Random landscape built by superposition of plane waves in high dimension

Bertrand Lacroix-A-Chez-Toine, King's College London

In collaboration with Sirio Belga Fedeli, Yan V. Fyodorov EPSRC Grant EP/V002473/1

J. Math. Phys. 63 (9) (2022) & work in preparation

OIntroduction Results on complexity Results on ground-state energy **Conclusion**

Contents

High-dimensional random landscapes

- Random landscape $\mathcal{H}_N(\mathbf{x})$:
- Random function of a large number N of degrees of freedom $\mathbf{x} = \{x_1, \dots, x_N\}$
- Important topic in physics, mathematics and beyond:
- Spin-glass energy landscape
- Utility function in economics
- **Cost function in machine learning**
- Fitness landscape in evolution

 \Rightarrow In this talk, focus on static aspects analysed via RMT and tools from statistical physics

(Review by Ros & Fyodorov '22)

Number of stationary points / complexity

A first natural observable of importance is the number of stationary points (minima, maxima, saddles) of the landscape The natural self-averaging observable is the quenched complexity

$$
\xi_{\text{tot},N} = \frac{1}{N} \ln \mathcal{N}_{\text{tot},N} \qquad \lim_{N \to \infty} \xi_{\text{tot},N} = \lim_{a.s.} E\left[\xi_{\text{tot},N}\right] = \Xi_{\text{tot}}
$$

-
-
-

Number of stationary points / complexity

A first natural observable of importance is the number of stationary points (minima, maxima, saddles) of the landscape The natural self-averaging observable is the quenched complexity

$$
\xi_{\text{tot},N} = \frac{1}{N} \ln \mathcal{N}_{\text{tot},N} \qquad \lim_{N \to \infty} \xi_{\text{tot},N} = a.s.
$$

Ergodicity breaking translates in a positive complexity $E_{\text{tot}} > 0$

- 4
-
-
- lim *N*→∞ $[\xi_{\text{tot},N}] = \Xi_{\text{tot}}$
-
- The latter is difficult to compute in most cases (see however Subag '17 & Ros et al. '19)

Number of stationary points / complexity

A first natural observable of importance is the number of stationary points (minima, maxima, saddles) of the landscape The natural self-averaging observable is the quenched complexity

$$
\xi_{\text{tot},N} = \frac{1}{N} \ln \mathcal{N}_{\text{tot},N} \qquad \lim_{N \to \infty} \xi_{\text{tot},N} = a.s.
$$

Ergodicity breaking translates in a positive complexity $E_{\text{tot}} > 0$ The annealed complexity provides an upper bound and can be computed explicitly

- 4
-
-
- lim *N*→∞ $[\xi_{\text{tot},N}] = \Xi_{\text{tot}}$
-
- The latter is difficult to compute in most cases (see however Subag '17 & Ros et al. '19)

$$
\Sigma_{\text{tot}} = \lim_{N \to \infty} \frac{1}{N} \ln \mathbb{E} \left[\mathcal{N}_{\text{tot},N} \right] \ge \Xi_{\text{tot}} \qquad \mathbb{E} \left[\mathcal{N}_{\text{tot},N} \right] = \int d\mathbf{x} \mathbb{E} \left[\prod_{i=1}^{N} \delta((\nabla \mathcal{H}_N(\mathbf{x}))_i) \left| \det \nabla^2 \mathcal{H}_N(\mathbf{x}) \right| \right]
$$

μ 2 ${\bf x}^2 + V({\bf x})$

- For one of the simplest random landscape (toy model in $d = 0$ of elastic manifold) with a Gaussian disordered potential $\mathscr{H}_N(\mathbf{x}) =$ $\begin{bmatrix} \mathbf{F} & V(\mathbf{x}) \end{bmatrix} = 0$
- (Thermodynamics: Mezard & Parisi '90 '91 '92, Engel '93, Fyodorov & Sommers '07 Dynamics: Franz & Mezard '94, Cugliandolo & Le Doussal '96 Complexity: Fyodorov '04, Bray & Dean '07)

$$
\mathbb{E}\left[V(\mathbf{x}_1)V(\mathbf{x}_2)\right] = NF\left(\frac{(\mathbf{x}_1 - \mathbf{x}_2)^2}{2N}\right)
$$

Recent exact results on $d = 0$ and finite d : Ben Arous, Bourgade, McKenna '24, Ben Arous, Kivimae '24

For one of the simplest random landscape (toy model in $d = 0$ of elastic manifold) with a Gaussian disordered potential $\mathscr{H}_N(\mathbf{x}) =$ $\mathbb{E}[V(\mathbf{x})] = 0$

μ 2 ${\bf x}^2 + V({\bf x})$

8

 $\Sigma_{\text{tot}} =$ 1 2 (μ^2 μ_c^2 $-1 - \ln \frac{\mu^2}{2}$ $\left(\frac{\mu_{c}}{\mu_{c}^{2}}\right)$, $\mu < \mu_{c} = \sqrt{F''(0)}$ 0 , $\mu \ge \mu_c = \sqrt{F''(0)}$ There exists a topology trivialisation transition as a function of *μ* (Fyodorov '04)

$$
\mathbb{E}\left[V(\mathbf{x}_1)V(\mathbf{x}_2)\right] = NF\left(\frac{(\mathbf{x}_1 - \mathbf{x}_2)^2}{2N}\right)
$$

Large universality: Only depends on *F*′′(0)

$$
\Sigma_{\text{tot}} > 0
$$

Complex phase

$S(E) = {\mathbf{x} : \mathcal{H}_N(\mathbf{x}) \leq E}$

A second natural observable of importance is the ground-state energy (GSE) of the landscape

