learning
methods?

® Deep neural networks (DNNs) often outperform other machine learning methods in many
applications due to several key factors:

1. Representation Learning:

e Automatic Feature Extraction: One of the most significant advantages of deep neural
networks is their ability to automatically learn and extract features from raw data. In
traditional machine learning methods, feature engineering (manually designing features) is a
critical step, and the quality of the features significantly affects performance. DNNs can learn
hierarchical feature representations directly from the data, capturing complex patterns that

are difficult to manually design.

e Hierarchical Representations: DNNs learn features at multiple levels of abstraction. The
lower layers capture low-level features (e.g., edges in images), and higher layers capture
more abstract concepts (e.g., object parts or entire objects). This hierarchical feature

learning allows DNNSs to handle the complexity of high-dimensional data effectively.
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How do we define this mathematically?

Can we quantify impact in generalisation?

This talk: Exact picture in a simple setting:

One GD step In a 2-layer neural net
with random data
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Setting

Our protagonist - 2 layer NNs:

We assume training data @ = {(x;,y,) € R¥*! ;i € [n]} is drawn from:

y; = [ (%) + 2
x, ~ NO,1,/d) z, ~ N(0,A)
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What can we learn initialisation W = W' ?
(by training only 2nd layer weights a € R”)

1 n
a,(X,y) = aremin— —{a,c(Wx)? + || a 2
JX,y) = argmin— » (5, = {a, oWx))* + 2| |al |,

aec RP i=1
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Random features model

0 , [Jacot, Gabriel, Hongler "18;
1. When p — oo, Wstays close to W~ (lazy regime) Chizat. Bach T

Neal '94; Lee et al. "19]

2. This can be seen as the approximation for a kernel method
(universal approximators)

14

Kgp(x,x") = E,, [0 ((WO, x)) o ((WO, x’))] ~ %Z o ((w,?, x)) o ((w,?, x’))
k=1

[Retch, Raimi 2007]

) What can we learn with that?

Louart et al., '18; Mei, Montanari '19; Ghorbani, Mei, Misiakiewicz, Montanari '19, '20, '21;
Gerace, BL, Krzakala, Mézard, Zdeborova '20; Goldt, BL, Reeves, Krzakala, Mézard, Zdeborova
'21 Dhiffalah & Lu '20; Hu & Lu '20; Liang, Sur '20; Jacot, Simsek, Spadaro, Hongler, Gabriel 20;
BL, Gerbelot, Refinetti, Sicuro, Krzakala '22; Mei, Misiakiewicz, Montanari '22; Fan, Wang 2020;

Liao et al., '21; Schroder, Cui, Dmitriev, BL '23, 24; Defilippis, BL, Misiakiewicz 24.
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Limitations of RF

Theorem [Mel, Misiakiewicz, Montanari '22, informal]:

For isotropic data (e.g. x ~ Unif(S§¢™1)), with n, p = O(d")
one can learn at best a polynomial approximation of
degree k of the target f, (x)

E || f(0) = f0x; a5 WO 15 = || Poofi |17+ 041)

In particular, for n,p = O(d), can learn at best a linear approximation of f,

fi(x) = (04, x) + fiy ()

Intuition: 0'(<WO, x)) = Uy T /41<WO, X) + Z Iu—O:Hea((WO, X))
a>?2 a': @(d—a/2)
R o+ (W, X) + pé
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Gausslian egulvalence

Consider the following two ERM problems:

a,(X,y) = argmm—Z (v, — (@, o(W'x))* + A1 |al |5

a

a%(X,y) = argmm—Z (y; = @, pol + py WOx; + p, z))> + Al al |

a =1

Then, in the limitd — oo with n,p = O(d):

Gaussian equivalence principle (GEP)
[Goldt et al. '19, 20; Mei & Montanari '19; Hu& Lu '20]

|R(4;) — R@7)| = 0




Consider the unique fixed point of the following system of equations

where V = k?V, +x2V,, V' =p — 3,Q = kiq, + k2q,, M =
and g 1s the Stieltjes transform of WOWOT o =L [a(z)], u =E [za(z)], u, =E [a(z)z]
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Gausslian egulvalence

Gaussian equivalence principle (GEP)
[Goldt et al. '19; Mei & Montanari '19; Hu& Lu '20]

|R(4;) — R(G$)| — 0

Generalisation error

— Logistic loss
~—— Square loss

Training loss
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Gaussian equivalence principle (GEP)
[Goldt et al. '19; Mei & Montanari '19; Hu& Lu '20]

|R(4;) — R(G$)| — 0

Gaussian
Kerpel universality
—\ ‘
R A— 07 \
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Beyond proportional

What is the minimal number of features p
needed to achieve same performance of

kernel (p = ©0)?

