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High-dimensional random landscapes

Random landscape : 

Random function of a large number  of degrees of freedom  
Important topic in physics, mathematics and beyond: 

Spin-glass energy landscape 
Utility function in economics 
Cost function in machine learning 
Fitness landscape in evolution 

ℋN(x)
N x = {x1, ⋯, xN}

(Review by Ros & Fyodorov ’22)
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In this talk, focus on static aspects analysed via RMT and tools from statistical physics⇒



Number of stationary points / complexity

A first natural observable of importance is the number of stationary points  
(minima, maxima, saddles) of the landscape   
The natural self-averaging observable is the quenched complexity 

4

-4 -2 0 2 4

-4

-2

0

2

4

ξtot,N =
1
N

ln 𝒩tot,N
lim

N→∞
ξtot,N =

a.s.
lim

N→∞
𝔼 [ξtot,N] = Ξtot



Number of stationary points / complexity

A first natural observable of importance is the number of stationary points  
(minima, maxima, saddles) of the landscape   
The natural self-averaging observable is the quenched complexity 
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Ergodicity breaking translates in a positive complexity  Ξtot > 0

The latter is difficult to compute in most cases (see however Subag ’17 & Ros et al. ’19) 
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ξtot,N =
1
N

ln 𝒩tot,N
lim

N→∞
ξtot,N =

a.s.
lim

N→∞
𝔼 [ξtot,N] = Ξtot

Ergodicity breaking translates in a positive complexity  Ξtot > 0

The latter is difficult to compute in most cases (see however Subag ’17 & Ros et al. ’19) 

The annealed complexity provides an upper bound and can be computed explicitly 

𝔼 [𝒩tot,N] = ∫ dx 𝔼 [
N

∏
i=1

δ((∇ℋN(x))i) det ∇2ℋN(x) ]  Σtot = lim
N→∞

1
N

ln 𝔼 [𝒩tot,N] ≥ Ξtot



Topology trivialisation transition

For one of the simplest random landscape (toy model in  of elastic manifold) 

with a Gaussian disordered potential 

d = 0
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ℋN(x) =
μ
2

x2 + V(x)

𝔼 [V(x)] = 0 𝔼 [V(x1)V(x2)] = N F ( (x1 − x2)2

2N )
(Thermodynamics: Mezard & Parisi ‘90 ‘91 ‘92, Engel ’93, Fyodorov & Sommers ’07  

Dynamics: Franz & Mezard ‘94, Cugliandolo & Le Doussal ‘96 

Complexity: Fyodorov ’04, Bray & Dean ‘07)

Recent exact results on  and finite  :d = 0 d Ben Arous, Bourgade, McKenna ’24, Ben Arous, Kivimae ‘24



Topology trivialisation transition

For one of the simplest random landscape (toy model in  of elastic manifold) 

with a Gaussian disordered potential 

d = 0

8

ℋN(x) =
μ
2

x2 + V(x)

𝔼 [V(x)] = 0 𝔼 [V(x1)V(x2)] = N F ( (x1 − x2)2

2N )

Σtot =
1
2 ( μ2

μ2
c

− 1 − ln
μ2

μ2
c ) , μ < μc = F′￼′￼(0)

0 , μ ≥ μc = F′￼′￼(0)

There exists a topology trivialisation transition as a function of  (Fyodorov ’04) μ

Large universality: 

Only depends on F′￼′￼(0)



Topology trivialisation transition
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Σtot = Ξtot = 0

Trivial phase
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Topology trivialisation transition
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μ
Σtot = Ξtot = 0

Trivial phase

Σtot > 0
Complex phase

μc

Topology 
trivialisation 

transition

S(E) = {x : ℋN(x) ≤ E}



Ground-state energy

A second natural observable of importance is the ground-state energy (GSE) of the landscape 
This observable is also self-averaging   
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Ground-state energy

A second natural observable of importance is the ground-state energy (GSE) of the landscape 
This observable is also self-averaging   
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emin ,N =
1
N

min
x

ℋN(x)

Its average value (and the probability of atypical fluctuations) are computed in the physics literature  
via the replica method 

lim
N→∞

emin ,N =
a.s.