This observable is also self-averaging

$$
e_{\min,N} = \frac{1}{N} \min_{\mathbf{x}} \mathcal{H}_N(\mathbf{x})
$$
 $\lim_{N \to \infty}$

$$
\lim_{N \to \infty} e_{\min, N} = \lim_{a.s.} E\left[e_{\min, N}\right] = e_{\text{typ}}
$$

A second natural observable of importance is the ground-state energy (GSE) of the landscape

This observable is also self-averaging $e_{\min,N}$ = 1 *N* min **x** $\mathscr{H}_{N}(\mathbf{x})$ via the replica method

Its average value (and the probability of atypical fluctuations) are computed in the physics literature

$$
\lim_{N \to \infty} e_{\min, N} = \lim_{a.s.} E\left[e_{\min, N}\right] = e_{\text{typ}}
$$

$$
e_{\min,N} = -\lim_{\beta \to \infty} \frac{1}{N\beta} \ln \mathcal{Z}_{N}(\beta) \qquad \mathcal{Z}_{N}(\beta) = \int d\mathbf{x} \, e^{-\beta \mathcal{H}_{N}(\mathbf{x})} \qquad \mathbb{E} \left[\ln \mathcal{Z}_{N}(\beta) \right] = \lim_{n \to 0} \frac{1}{n} \ln \mathbb{E} \left[\mathcal{Z}_{N}(\beta) \right]
$$

There is a considerable literature in mathematics to compute the GSE rigorously (Guerra '03, Talagrand '06, …)

A second natural observable of importance is the ground-state energy (GSE) of the landscape

This observable is also self-averaging

$$
e_{\min,N} = \frac{1}{N} \min_{\mathbf{x}} \mathcal{H}_N(\mathbf{x})
$$

Its average value (and the probability of atypical fluctuations) are computed in the physics literature

via the replica method

$$
\lim_{N \to \infty} e_{\min, N} = \lim_{a.s.} E[e_{\min, N}] = e_{\text{typ}}
$$

$$
e_{\min,N} = -\lim_{\beta \to \infty} \frac{1}{N\beta} \ln \mathcal{Z}_{N}(\beta) \qquad \mathcal{Z}_{N}(\beta) = \int d\mathbf{x} \, e^{-\beta \mathcal{H}_{N}(\mathbf{x})} \qquad \mathbb{E} \left[\ln \mathcal{Z}_{N}(\beta) \right] = \lim_{n \to 0} \frac{1}{n} \ln \mathbb{E} \left[\mathcal{Z}_{N}(\beta) \right]
$$

Ergodicity breaking translates in replica symmetry breaking (RSB) In many instances the criterion for RSB matches that of positive annealed complexity (Fyodorov & Williams '07)

μ 2 ${\bf x}^2 + V({\bf x})$

- For one of the simplest random landscape (toy model in $d = 0$ of elastic manifold) with a Gaussian disordered potential $\mathscr{H}_N(\mathbf{x}) =$
- The RS expression for the ground-state energy reads which becomes unstable (AT-line) for matching that of the complexity e_{typ} See e.g. (Fyodorov & Sommers '07)

For one of the simplest random landscape (toy model in $d = 0$ of elastic manifold) with a Gaussian disordered potential $\mathscr{H}_N(\mathbf{x}) =$ $\mathbb{E}[V(\mathbf{x})] = 0$

The transition is towards a FRSB/1RSB phase for a positive/negative Schwarzian derivative $[F'(q)] =$ $F^{(3)}$ (*q*) \bigcap

μ 2 ${\bf x}^2 + V({\bf x})$

$$
\mathbb{E}\left[V(\mathbf{x}_1)V(\mathbf{x}_2)\right] = NF\left(\frac{(\mathbf{x}_1 - \mathbf{x}_2)^2}{2N}\right)
$$

$$
\frac{F^{(4)}(q)}{F''(q)} - \frac{3}{2} \left(\frac{F^{(3)}(q)}{F''(q)} \right)^2
$$

See e.g. (Fyodorov & Sommers '07)

- For one of the simplest random landscape (toy model in $d = 0$ of elastic manifold) with a Gaussian disordered potential $\mathscr{H}_N(\mathbf{x}) =$ $\mathbb{E}[V(\mathbf{x})] = 0$
- In the 1RSB phase (negative Schwarzian derivative)
- Local minima are isolated, separated by high barriers Only local minima are found in a small range of energy around e_{tvn}

μ 2 ${\bf x}^2 + V({\bf x})$

$$
\mathbb{E}\left[V(\mathbf{x}_1)V(\mathbf{x}_2)\right] = NF\left(\frac{(\mathbf{x}_1 - \mathbf{x}_2)^2}{2N}\right)
$$

 $\mathcal{S}[F'(q)] < 0$

- For one of the simplest random landscape (toy model in $d = 0$ of elastic manifold) with a Gaussian disordered potential $\mathscr{H}_N(\mathbf{x}) =$ $\mathbb{E}\left[V(\mathbf{x})\right]=0$
- In the FRSB phase (positive Schwarzian derivative)
- The landscape displays many flat directions All types of saddles are found in a small range of energy around e_{tvn}

μ 2 ${\bf x}^2 + V({\bf x})$

$$
\mathbb{E}\left[V(\mathbf{x}_1)V(\mathbf{x}_2)\right] = NF\left(\frac{(\mathbf{x}_1 - \mathbf{x}_2)^2}{2N}\right)
$$

 $\mathcal{S}[F'(q)] > 0$

Digression and motivation for the model: Semi-classical chaos

Consider a Riemmanian manifold $\mathcal D$ with strongly chaotic classical flow. The eigenfunctions of the quantum Laplacian

Consider a Riemmanian manifold $\mathcal D$ with strongly chaotic classical flow. The eigenfunctions of the quantum Laplacian