[Retch, Raimi 2007]: crude p > O(n) bound

[Rudi, Rosasco 2017]: improved p > O(\/ﬁ) bound



Beyond proportional

What is the minimal number of features p
needed to achieve same performance of

kernel (p = ©0)?

Dimension-free deterministic equivalents
for random teature regression

Leonardo Defilippis!, Bruno Loureiro!. and Theodor Misiakiewicz?

May 27. 2024

Abstract

In this work we investigate the generalization performance of random feature ridge regression (RFRR).
Our main contribution is a general deterministic equivalent for the test error of RI'RRIR. Specificallv, under
a cerlain concenlration property, we show Lhat Che test error s well approximated by a closed-lorm
expression that only depends on the feature map eigenvalues. Natably, our approximation guarantee
is non-asvimptotic, multiplicative, and independent of the feature map dimension—allowing for infinite-
dimensional feaLures. We expect Lhis deterministic equivalent (0 hold broadly bevond our Lheoretical
analysis, and we empirically validate its predictions on varions real and synthetic datasets. As an
application, we derive sharp excess error rates under standard power-law assumptions of the spectrum
and target decay. In particular, we provide a tight result for the smallest number of features achieving
oplimal minimax crror rale.



Beyond proportional

Under source and K(x,x") = Z M@ () filx) = Zf*,k¢k(x)
capacity conditions k>1 >1

pqu ;’]ka_a

_ _ 1,—ar—1/2 Rudi, Rosasco 2017
/1 ~ Nn ¢ f*,k =k [ ]

E[1f(x) = f ()| ~n

See also [Cul et al. 2021]

Neural scaling law literature [Maloney et al. 2022]
10
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Partial Summary

Kernels/RF are able to learn “anything”,
but they need “a lot” of data.

In particular, with n, p = 0(d), only
learn linear functions.

To do better, need to learn features.
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RS
wl=w'— Z Z Vo (0 — 3 aO, WO))Z
i=1

12



What can we learn after one GD step ?

RS
wl=w'— Z Z Vo (0 — 3 aO, WO))2
i=1

Two flavours of results:

1. Weak learnability:

2. Generalisation:

How much W! correlates with f,?

How much this improves the error?

12



What can we learn after one GD step ?

RS
wl=w'— Z Z Vo (0 — 3 aO, WO))2
i=1

Two flavours of results:

1. Weak learnability:

2. Generalisation:

How much W! correlates with f,7?

How much this improves the error?

12



What you learn in one-step of SGD?

Q Key idea: Hermite tensor decomposition

[0 = D ()

acN?

13



What you learn in one-step of SGD?

Q Key idea: Hermite tensor decomposition

[0 = D ()

acN?

Allow us to compute the signal component of the gradient:

lim E[f,(x)w,] =722

d— 0o

13



What you learn in one-step of SGD?

Q Key idea: Hermite tensor decomposition

[0 = D ()

acN?

Allow us to compute the signal component of the gradient:

lim E[f,(x)w,] =722

d— 0o

Hardness =~ targets with no low-frequencies components

“Leap exponent” £

13



What you learn in one-step of SGD?

Q Key idea: Hermite tensor decomposition

[0 = ) phy(x)

acN?

Allow us to compute the signal component of the gradient:

Hardness ~

targets with no
low-frequencies
components

“Leap exponent”

Linear subspace
learning

13
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What can we learn after one GD step ?
w! = w0 — i Z Vw(y,- _f(xi§ aoa WO))2
2n -

Two flavours of results:

1. Weak learnability: ~ How much W! correlates with f,7?

After 1 step, can learn at best a non-linear function of a
direction with n = O(d) samples

fi(x) = g((0,,x)) + noise
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What can we learn after one GD step ?
w! = w0 — i Z Vw(y,- _f(xi§ aoa WO))2
2n -

Two flavours of results:

1. Weak learnability:  How much W! correlates with f,?

After 1step, can learn at best a non-linear function of a
direction with n = O(d) samples

fi(x) = g({0,,x)) + noise

2. Generalisation: How much this improves the error?
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One step of GD

1
a,(X,y) = argmin—

acR? 2n :

D (805 x)) — (@, 6(W'x))* + A a| |5
=1
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One step of GD