lim
N→∞

𝔼 [emin ,N] = etyp

emin ,N = − lim
β→∞

1
Nβ

ln 𝒵𝒩(β) 𝒵𝒩(β) = ∫ dx e−βℋN(x) 𝔼 [ln 𝒵N(β)] = lim
n→0

1
n

ln 𝔼 [𝒵N(β)n]

There is a considerable literature in mathematics to compute the GSE rigorously  

(Guerra ’03, Talagrand ’06, …)



Ground-state energy

A second natural observable of importance is the ground-state energy (GSE) of the landscape 
This observable is also self-averaging   
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emin ,N =
1
N

min
x

ℋN(x)

Its average value (and the probability of atypical fluctuations) are computed in the physics literature  
via the replica method 

lim
N→∞

emin ,N =
a.s.

lim
N→∞

𝔼 [emin ,N] = etyp

Ergodicity breaking translates in replica symmetry breaking (RSB)

emin ,N = − lim
β→∞

1
Nβ

ln 𝒵𝒩(β) 𝒵𝒩(β) = ∫ dx e−βℋN(x) 𝔼 [ln 𝒵N(β)] = lim
n→0

1
n

ln 𝔼 [𝒵N(β)n]

In many instances the criterion for RSB matches that of positive annealed complexity  
(Fyodorov & Williams ’07)



Ground-state energy

For one of the simplest random landscape (toy model in  of elastic manifold) 

with a Gaussian disordered potential 

The RS expression for the ground-state energy reads 

which becomes unstable (AT-line) for  

matching that of the complexity

d = 0

14

ℋN(x) =
μ
2

x2 + V(x)

𝔼 [V(x)] = 0 𝔼 [V(x1)V(x2)] = N F ( (x1 − x2)2

2N )
etyp =

F′￼(0)
2μ

μ > μc = F′￼′￼(0)

See e.g. (Fyodorov & Sommers ’07)



Ground-state energy

For one of the simplest random landscape (toy model in  of elastic manifold) 

with a Gaussian disordered potential 

The transition is towards a FRSB/1RSB phase for a positive/negative Schwarzian derivative 

d = 0

15

ℋN(x) =
μ
2

x2 + V(x)

𝔼 [V(x)] = 0 𝔼 [V(x1)V(x2)] = N F ( (x1 − x2)2

2N )

𝒮[F′￼(q)] =
F(4)(q)
F′￼′￼(q)

−
3
2 ( F(3)(q)

F′￼′￼(q) )
2

See e.g. (Fyodorov & Sommers ’07)



Ground-state energy

For one of the simplest random landscape (toy model in  of elastic manifold) 

with a Gaussian disordered potential 

In the  1RSB phase (negative Schwarzian derivative) 

d = 0

16

ℋN(x) =
μ
2

x2 + V(x)

𝔼 [V(x)] = 0 𝔼 [V(x1)V(x2)] = N F ( (x1 − x2)2

2N )
𝒮[F′￼(q)] < 0

Local minima are isolated, separated by high barriers
Only local minima are found in a small range of energy around etyp



Ground-state energy

For one of the simplest random landscape (toy model in  of elastic manifold) 

with a Gaussian disordered potential 

In the  FRSB phase (positive Schwarzian derivative) 

d = 0

17

ℋN(x) =
μ
2

x2 + V(x)

𝔼 [V(x)] = 0 𝔼 [V(x1)V(x2)] = N F ( (x1 − x2)2

2N )
𝒮[F′￼(q)] > 0

The landscape displays many flat directions 
All types of saddles are found in a small range of energy around etyp



Digression and motivation  
for the model: 

Semi-classical chaos



Semi-classical chaos

Consider a Riemmanian manifold  with strongly chaotic classical flow. 
The eigenfunctions of the quantum Laplacian 

𝒟

19

−Δψn(x) = Enψn(x) E1 ≤ E2 ≤ ⋯ x ∈ 𝒟



Semi-classical chaos

Consider a Riemmanian manifold  with strongly chaotic classical flow. 
The eigenfunctions of the quantum Laplacian 

Are conjectured by Berry ’77 to be expressed, in the semi-classical limit , as superpositions of plane waves 