Are conjectured by Berry '77 to be expressed, in the semi-classical limit $n \gg 1$, as superpositions of plane waves $-\Delta \psi_n(\mathbf{x}) = E_n \psi_n(\mathbf{x})$ $E_1 \le E_2 \le \cdots$ $\mathbf{x} \in \mathcal{D}$

$$
\psi_n(\mathbf{x}) = \sum_{l=1}^M \gamma_l \cos(\mathbf{k}_{n,l}\mathbf{x} + \theta_l) \qquad \mathbf{k}_{n,l}^2 = E_n \qquad \qquad \begin{aligned} \gamma_l : \mathcal{N}(0, \sigma_l^2) \\ \theta_l : \mathbf{U}[0, 2\pi) \end{aligned}
$$

Consider a Riemmanian manifold $\mathcal D$ with strongly chaotic classical flow. The eigenfunctions of the quantum Laplacian

Are conjectured by Berry '77 to be expressed, in the semi-classical limit $n \gg 1$, as superpositions of plane waves $-\Delta \psi_n(\mathbf{x}) = E_n \psi_n(\mathbf{x})$ $E_1 \le E_2 \le \cdots$ $\mathbf{x} \in \mathcal{D}$

$$
\psi_n(\mathbf{x}) = \sum_{l=1}^M \gamma_l \cos(\mathbf{k}_{n,l}\mathbf{x} + \theta_l) \qquad \mathbf{k}_{n,l}^2 = E_n \qquad \qquad \begin{aligned} \gamma_l : \mathcal{N}(0, \sigma_l^2) \\ \theta_l : \mathbf{U}[0, 2\pi) \end{aligned}
$$

Many properties of these eigenstates have been investigated (especially in 2D): Nodal domains: Blum, Gnutzmann, & Smilansky '02; Bogomolny & Schmit '02 Critical points: Beliaev, Cammarota & Wigman '19 Maximum norm: Aurich, Bäcker, Schubert, Taglieber '99

Consider a Riemmanian manifold $\mathcal D$ with strongly chaotic classical flow. The eigenfunctions of the quantum Laplacian

Are conjectured by Berry '77 to be expressed, in the semi-classical limit $n \gg 1$, as superpositions of plane waves $-\Delta \psi_n(\mathbf{x}) = E_n \psi_n(\mathbf{x})$ $E_1 \le E_2 \le \cdots$ $\mathbf{x} \in \mathcal{D}$

$$
\psi_n(\mathbf{x}) = \sum_{l=1}^M \gamma_l \cos(\mathbf{k}_{n,l}\mathbf{x} + \theta_l) \qquad \mathbf{k}_{n,l}^2 = E_n \qquad \qquad \begin{aligned} \gamma_l : \mathcal{N}(0, \sigma_l^2) \\ \theta_l : \mathbf{U}[0, 2\pi) \end{aligned}
$$

This type of eigenfunctions will be used here to construct a high-dimensional random landscape

Let us consider the following generally non Gaussian random landscape

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2} \mathbf{x}^2 + V_M(\mathbf{x}) \qquad V_M(\mathbf{x}) = \sum_{l=1}^M \phi_l(\mathbf{k}_l \mathbf{x}) \qquad \phi_l(z) = \sum_{n=1}^\infty \gamma_{n,l} \cos(n(z + \theta_{n,l}))
$$

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2}\mathbf{x}^2 + V_M(\mathbf{x})
$$

Let us consider the following generally non Gaussian random landscape

- Gaussian i.i.d. random variables
- Uniform vectors on the N-sphere

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2} \mathbf{x}^2 + V_M(\mathbf{x}) \qquad V_M(\mathbf{x}) = \sum_{l=1}^M \phi_l(\mathbf{k}_l \mathbf{x}) \qquad \phi_l(z) = \sum_{n=1}^\infty \gamma_{n,l} \cos(n(z + \theta_{n,l}))
$$

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2} \mathbf{x}^2 + V_M(\mathbf{x})
$$

where the wave vectors \mathbf{k}_i 's are either:

Let us consider the following generally non Gaussian random landscape

- Gaussian i.i.d. random variables
- Uniform vectors on the N-sphere

The i.i.d. random functions $\phi_l(x)$'s have zero average \mathbb{E}_{ϕ} $[\phi(x)] = 0$ and their statistics is translationally invariant $(\theta_n : U[0,2\pi))$

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2} \mathbf{x}^2 + V_M(\mathbf{x}) \qquad V_M(\mathbf{x}) = \sum_{l=1}^M \phi_l(\mathbf{k}_l \mathbf{x}) \qquad \phi_l(z) = \sum_{n=1}^\infty \gamma_{n,l} \cos(n(z + \theta_{n,l}))
$$

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2} \mathbf{x}^2 + V_M(\mathbf{x})
$$

where the wave vectors \mathbf{k}_i 's are either:

For a non-random function $\phi(z)$ and $\mu = 0$: Maillard, Ben Arous, Biroli '20

Let us consider the following generally non Gaussian random landscape

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2} \mathbf{x}^2 + V_M(\mathbf{x}) \qquad V_M(\mathbf{x}) =
$$

We are interested in the limit $N, M \to \infty$ with $0 < \alpha =$ *M N* $< \infty$

$$
V_M(\mathbf{x}) = \sum_{l=1}^M \phi_l(\mathbf{k}_l \mathbf{x}) \qquad \phi_l(z) = \sum_{n=1}^\infty \gamma_{n,l} \cos(n(z + \theta_{n,l}))
$$

OIntroduction Example Setus Complexity Results on ground-state energy **Conclusion**

Contents

Average number of stationary points

N ∏ *i*=1 $\delta((\nabla \mathcal{H}_N(\mathbf{x}))_i)$ det $\nabla^2 \mathcal{H}_N(\mathbf{x})$