A 1Y
a,(X,y) = argmin— ) (g((6,, %)) — (@, 6(W'x))* + 2] |a| |5
2n —

aceRP

[Ba et al., 2022] —

100.
Nﬁ(z Forn,p = O(d) and
N n = 0O(1), no!
= GEP still valid.
é 0t m
g | nitialized CK g -
v =041 . . 1 =0 ,d) sufficient
| m 1=0,d) \\\ to learn more.
——- IP>af71E
103 10

sample size n
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One step of GD

A 1Y
a,(X,y) = argmin— ) (g((6,, %)) — (@, 6(W'x))* + 2] |a| |5
2n —

aceRP

[Ba et al., 2022] —

10°- z

Forn,p = O(d) and

n = 0O(1), no!
GEP still valid.

prediction risk
[
<

initialized CK ‘=

v 1=0,01 . . 1 =0 ,d) sufficient
. 11=0,d) to learn more.
el LSl
_ Wa
10° 10
sample size n

Can we get that curve?

15



Gradient after 1 step

After a single gradient step with n, p,n = O(d):
BN
W= W0 —— %V, (g((0 %)) — fx; a®, WO))?
2n -
We can decompose: wWl=w'+uv+ A

D 3(WOx)g((0,. x,))x; € R
i=1

Uu=nua €Rl v=—
np

0

Takinga™ = lp, after some massage...

6(2) = 0(2) — 1y
u = Elo(z)z]

16



Gradient after 1 step

After a single gradient step with n, p,n = O(d):

W= W0 = 2L 3V, ({0, ) ~ fl a, WO

We can decompose: W~ W+ ruy
np |d 2 nd . =
=iyt e=14 szt 00 =
p NP \/—,u2 + ,u
w, € ST1(1/0) u € S, /p) y e §4-1

= E[o(z)z] 1, = E[o(z)*] ji* = E[(6(z)z — py)°]

16



Why this Is hard?

Challenge: Characterise the properties of random
matrices of the type

d=c (X(WT + vuT)) Spiked Random
Features model

w € S11/e)  x~ N(00,/d) vesSt  uestl(p)

Challenge:

17



Conditional GEP

Recall that for the standard RF model

Gaussian Equivalence Theorem (GET)

o (W% x)) ~ pg + p (W0, x) + p, 8

[Goldt et al. 19;
Mei, Montanari '19;
Hu & Lu '20]
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We can show that for a sSRF model with a® = lp:
CGET [Dandi, Krzakala, BL, Pesce, Stephan '23]
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Conditional GEP

Recall that for the standard RF model

Gaussian Equivalence Theorem (GET)

o (W x)) & o+ (W, x) + p, &

We can show that for a sRF model with a¢° = lp:

Examples:

CGET [Dandi, Krzakala, BL, Pesce, Stephan '23]

o ((Whx)) & po((v, X)) + pu OWo, Xy + p, (k)&

kK= {(v,x) x=xk0, +x"

— a1 K 2 1.2
G(Z) = §121 po(x) = erf <$) Ui(x) = \/;e_jK

po(k) =1 — ﬂo(K)z — M1(’<)2

[Goldt et al. 19;
Mei, Montanari '19;
Hu & Lu '20]

18



Main result

Together, this allow us to characterise the risk:

R(4)) = E[(g({0,,x)) — {a;, s(W'x))*]

Where:

A R
Q,(X,y) = argmin— Y (8((0,, ) — (&, 6(W'x))> + 4[| a| |3
2n

a i=1
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Main result

Together, this allow us to characterise the risk:

R(4)) = E[(g({0,,x)) — {a;, s(W'x))*]

Where:

A R
Q,(X,y) = argmin— Y (8((0,, ) — (&, 6(W'x))> + 4[| a| |3
2n

a i=1

More precisely, for a” = 1 in the limitd — oo with n, p, 1 = O(d):

_ g 2,2
R(@)) =k, (g <7”< +4/1- yZZ> — pglm — py (R — = 1(K)wz> + (k)2 + pr () — ”1(12 z

N
17a, (WTa,, TI*W'a,) 1k (G W)
m = q, = 4> = C =
VP p p \Vdp

19



Exact asymptotics (¢” = 1))

-

dv(e, 7, )0
Vl - J ~ 2
ﬂ + VIQ + Vz
dv(o, T, 7)
V2 - I ~ A
/1 + VlQ + V2
E [Mo(K)(U*(K, y) — p(KE) ]
K,y 1 + V(x)
m =
po®)2

IEK[I+V(K)]

= {\/B [ dv(o, 7, Mot —
(= C\/B[dv(o. 7, mer I
A dI/(Q,T,ﬂ')Q?TZ

-

Sy a PM1(K)2
Vi= B KT+ V()

A = P (K)?
27 TR+ V()
3 2 b(x, y)
_ @ 2
C - \/B IEK,yKlul(K) 1+ V(x)
s o Y (DK, ) + Y (k)
V= N/ 1+ V(x)
a, = ngld p=pld
a=nld n=nld
2
k=wx)y p=1l-v

IV, V,)?