𝒟

n ≫ 1

20

−Δψn(x) = Enψn(x) E1 ≤ E2 ≤ ⋯ x ∈ 𝒟

ψn(x) =
M

∑
l=1

γl cos(kn,lx + θl)
γl : 𝒩(0,σ2

l )
θl : U[0,2π)k2

n,l = En
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Consider a Riemmanian manifold  with strongly chaotic classical flow. 
The eigenfunctions of the quantum Laplacian 

Are conjectured by Berry ’77 to be expressed, in the semi-classical limit , as superpositions of plane waves 
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−Δψn(x) = Enψn(x) E1 ≤ E2 ≤ ⋯ x ∈ 𝒟

ψn(x) =
M

∑
l=1

γl cos(kn,lx + θl)
γl : 𝒩(0,σ2

l )
θl : U[0,2π)k2

n,l = En

Many properties of these eigenstates have been investigated (especially in 2D): 
Nodal domains: Blum, Gnutzmann, & Smilansky ’02; Bogomolny & Schmit ’02 

Critical points: Beliaev, Cammarota & Wigman ’19 

Maximum norm: Aurich, Bäcker, Schubert, Taglieber ‘99



Semi-classical chaos

Consider a Riemmanian manifold  with strongly chaotic classical flow. 
The eigenfunctions of the quantum Laplacian 

Are conjectured by Berry ’77 to be expressed, in the semi-classical limit , as superpositions of plane waves 

𝒟

n ≫ 1
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−Δψn(x) = Enψn(x) E1 ≤ E2 ≤ ⋯ x ∈ 𝒟

ψn(x) =
M

∑
l=1

γl cos(kn,lx + θl)
γl : 𝒩(0,σ2

l )
θl : U[0,2π)k2

n,l = En

This type of eigenfunctions will be used here to construct a high-dimensional random landscape



The model

Let us consider the following generally non Gaussian random landscape 
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VM(x) =
M

∑
l=1

ϕl(klx) ϕl(z) =
∞

∑
n=1

γn,l cos(n(z + θn,l))ℋN(x) =
μ
2

x2 + VM(x)



The model

Let us consider the following generally non Gaussian random landscape 
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∞

∑
n=1

γn,l cos(n(z + θn,l))ℋN(x) =
μ
2

x2 + VM(x)

where the wave vectors ’s are either: 
• Gaussian i.i.d. random variables 

• Uniform vectors on the -sphere

kl

N



The model

Let us consider the following generally non Gaussian random landscape 
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VM(x) =
M

∑
l=1

ϕl(klx) ϕl(z) =
∞

∑
n=1

γn,l cos(n(z + θn,l))ℋN(x) =
μ
2

x2 + VM(x)

where the wave vectors ’s are either: 
• Gaussian i.i.d. random variables 

• Uniform vectors on the -sphere

kl

N

The i.i.d. random functions ’s have zero average  

and their statistics is translationally invariant ( )  

ϕl(x) 𝔼ϕ [ϕ(x)] = 0

θn : U[0,2π)

For a non-random function  and : 

Maillard, Ben Arous, Biroli ‘20

ϕ(z) μ = 0



The model

Let us consider the following generally non Gaussian random landscape 
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ℋN(x) =
μ
2

x2 + VM(x) VM(x) =
M

∑
l=1

ϕl(klx)

We are interested in the limit  with N, M → ∞ 0 < α =
M
N

< ∞

ϕl(z) =
∞

∑
n=1

γn,l cos(n(z + θn,l))
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Average number of stationary points

For that problem let us now compute the average number of stationary points: 

28

𝔼 [𝒩tot,N] = ∫ dx 𝔼 [
N

∏
i=1

δ((∇ℋN(x))i) det ∇2ℋN(x) ]



Average number of stationary points

For that problem let us now compute the average number of stationary points: 

29

𝔼 [𝒩tot,N] = ∫ dx 𝔼 [
N

∏
i=1

δ((∇ℋN(x))i) det ∇2ℋN(x) ]
∂xi

ℋN(x) = μxi −
M

∑
l=1

kli Gl

∂2
xi,xj

ℋN(x) = μδij −
M

∑
l=1

kliklj Tl

Gl = − ϕ′￼l(klx) = γl sin(klx + θl)

Tl = − ϕ′￼′￼l (klx) = γl cos(klx + θl)