For that problem let us now compute the average number of stationary points:

$$
\mathbb{E}\left[\mathcal{N}_{\text{tot},N}\right] = \int d\mathbf{x} \mathbb{E}
$$

Average number of stationary points

For that problem let us now compute the average number of stationary points:

$$
\mathbb{E}\left[\mathcal{N}_{\text{tot},N}\right] = \int d\mathbf{x} \mathbb{E}\left[\prod_{i=1}^{N} \delta((\nabla \mathcal{H}_N(\mathbf{x}))_i) \middle| \det \nabla^2 \mathcal{H}_N(\mathbf{x})\right]
$$

$$
\partial_{x_i} \mathcal{H}_N(\mathbf{x}) = \mu x_i - \sum_{l=1}^M k_{li} G_l \qquad G_l = -\phi'_l(\mathbf{k})
$$

$$
\partial_{x_i, x_j}^2 \mathcal{H}_N(\mathbf{x}) = \mu \delta_{ij} - \sum_{l=1}^M k_{li} k_{lj} T_l \qquad T_l = -\phi''_l(\mathbf{k})
$$

 $\gamma_l \sin(k_l x + \theta_l)$ $\gamma_l''(\mathbf{k}_l \mathbf{x}) = \gamma_l \cos(\mathbf{k}_l \mathbf{x} + \theta_l)$ The statistics of the G_l 's and T_l 's is independent of **x** and \mathbf{k}_l

Average number of stationary points

For that problem let us now compute the average number of stationary points: $[\mathcal{N}_{\text{tot},N}] = d\mathbf{X} \mathbb{E}_{\mathbf{G},\mathbf{T},\mathbf{k}}$ *N* ∏ *i*=1 *δ* (*μxi* [−] *M* ∑ *l*=1 $k_{li} G_l$ det $\mu \delta_{ij}$ – *M* ∑ *l*=1 $k_{li} k_{lj} \, T_l$ $\overline{ }$ = 1 μ^N **F**_{T,k} det ($\mu\delta_{ij}$ – *M* ∑ *l*=1 $k_{li} k_{lj} \, T_l$ $\overline{ }$ $=$ **G**, **T**, **k** $\left| \int d\mathbf{x} \right|$ *N* ∏ *i*=1 *δ* (*μxi* [−] *M* ∑ *l*=1 $k_{li} G_l$ det $\mu \delta_{ij}$ – *M* ∑ *l*=1 $k_{li} k_{lj}$ T_l $\overline{ }$

Strong self-averaging

In order to compute the annealed complexity, we suppose the strong self-averaging property

$$
\lim_{N \to \infty} \frac{1}{N} \ln \mathbb{E}_{\mathbf{k}} \left[\left| \det \left(\mu \delta_{ij} - \sum_{l=1}^{M} k_{li} k_{lj} T_l \right) \right| \right] = \lim_{N \to \infty} \mathbb{E}_{\mathbf{k}} \left[\frac{1}{N} \ln \left| \det \left(\mu \delta_{ij} - \sum_{l=1}^{M} k_{li} k_{lj} T_l \right) \right| \right]
$$

$$
= \int d\lambda \rho_{KTK} \Gamma(\lambda) \ln |\mu - \lambda|
$$

$$
\rho_{KTK^{T}}(\lambda) = \lim_{N \to \infty} \frac{1}{N} \text{Tr} \left[\delta(\lambda \mathbb{I} - KTK^{T}) \right]
$$

Results from Marchenko-Pastur ('67)

To characterise the limiting density, it is convenient to introduce its Stieltjes transform

$$
\rho_{KTK^T}(\lambda) = \frac{1}{\pi} \lim_{\epsilon \to 0} m_i(\lambda + i\epsilon)
$$

$$
m(z) = \lim_{N \to \infty} \frac{1}{N} \text{Tr} \left[(z \mathbb{I} - KTK^T)^{-1} \right] \qquad \rho_{KTK^T}(\lambda) = \frac{1}{\pi} \lim_{\epsilon \to 0} m_i(\lambda + i\epsilon)
$$

The Stieltjes transform satisfies the following self-consistent equation

$$
\frac{1}{m(z)} = z - \alpha \int dt \frac{tp(t)}{1 - tm(z)} \qquad p(t) = \lim_{M \to \infty} \frac{1}{M} \sum_{l=1}^{M} \delta(t - T_l)
$$

 \Rightarrow An unbounded distribution $p(t)$ yields an unbounded spectrum $\rho_{KTK}(\lambda)$

Annealed complexity

Under the strong self-averaging property, the average number of stationary points can be

expressed as a functional integral over the probability measure

 $p(t) =$

$$
\lim_{M\to\infty}\frac{1}{M}\sum_{l=1}^M\delta(t-T_l)
$$

Annealed complexity

expressed as a functional integral over the probability measure $p(t) = \lim$ *M*→∞ 1 *M M* ∑ *l*=1 $\left[\mathcal{N}_{\text{tot},N}\right] \approx$ *M* ∏ *l*=1 dt_l $p_0(t_l)$ $\Sigma_{\rm tot} = \lim_{N \to \infty}$ *N*→∞ 1 *N* $\Phi_{\alpha}[p(t), p_0(t)] = -\alpha \int dt p(t) \ln \frac{p(t)}{p_0(t)}$

Under the strong self-averaging property, the average number of stationary points can be

$$
\delta(t - T_l) \qquad \qquad p_0(t) = \mathbb{E}\left[\delta(t - T_l)\right]
$$

- $\int e^{N[\int d\lambda \rho(\lambda) \ln |\mu \lambda| \ln \mu]} = \int f dt p(t) e^{N\Phi_{\alpha}[p(t), p_0(t)]}$ $p_0(t)$ $+\int d\lambda \rho_{KTK}(\lambda) \ln|\mu - \lambda| - \ln \mu$
- $\ln \mathbb{E}$ $[\mathcal{N}_{\text{tot},N}] = \max$ *p*(*t*):∫ *dt p*(*t*)=1 $\Phi_{\alpha}[p(t), p_{0}(t)]$