)
10 + G, + (ot + lifzgﬂz) -
q, = Idl/(@, 7, ﬂ)Q

" A~ \2
ngzdv(g, T, )

~n L 4 Vig+ V)2

) [(1 ~ B0, 7)) 1]
(1 — ViV, ‘72)>2

(5119 + Gy + Cor? + lﬂZQﬂZ)dv(e, 7, 7)

+ ﬁ%é ‘71

1 = BVi(V,, V)

9 = >
—52I 720d1(o, 7, 70) | — 1
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— Z 2 1
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W= 214 AN § S
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P i
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Batch size

risk
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Spectral properties
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Risk

bounds

Recall that. Noting that this is monotonic in ay = ng/d :

R(&/’t) — [EK',Z

(g <7K +4/1 - }’ZZ> — po(K)m — p (KKE —

p (W

VP

2
Z) + 1,(K)*qy + po(K)*q, —

//i1(’<)2l//2

23



Risk bounds

Recall that. Noting that this is monotonic in ay = ng/d :

inf R(a, A, 7, f) < IIlf E[(g(k) — byug(K))7]

A>0 b,
inf R(a, 4,7, ) > inf E[(g(k) — bypup(k) — by, ()K)]
1>0 b.b,
-== target
1.0 1 upper bound 227~
- |lower bound
C=Yy = 1 0.5
r=20.9 0o
g = sin s
o = tanh
~1.0 - ==

23



Risk bounds

Recall that. Noting that this is monotonic in ay = ng/d :

-== target ﬂ.b.:
1.0 1 upper bound 225N .
—— lower bound 1. L,(/V) distance
c=y=1 0.5 1 between g and
r=009 . span(4, 41)
g = Sin 0.5 2. Can make
o = tanh tighter by
Band > optimising over 7]

23



A note on Initialisation

So far, assumed a’ = lp. But can be generalised to finite support a eV

o(Wlx) <

_ﬂo(u1’<)_
|+

:u()(upK)
ue VP

_//i1(u1’<)—
: O Wx +
_ﬂ1(up’<)_
&~ H(O,])

_/42(”1’0—

_ﬂz(upK)_

24



A note on Initialisation

So far, assumed a’ = lp. But can be generalised to finite support a eV

_ﬂO(ulk)_ _//tl(l/tll(')_ _//tz(l/th)_
g(Wlx) = + O Wx + ©¢
po(14,K) IUMRS, pa(UpK)
ue Ve s~ NO,L) T

- k2 Theory
® k=2 S mulation

—— k=4 Thomy

® k-4 Smulation

This now spans a richer functional basis:

{/’tO(a))a /’ti(a))}a)EV f04

0.3 1

For instance, in the limit 4, gy, 7 = oo

1 ~
G(W x)k ~ //tO(ukK) 0.2 1 . . § -
a = # Samoles | # Features 23

Single neuron with random weights. 24



Proof idea
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Main ideas

I/\\
Ja\
p,
4 Y
y b

SGCD step ——

@, =oc(Wx) =~

sRF mode|l] —

oc(Wx; + (v,x)u') =

cGET

HolKiu) + //tl(Kiu)WxiJ‘ + p, (ku)é
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Main ideas

Ja\
p,

4
/

SGD step —— sRF model —— cGET

p;=c(Wx) «~ g(le. + (v, xl.>uT) ~ (k) + py (k) Wit + p, ()€,

Q 2 stages of deterministic equivalent: over X and 1%
(leave-one-out + Burkholder)

Main challenges:

. Foru,; € 1¢i5 .-, G}, with prob. 7 = pj/p, need to handle k spikes separately.

- For bulk, need deterministic equivalent for block-structured

Wishart matrices - 7
Cl 1 1P1><P1 C12 1P1><P2 C1k1P1><Pk
~ o~ — kxk
M — (Ce @ WWT + De)—l Ce _ C211.p2><p1 C221.P2><P2 | C2k1.192><pk eR
k _ _ )
Z D.=p Dy, ., 0 .. 0
J D, = 0  Dpl, .. 0|eR¥™
J=1 .
. . 25



Conclusion

7% In proportional asymptotics,
kernels can learn at best a linear approximation

With one gradient step, 2LNN learn
Q/ do better than kernels along
one (and only one) direction

w We can provide a sharp asymptotic description
on what is learned

25
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