The statistics of the ’s and ’s 

is independent of  and 

Gl Tl

x kl



Average number of stationary points

For that problem let us now compute the average number of stationary points: 

30

𝔼 [𝒩tot,N] = ∫ dx 𝔼G,T,k

N

∏
i=1

δ (μxi −
M

∑
l=1

kli Gl) det (μδij −
M

∑
l=1

kliklj Tl)

=
1

μN
𝔼T,k det (μδij −

M

∑
l=1

kliklj Tl)

= 𝔼G,T,k ∫ dx
N

∏
i=1

δ (μxi −
M

∑
l=1

kli Gl) det (μδij −
M

∑
l=1

kliklj Tl)



Strong self-averaging

In order to compute the annealed complexity, we suppose the strong self-averaging 
property  

31

lim
N→∞

1
N

ln 𝔼k det (μδij −
M

∑
l=1

kliklj Tl) = lim
N→∞

𝔼k
1
N

ln det (μδij −
M

∑
l=1

kliklj Tl)
= ∫ dλ ρKTKT(λ) ln |μ − λ |

ρKTKT(λ) = lim
N→∞

1
N

Tr [δ(λ𝕀 − KTKT)]



Results from Marchenko-Pastur (’67)

To characterise the limiting density, it is convenient to introduce its Stieltjes transform 

The Stieltjes transform satisfies the following self-consistent equation 

32

m(z) = lim
N→∞

1
N

Tr [(z𝕀 − KTKT)−1] ρKTKT(λ) =
1
π

lim
ϵ→0

mi(λ + iϵ)

1
m(z)

= z − α∫ dt
t p(t)

1 − t m(z)

An unbounded distribution  yields an unbounded spectrum ⇒ p(t) ρKTKT(λ)

p(t) = lim
M→∞

1
M

M

∑
l=1

δ(t − Tl)



Annealed complexity

Under the strong self-averaging property, the average number of stationary points can be 
expressed as a functional integral over the probability measure  

33

p(t) = lim
M→∞

1
M

M

∑
l=1

δ(t − Tl)



Annealed complexity

Under the strong self-averaging property, the average number of stationary points can be 
expressed as a functional integral over the probability measure  

34

p(t) = lim
M→∞

1
M

M

∑
l=1

δ(t − Tl)

𝔼 [𝒩tot,N] ≈ ∫
M

∏
l=1

dtl p0(tl) eN[ ∫ dλ ρ(λ)ln |μ − λ | − ln μ] = ∫
∫ dt p(t)=1

𝒟p(t) eNΦα[p(t),p0(t)]

Σtot = lim
N→∞

1
N

ln 𝔼 [𝒩tot,N] = max
p(t):∫ dt p(t)=1

Φα[p(t), p0(t)]

Φα[p(t), p0(t)] = − α∫ dt p(t) ln
p(t)
p0(t)

+ ∫ dλ ρKTKT(λ)ln |μ − λ | − ln μ

p0(t) = 𝔼 [δ(t − Tl)]



Results

The annealed complexity can be expressed as 

where the function   

35

Σtot(μ) = max
p(t):∫ dt p(t)=1

Φα[p(t), p0(t)] = ∫
∞

μ
dν ( 1

ν
+ mr(−ν))

m(−ν) = mr(−ν) + i mi(−ν) Explicit solution to the optimisation problem: 

p*(t) =
p0(t) |1 − t m(−ν) |

∫ dr p0(r) |1 − r m(−ν) |1
m(−ν)

= − ν − α
∫ dt t p0(t)

|1 − t m(−ν) |
1 − t m(−ν)

∫ dt p0(t) |1 − t m(−ν) |

Φα[p(t), p0(t)] = − α∫ dt p(t) ln
p(t)
p0(t)

+ ∫ dλ ρKTKT(λ)ln |μ − λ | − ln μ



Results

For an unbounded distribution , no trivialisation transition p0(t) = 𝔼 [δ(t − Tl)]

36

Σtot(μ) > 0 for any μ < ∞

Gaussian : LACT, Belga Fedeli, Fyodorov, J. Math. Phys. 63 (9) (2022)p0(t)