The annealed complexity can be expressed as

$\Sigma_{\text{tot}}(\mu) = \max$ *p*(*t*):∫ *dt p*(*t*)=1 $\Phi_{\alpha}[p(t), p_0(t)] = -\alpha \int dt p(t) \ln \frac{p(t)}{p_0(t)}$

where the function

$$
m(-\nu) = m_r(-\nu) + i m_i(-\nu)
$$

$$
\frac{1}{m(-\nu)} = -\nu - \alpha \frac{\int dt \, t \, p_0(t) \frac{|1 - t \, m(-\nu)|}{1 - t \, m(-\nu)}}{\int dt \, p_0(t) \, |1 - t \, m(-\nu)|}
$$

$$
\Phi_{\alpha}[p(t), p_0(t)] = \int_{\mu}^{\infty} d\nu \left(\frac{1}{\nu} + m_r(-\nu) \right)
$$

$$
p(t) \ln \frac{p(t)}{p_0(t)} + \int d\lambda \rho_{KTK}(\lambda) \ln |\mu - \lambda| - \ln \mu
$$

Explicit solution to the optimisation problem: $p_*(t) =$ $p_0(t) |1 - t m(-\nu)|$ $\int_{0}^{1} dr p_0(r) \left[1 - r m(-\nu)\right]$ $\int dr p_0(r) \left[1 - r m(-\nu)\right]$

- For an unbounded distribution $p_0(t) = \mathbb{E} \left[\delta(t T_l) \right]$, no trivialisation transition $\Sigma_{\text{tot}}(\mu) > 0$ for any $\mu < \infty$ Indication that ergodicity broken for any *μ* ?
	- Gaussian $p_0(t)$: LACT, Belga Fedeli, Fyodorov, J. Math. Phys. 63 (9) (2022)

- For an unbounded distribution $p_0(t) = \mathbb{E} \left[\delta(t T_l) \right]$, no trivialisation transition $\Sigma_{\text{tot}}(\mu) > 0$ for any $\mu < \infty$ Indication that ergodicity broken for any *μ* ?
	- Gaussian $p_0(t)$: LACT, Belga Fedeli, Fyodorov, J. Math. Phys. 63 (9) (2022)
- For a bounded and zero average distribution $p_0(t)$, there is a trivialisation transition $\Sigma_{\text{tot}}(\mu)$ $\sum_{i=1}^{n}$ > 0 , $\mu < \mu_c$ $= 0$, $\mu \geq \mu_c$ Indication that ergodicity broken for $\mu < \mu_c$?

37

$$
\alpha \left[\int dt \, \frac{\mu_c^2 \, p_*(t)}{(\mu_c - t)^2} - 1 \right] - 1 = \alpha \left[\int dt \, \frac{\mu_c \, p_0(t)}{|\mu_c - t|} - 1 \right] - 1 = 0
$$

For a bounded and zero average distribution $p_0(t) = \mathbb{E} [\delta(t - T_l)]$, the complexity vanishes

 $\Sigma_{\text{tot}}(\mu) \approx C_2(\mu - \mu_c)$ 2

$$
\alpha \left[\int dt \, \frac{\mu_c^2 \, p_*(t)}{(\mu_c - t)^2} - 1 \right] - 1 = \alpha \left[\int dt \, \frac{\mu_c \, p_0(t)}{|\mu_c - t|} - 1 \right] - 1 = 0
$$

The complexity vanishes quadratically

Similar results can be obtained for the annealed complexity of minima: The complexity of minima vanishes quadratically For unbounded $p_0(t) = \mathbb{E} \left[\delta(t - T_l) \right] \Sigma_{\text{tot}}(\mu) > \Sigma_{\text{min}}(\mu) > 0$ for any $\mu < \infty$ For bounded $p_0(t) = \mathbb{E} \left[\delta(t - T_l) \right] \sum_{\min}(\mu)$ $\sum_{i=1}^{n}$ > 0 , $\mu < \mu_c$ $= 0$, $\mu \geq \mu_c$ $>$ $\Sigma_{\min}(\mu) > 0$

$$
\sum_{t} (\mu) > \sum_{\min} (\mu) > 0 \quad \text{for any } \mu < \infty
$$
\n
$$
(\mu) \begin{cases} > 0, \mu < \mu_c \\ = 0, \mu > \mu_c \end{cases}
$$
\nically

 $\Sigma_{\min}(\mu) \approx C'_2(\mu - \mu_c)$ 2

The results for the annealed complexity only provide a bound for the quenched complexity and thus on the ergodicity breaking transition.

From the results so far, ergodicity is NOT broken for any $\mu > \mu_c$ (however $\mu_c = +\infty$ for unbounded support) Can these results be confirmed from the computation of the ground-state energy?

-
- $\geq \Xi_{\rm tot}$ $\geq 0 \Leftrightarrow$ Ergodicity breaking
	-
-
-

$$
\Sigma_{\text{tot}} = \lim_{N \to \infty} \frac{1}{N} \ln \mathbb{E} \left[\mathcal{N}_{\text{tot},N} \right] \ge
$$

OIntroduction Results on complexity Results on ground-state energy **Conclusion**

Contents

lim *N*→∞ 1 *N* $\ln \mathbb{E} \left[\mathcal{X}_N(\beta)^n \right]$ \rfloor

- We are now interested in computing the average (and typical) ground-state energy
	- *N*→∞ 1 *N* min **x** $\mathscr{H}_{N}(\mathbf{x})$
		-

$$
e_{\text{typ}} = \lim_{N \to \infty}
$$

We will compute its value using the replica method

$$
e_{\text{typ}} = -\lim_{\beta \to \infty} \frac{1}{N\beta} \mathbb{E} \left[\ln \mathcal{Z}_{N}(\beta) \right] \qquad \mathcal{Z}_{N}(\beta) = \int d\mathbf{x} \, e^{-\beta \mathcal{H}_{N}(\mathbf{x})} \qquad \mathbb{E} \left[\ln \mathcal{Z}_{N}(\beta) \right] = \lim_{n \to 0} \frac{1}{n} \ln \mathbb{E} \left[\mathcal{Z}_{N}(\beta) \right]
$$

We first need to evaluate the quantity

Replicated partition function

The first step to obtain the average ground-state energy is to compute the replicated partition function

Each term of the product can be re-expressed in terms of inverse overlap as

$$
\mathbb{E}\left[\mathcal{Z}_N(\beta)^n\right] = \int\prod_{a=1}^n d\mathbf{x}_a e^{-\frac{\beta\mu}{2}\sum_{a=1}^n \mathbf{x}_a^2} \prod_{l=1}^M \mathbb{E}\left[e^{-\beta \sum_{a=1}^n \phi_l(\mathbf{k}_l \mathbf{x}_a)}\right]
$$

$$
E\left[e^{-\beta \sum_{a=1}^{n} \phi(\mathbf{k} \mathbf{x}_{a})}\right] = \frac{\sqrt{\det(Q)}}{(2\pi)^{\frac{n}{2}}} P_{n}(Q)
$$
\n
$$
P_{n}(Q) = \int d\mathbf{z} e^{-\frac{\mathbf{z}Q \mathbf{z}}{2}} E_{\phi} \left[e^{-\beta \sum_{a=1}^{n} \phi(z_{a})}\right]
$$

Replicated partition function

One can now obtain
\n
$$
\mathbb{E}\left[\mathcal{Z}_N(\beta)^n\right] = \int \prod_{a=1}^n d\mathbf{x}_a e^{-\frac{\beta\mu}{2}\sum_{a=1}^n \mathbf{x}_a^2} \prod_{l=1}^M \mathbb{E}\left[e^{-\beta \sum_{a=1}^n \phi_l(\mathbf{k}_l \mathbf{x}_a)}\right]
$$
\n
$$
= c_{N,n} \int Q^{-1} dQ Q^{-1} (\det(Q))^{-\frac{(n+1)}{2}} e^{N\Psi_{n,\alpha}(Q)}
$$

$$
\Psi_{n,\alpha}(Q) = -\frac{\beta\mu}{2}\text{Tr}\left(Q^{-1}\right) - \frac{1-\alpha}{2}\text{Tr}\left(Q^{-1}\right)
$$

 $\ln \det Q + \alpha \ln P_n(Q) +$ *n* $\frac{1}{2}$ $[(1 - \alpha)\ln(2\pi) + 1]$

Replicated partition function

One can now obtain
\n
$$
\mathbb{E}\left[\mathcal{Z}_N(\beta)^n\right] = \int \prod_{a=1}^n dx_a e^{-\frac{\beta \mu}{2} \sum_{a=1}^n x_a^2} \prod_{l=1}^M \mathbb{E}\left[e^{-\beta \sum_{a=1}^n \phi_l(\mathbf{k}_l \mathbf{x}_a)}\right]
$$
\n
$$
= c_{N,n} \int Q^{-1} dQ Q^{-1} (\det(Q))^{-\frac{(n+1)}{2}} e^{N\Psi_{n,\alpha}(Q)}
$$

$$
\Psi_{n,\alpha}(Q) = -\frac{\beta\mu}{2}\text{Tr}\left(Q^{-1}\right) - \frac{1-\alpha}{2}\ln\det Q + \alpha\ln P_n(Q) + \frac{n}{2}\left[(1-\alpha)\ln(2\pi) + 1\right]
$$

The average and typical GSE is obtained as

 e _{typ} = − ·

$$
\text{ext } \lim_{Q>0} \frac{\Psi_{n,\alpha}(Q)}{n+0} \quad n\beta
$$

Parisi formula

The average GSE is obtained from the Parisi formula

$$
e_{\text{typ}} = \sup_{l,w(l')} \left[\frac{\mu}{2} \int_0^l \frac{dt}{\left(\mu + \int_0^t w(\tau) d\tau\right)^2} - \frac{1-\alpha}{2} \int_0^l \frac{dt}{\mu + \int_0^t w(\tau) d\tau} - \alpha \ln \mathbb{E}_{\phi} \left[f(0,0) \right] \right]
$$

Parisi formula

The average GSE is obtained from the Parisi formula The function $f(t, h)$ satisfies Parisi's PDE with the random boundary condition $e_{\text{typ}} = \text{sup}$ *l*,*w*(*l*′) *μ* 2 ∫ *l* 0 *dt* (*^μ* ⁺ [∫] *t* 0 *w*(*τ*) *dτ* $\overline{}$ $\frac{1-\alpha}{2}$ $\partial_t f = -\frac{1}{2}$ $\frac{1}{2}$ ∂_h^2 $f(t \ge l, h) = -e_{\min} \left(\mu + \right)$ *l* 0 *w*(*τ*) *dτ*, *h*

$$
-\frac{1-\alpha}{2}\int_0^l \frac{dt}{\mu+\int_0^t w(\tau)\,d\tau}-\alpha\ln \mathbb{E}_{\phi}\left[f(0,0)\right]
$$

$$
\left[\partial_h^2 f + w(t) \left(\partial_h f\right)^2\right]
$$

$$
h \quad \text{where} \quad \epsilon_{\min} \left(\nu, h \right) = \min_{z} \left[\frac{\nu}{2} z^2 - h z + \phi(z) \right]
$$