Indication that ergodicity 

 broken for any  ?μ



Results

For an unbounded distribution , no trivialisation transition p0(t) = 𝔼 [δ(t − Tl)]
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Σtot(μ) > 0 for any μ < ∞

Gaussian : LACT, Belga Fedeli, Fyodorov, J. Math. Phys. 63 (9) (2022)p0(t)

Indication that ergodicity 

 broken for any  ?μ

For a bounded and zero average distribution , there is a trivialisation transitionp0(t)

α [∫ dt
μ2

c p*(t)
(μc − t)2

− 1] − 1 = α [∫ dt
μc p0(t)
|μc − t |

− 1] − 1 = 0

Σtot(μ){ > 0 , μ < μc

= 0 , μ ≥ μc
Indication that ergodicity 

 broken for  ?μ < μc



Results

38

For a bounded and zero average distribution , the complexity vanishes  p0(t) = 𝔼 [δ(t − Tl)]

α [∫ dt
μ2

c p*(t)
(μc − t)2

− 1] − 1 = α [∫ dt
μc p0(t)
|μc − t |

− 1] − 1 = 0

Σtot(μ) ≈ C2(μ − μc)2

The complexity vanishes quadratically 



Results

39

Similar results can be obtained for the annealed complexity of minima: 

Σmin(μ) ≈ C′￼2(μ − μc)2

The complexity of minima vanishes quadratically 

Σtot(μ) for any μ < ∞For unbounded p0(t) = 𝔼 [δ(t − Tl)]
For bounded p0(t) = 𝔼 [δ(t − Tl)] Σmin(μ){ > 0 , μ < μc

= 0 , μ ≥ μc

> Σmin(μ) > 0



Results

The results for the annealed complexity only provide a bound for the quenched 
complexity and thus on the ergodicity breaking transition.  

From the results so far, ergodicity is NOT broken for any   

(however  for unbounded support)   
Can these results be confirmed from the computation of the ground-state energy? 

μ > μc

μc = + ∞

40

  Σtot = lim
N→∞

1
N

ln 𝔼 [𝒩tot,N] ≥ Ξtot   Ergodicity breakingΞtot > 0 ⇔
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Ground-state energy

We are now interested in computing the average (and typical) ground-state energy 

42

We will compute its value using the replica method 

etyp = lim
N→∞

1
N

min
x

ℋN(x)

etyp = − lim
β→∞

1
Nβ

𝔼 [ln 𝒵𝒩(β)] 𝒵𝒩(β) = ∫ dx e−βℋN(x) 𝔼 [ln 𝒵N(β)] = lim
n→0

1
n

ln 𝔼 [𝒵N(β)n]

lim
N→∞

1
N

ln 𝔼 [𝒵N(β)n]
We first need to evaluate the quantity 



Replicated partition function

The first step to obtain the average ground-state energy is to compute the replicated partition function 

Each term of the product can be re-expressed in terms of inverse overlap as 

43

𝔼 [𝒵N(β)n] = ∫
n

∏
a=1

dxa e− βμ
2 ∑n

a=1 x2
a

M

∏
l=1

𝔼 [e−β∑n
a=1 ϕl(klxa)]

𝔼 [e−β∑n
a=1 ϕ(kxa)] =

det(Q)

(2π)n
2

Pn(Q)
(Q−1)ab =

xa ⋅ xb

N

Pn(Q) = ∫ dz e− zQz
2 𝔼ϕ [e−β∑n

a=1 ϕ(za)]



Replicated partition function

One can now obtain 

44

𝔼 [𝒵N(β)n] = ∫
n

∏
a=1

dxa e− βμ
2 ∑n

a=1 x2
a

M

∏
l=1

𝔼 [e−β∑n
a=1 ϕl(klxa)]

= cN,n ∫ Q−1dQQ−1(det(Q))− (n + 1)
2 eNΨn,α(Q)

Ψn,α(Q) = −
βμ
2

Tr (Q−1) −
1 − α

2
ln det Q + α ln Pn(Q) +

n
2 [(1 − α)ln(2π) + 1]



Replicated partition function

One can now obtain 

The average and typical GSE is obtained as 

45

𝔼 [𝒵N(β)n] = ∫
n

∏
a=1

dxa e− βμ
2 ∑n

a=1 x2
a

M

∏
l=1

𝔼 [e−β∑n
a=1 ϕl(klxa)]