Replica-symmetric solution

The simplest solution corresponds to a replica-symmetric solution

 $(Q^{-1})_{ab} =$

If that solution is correct, the system is ergodically

$$
\frac{\mathbf{x}_a \cdot \mathbf{x}_b}{N} = \begin{cases} r, a \neq b \\ r_d, a = b \end{cases}
$$
ic

Replica-symmetric solution

The simplest solution corresponds to a replica-symmetric solution

 $(Q^{-1})_{ab} =$

If that solution is correct, the system is ergodically

 In

The properties of that solution can be expressed in term of an effective 1D disordered system

$$
\frac{\mathbf{x}_a \cdot \mathbf{x}_b}{N} = \begin{cases} r, a \neq b \\ r_d, a = b \end{cases}
$$
ic

$$
H_{\mu,h}(z) = \frac{\mu}{2}z^2 - hz + \phi(z)
$$
\nparticular\n
$$
e_{\text{typ}} = \alpha \mathbb{E}_{\phi} \left[\epsilon_{\min}(\mu, 0) \right]
$$
\n
$$
r = \alpha \mathbb{E}_{\phi} \left[z_{\min}^2(\mu, 0) \right]
$$
\n
$$
\lim_{\beta \to \infty} \beta(r_d - r) = \frac{1}{\mu}
$$
\n
$$
\lim_{\beta \to \infty} \beta(r_d - r) = \frac{1}{\mu}
$$

$$
\epsilon_{\min}(\mu, h) = \min_{z} H_{\mu, h}(z)
$$

$$
z_{\min}(\mu, h) = \operatorname*{argmin}_{z} H_{\mu, h}
$$

De-Almeida-Thouless line

For the RS solution to be stable, one needs to ensure that the solution corresponds indeed to a

are all negative as $n \to 0$ The replicon (i.e. largest eigenvalue) reads

maximum, i.e. the eigenvalues of the quadratic form

$$
\lambda_{\rm RS}(\mu) = \alpha \mathbb{E}_{\phi} \left[\frac{\mu^2}{(\mu + \phi'[\mathbf{z}_{\min}(\mu)])^2} - 1 \right] - 1
$$

A(*n*)

De-Almeida-Thouless line

 $\phi''(z)$

In particular, using that

and denoting $p_*(t)$ the PDF of $\phi[z_{\min}(\mu)]$ The marginality criterion for the replicon reads

and matches the criterion for the complexity to vanish

$$
\lambda_{\rm RS}(\mu_c) = 0 = \alpha \mathbb{E}_{\phi} \left[\frac{\mu_c^2}{(\mu_c + \phi''[\bar{z}_{\rm min}(\mu_c)])^2} - 1 \right] - 1 = \alpha \left[\int dt \, \frac{\mu_c^2 p_*(t)}{(\mu_c - t)^2} - 1 \right] - 1
$$

$$
\phi(z) = \gamma \cos(z + \theta)
$$

$$
\phi''(z) = -\gamma \cos(z + \theta) = -\phi(z)
$$

$$
\alpha \left[\int dt \, \frac{\mu_c^2 \, p_*(t)}{(\mu_c - t)^2} - 1 \right] - 1 = \alpha \left[\int dt \, \frac{\mu_c \, p_0(t)}{|\mu_c - t|} - 1 \right] - 1 = 0
$$

As the two criterion concur, one can safely conclude that: Ergodicity is broken for any value of μ for an unbounded distribution of $\phi(z)$

-
-

As the two criterion concur, one can safely conclude that: Ergodicity is broken for any value of μ for an unbounded distribution of $\phi(z)$

α $\int dt \frac{\mu_c p_0(t)}{|\mu_c - t|}$ For a bounded support, there exist a finite value μ_c which satisfies

$$
\frac{\mu_c p_0(t)}{|\mu_c - t|} - 1\begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix} = 0
$$

below which ergodicity is broken

-
-

For the simplest case with bounded support

$$
\phi(z) = \cos(z + \theta)
$$

 $\mu_c(\alpha) =$ $1 + \alpha$ $1 + 2\alpha$

- The transition is expected to be continuous if the rescaled "breaking point" is positive $\alpha \mu^3 \mathbb{E} \left[\mathscr{C}_3^2 \right]$ $2[\alpha\mu^{3}\mathbb{E}[\mathscr{C}_{2}^{3}] - (\alpha + 2)]$
	- $\epsilon_{\min}(\mu,0) \epsilon_{\min}(\mu,h) = \lim_{\beta \to \infty} \frac{1}{\beta} \ln \langle e^{\beta h z} \rangle_H$ $\mathscr{C}_k = -\partial_h^k \epsilon_{\min}(\mu,h)$ ln⟨*eβhz* ⟩*H*

$$
w_{AT} = \frac{1}{2 \left[\alpha \mu \right]}
$$

$$
\epsilon_{\min}(\mu, 0) - \epsilon_{\min}(\mu, h) = \lim_{\beta \to \infty} \frac{1}{\beta}
$$

- The transition is expected to be continuous if the rescaled "breaking point" is positive $\alpha \mu^3 \mathbb{E} \left[\mathscr{C}_3^2 \right]$
	-
	-

For the simplest model $w_{\rm AT} > 0$ while $w'_{\rm AT} > 0$ for $\alpha < 22.9...$ and $w'_{\rm AT} < 0$ otherwise 56

Ergodicity breaking

$$
w_{\text{AT}} = \frac{1}{2 \left[\alpha \mu^3 \mathbb{E} \left[\mathcal{C}_2^3 \right] - (\alpha + 2) \right]}
$$

$$
\epsilon_{\min}(\mu, 0) - \epsilon_{\min}(\mu, h) = \lim_{\beta \to \infty} \frac{1}{\beta} \ln \langle e^{\beta h z} \rangle_H \qquad \mathcal{C}_k = -\partial_h^k \epsilon_{\min}(\mu, h)
$$
and the transition is towards a FRSB/1RSB phase if the following is positive/negative

$$
w_{\text{AT}}' = \frac{\alpha \mu^4 \left(\mathbb{E} \left[\mathcal{C}_4^2 \right] - 12 w_{\text{AT}} \mathbb{E} \left[\mathcal{C}_3^2 \mathcal{C}_2 \right] + 6 w_{\text{AT}}^2 \mathbb{E} \left[\mathcal{C}_2^4 \right] \right) - 6(\alpha + 3) w_{\text{AT}}^2}{2 \left[\alpha \mu^3 \mathbb{E} \left[\mathcal{C}_2^3 \right] - (\alpha + 2) \right]}
$$

1RSB solution

In addition to the AT line, a so-called random first order transition (RFOT) may occur when the ground-state energy obtained from a 1RSB solution matches that of the RS solution

1RSB solution

In addition to the AT line, a so-called random first order transition (RFOT) may occur when the ground-state energy obtained from a 1RSB solution matches that of the RS solution

The ground-state energy difference reads

where the properties depend on the effective 1D model

$$
\Delta e_{\text{typ}} = \underset{l,m \ge 0}{\text{ext}} \left[\frac{1}{2} \left(\frac{l}{\mu + ml} - \frac{1 - \alpha}{m} \ln \left(1 + \frac{ml}{\mu} \right) \right) - \frac{\alpha}{m} \mathbb{E} \left[\ln \left(\int \frac{dh}{\sqrt{2\pi l}} e^{-\frac{h^2}{2l} - me_{\min}(\mu + ml, h)} \right) - me_{\min}(\mu) \right] \right]
$$

$$
\epsilon_{\min}(\mu, h) = \min_{z} H_{\mu, h}(z)
$$

$$
z_{\min}(\mu, h) = \operatorname*{argmin}_{z} H_{\mu, h}(z)
$$

$$
H_{\mu,h}(z) = \frac{\mu}{2}z^2 - hz + \phi(z)
$$

The difference vanishes both for:

 $l \rightarrow 0$ (continuous transition)

 $m \rightarrow 0$ (discontinuous transition)

The RFOT transition occurs as $m \to 0$ which is obtained by solving $A(l) = -\frac{l^2(1+\alpha)}{1-\alpha}$ $4\mu^2$ + $\alpha \mathbb{E}$ | \bigcup *dh* 2*πl* $e^{-\frac{h^2}{2l}} \epsilon_{\min}(\mu, h)$

1RSB solution

-
- $A(l_*) = 0$ and $A'(l_*) = 0$

$$
\int_{\ln}^{2} (\mu, h) \left(\int \frac{dh}{\sqrt{2\pi l}} e^{-\frac{h^2}{2l}} \left[\epsilon_{\min}^2(\mu, h) - l z_{\min}^2(\mu, h) \right] \right)
$$

The RFOT transition occurs as $m \to 0$ which is obtained by solving $A(l) = -\frac{l^2(1+\alpha)}{1-\alpha}$ $4\mu^2$ + $\alpha \mathbb{E}$ | \bigcup *dh* 2*πl* $e^{-\frac{h^2}{2l}} \epsilon_{\min}(\mu, h)$ $\alpha \mathbb{E}_{\phi}$ | μ_c^2 The AT line is recovered as $l \rightarrow 0$

1RSB solution

-
- $A(l_*) = 0$ and $A'(l_*) = 0$

$$
\int_{\ln}^{2} (\mu, h) \left(\int \frac{dh}{\sqrt{2\pi l}} e^{-\frac{h^2}{2l}} \left[\epsilon_{\min}^2(\mu, h) - l z_{\min}^2(\mu, h) \right] \right)
$$

 $\left(\mu_c + \phi''[z_{\min}(\mu_c)])^2 - 1\right] - 1 = 0$

The domain of stability of the RS ansatz is reduced

OIntroduction Results on complexity Results on ground-state energy **Conclusion**

Contents

Conclusion

• The annealed complexity can be computed for a large class of i.i.d. zero-mean translationally *M* ∑ *l*=1 $\phi_l(\mathbf{k}_l\mathbf{x})$

This model of superposition of plane waves offers a new type of random landscapes

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2} \mathbf{x}^2 + V_M(\mathbf{x}) \qquad V_M(\mathbf{x}) =
$$

- invariant random functions $\phi(x)$
- For unbounded support there is no topology trivialisation transition
- For bounded support there exists a critical value μ_c above which the landscape is topologically trivial *μc*
- These results are confirmed and extended from the computation of the ground-state energy

To go further

This model of superposition of plane waves offers a new type of random landscapes

General spherical: LACT, Fyodorov & Le Doussal '24 63 2-spin: Fyodorov & Le Doussal '14, Dembo & Zeitouni '15

• The large deviation function of the ground-state energy can be computed for this model *M* ∑ *l*=1 $\phi_l(\mathbf{k}_l\mathbf{x})$ 1 *N* $\ln \mathbb{E} \left[\delta(e - e_{\min, N}) \right]$

• The annealed complexity of minima at fixed energy can be computed and provides a lower bound

$$
\mathcal{H}_N(\mathbf{x}) = \frac{\mu}{2} \mathbf{x}^2 + V_M(\mathbf{x}) \qquad V_M(\mathbf{x}) =
$$

$$
\mathscr{L}(e)=-\lim_{N\to\infty}
$$

$$
\mathcal{L}(e) \ge -\sum_{\min}(e) = -\lim_{N \to \infty} \frac{1}{N} \ln \mathbb{E} \left[\rho_{\min}(e) \right]
$$

SK model: Parisi & Rizzo '08,