= cN,n ∫ Q−1dQQ−1(det(Q))− (n + 1)
2 eNΨn,α(Q)

Ψn,α(Q) = −
βμ
2

Tr (Q−1) −
1 − α

2
ln det Q + α ln Pn(Q) +

n
2 [(1 − α)ln(2π) + 1]

etyp = − ext
Q>0

lim
n→0

Ψn,α(Q)
nβ



Parisi formula

The average GSE is obtained from the Parisi formula 

46

etyp = sup
l,w(l′￼)

μ
2 ∫

l

0

dt

(μ + ∫
t

0
w(τ) dτ)

2 −
1 − α

2 ∫
l

0

dt

μ + ∫
t

0
w(τ) dτ

− α ln 𝔼ϕ [f(0,0)]



Parisi formula

The average GSE is obtained from the Parisi formula 

The function             satisfies Parisi’s PDE 

with the random boundary condition  

47

etyp = sup
l,w(l′￼)

μ
2 ∫

l

0

dt

(μ + ∫
t

0
w(τ) dτ)

2 −
1 − α

2 ∫
l

0

dt

μ + ∫
t

0
w(τ) dτ

− α ln 𝔼ϕ [f(0,0)]

∂t f = −
1
2 [∂2

h f + w(t)(∂h f)2]
f(t, h)

f(t ≥ l, h) = − ϵmin (μ + ∫
l

0
w(τ) dτ, h) ϵmin (ν, h) = min

z [ ν
2

z2 − hz + ϕ(z)]where



Replica-symmetric solution

The simplest solution corresponds to a replica-symmetric solution 

If that solution is correct, the system is ergodic 

48

(Q−1)ab =
xa ⋅ xb

N
= {r , a ≠ b

rd , a = b



Replica-symmetric solution

The simplest solution corresponds to a replica-symmetric solution 

If that solution is correct, the system is ergodic 
The properties of that solution can be expressed in term of an effective 1D disordered system 

In particular  
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(Q−1)ab =
xa ⋅ xb

N
= {r , a ≠ b

rd , a = b

etyp = α 𝔼ϕ [ϵmin(μ,0)] ϵmin(μ, h) = min
z

Hμ,h(z)

lim
β→∞

β(rd − r) =
1
μ

r = α 𝔼ϕ [z2
min(μ,0)] zmin(μ, h) = argmin

z
Hμ,h(z)

Hμ,h(z) =
μ
2

z2 − hz + ϕ(z)



De-Almeida-Thouless line

For the RS solution to be stable, one needs to ensure that the solution corresponds indeed to a 
maximum, i.e. the eigenvalues of the quadratic form 

  
are all negative as  
The replicon (i.e. largest eigenvalue) reads 

n → 0
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λRS(μ) = α 𝔼ϕ [ μ2

(μ + ϕ′￼′￼[zmin(μ)])2
− 1] − 1

A(n)
(ab),(cd) =

∂2Ψn,α(Q)
∂Qab∂Qcd



De-Almeida-Thouless line

In particular, using that  

 and denoting  the PDF of  
The marginality criterion for the replicon reads 

and matches the criterion for the complexity to vanish 

p*(t) ϕ[zmin(μ)]
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λRS(μc) = 0 = α 𝔼ϕ [ μ2
c

(μc + ϕ′￼′￼[zmin(μc)])2
− 1] − 1 = α [∫ dt

μ2
c p*(t)

(μc − t)2
− 1] − 1

ϕ(z) = γ cos(z + θ)
ϕ′￼′￼(z) = − γ cos(z + θ) = − ϕ(z)

α [∫ dt
μ2

c p*(t)
(μc − t)2

− 1] − 1 = α [∫ dt
μc p0(t)
|μc − t |

− 1] − 1 = 0



Ergodicity breaking

As the two criterion concur, one can safely conclude that: 
 Ergodicity is broken for any value of  for an unbounded distribution of  μ ϕ(z)
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Ergodicity breaking

As the two criterion concur, one can safely conclude that: 
 Ergodicity is broken for any value of  for an unbounded distribution of  μ ϕ(z)
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α [∫ dt
μc p0(t)
|μc − t |

− 1] − 1 = 0

For a bounded support, there exist a finite value  which satisfies μc

below which ergodicity is broken 



Ergodicity breaking

For the simplest case with bounded support  
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ϕ(z) = cos(z + θ) p0(t) =
1

π 1 − t2

μc(α) =
1 + α

1 + 2α



Ergodicity breaking

The transition is expected to be continuous if the rescaled “breaking point” is positive  
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wAT =
αμ3 𝔼 [𝒞2

3]
2 [αμ3 𝔼 [𝒞3

2] − (α + 2)]
𝒞k = − ∂k

h ϵmin(μ, h)ϵmin(μ,0) − ϵmin(μ, h) = lim
β→∞

1
β

ln⟨eβhz⟩H



and the transition is towards a FRSB/1RSB phase if the following is positive/negative 

For the simplest model  while  for  and  otherwisewAT > 0 w′￼AT > 0 α < 22.9... w′￼AT < 0

Ergodicity breaking

The transition is expected to be continuous if the rescaled “breaking point” is positive  

56

wAT =
αμ3 𝔼 [𝒞2

3]
2 [αμ3 𝔼 [𝒞3

2] − (α + 2)]
𝒞k = − ∂k

h ϵmin(μ, h)ϵmin(μ,0) − ϵmin(μ, h) = lim
β→∞

1
β

ln⟨eβhz⟩H

w′￼AT =
αμ4 (𝔼 [𝒞2

4] − 12wAT 𝔼 [𝒞2
3𝒞2] + 6w2

AT 𝔼 [𝒞4
2]) − 6(α + 3)w2

AT

2 [αμ3 𝔼 [𝒞3
2] − (α + 2)]



1RSB solution

In addition to the AT line, a so-called random first order transition (RFOT) may occur when 
the ground-state energy obtained from a 1RSB solution matches that of the RS solution  
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1RSB solution

In addition to the AT line, a so-called random first order transition (RFOT) may occur when 
the ground-state energy obtained from a 1RSB solution matches that of the RS solution  
The ground-state energy difference reads 

where the properties depend on the effective 1D model 
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Δetyp = ext
l,m≥0 [ 1

2 ( l
μ + ml

−
1 − α

m
ln (1 +

ml
μ ))

−
α
m

𝔼 ln (∫
dh

2πl
e− h2

2l −mϵmin(μ+ml,h)) − mϵmin(μ)

ϵmin(μ, h) = min
z

Hμ,h(z)

zmin(μ, h) = argmin
z

Hμ,h(z)
Hμ,h(z) =

μ
2

z2 − hz + ϕ(z)

The difference vanishes both for: 

 (continuous transition) 

 (discontinuous transition)

l → 0

m → 0



1RSB solution

The RFOT transition occurs as  which is obtained by solving   m → 0
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A(l) = −
l2(1 + α)

4μ2
+ α 𝔼 (∫

dh

2πl
e− h2

2l ϵmin(μ, h))
2

− ∫
dh

2πl
e− h2

2l [ϵ2
min(μ, h) − l z2

min(μ, h)]

A(l*) = 0 and A′￼(l*) = 0



1RSB solution

The RFOT transition occurs as  which is obtained by solving   m → 0
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A(l) = −
l2(1 + α)

4μ2
+ α 𝔼 (∫

dh

2πl
e− h2

2l ϵmin(μ, h))
2

− ∫
dh

2πl
e− h2

2l [ϵ2
min(μ, h) − l z2

min(μ, h)]

A(l*) = 0 and A′￼(l*) = 0

α 𝔼ϕ [ μ2
c

(μc + ϕ′￼′￼[zmin(μc)])2
− 1] − 1 = 0

The AT line is recovered as   l → 0

The domain of stability of the RS ansatz is reduced  
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Conclusion

This model of superposition of plane waves offers a new type of random landscapes  

• The annealed complexity can be computed for a large class of i.i.d. zero-mean translationally 
invariant random functions  

• For unbounded support there is no topology trivialisation transition 
• For bounded support there exists a critical value  above which the landscape is topologically 

trivial 
• These results are confirmed and extended from the computation of the ground-state energy 

ϕ(x)

μc
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ℋN(x) =
μ
2

x2 + VM(x) VM(x) =
M

∑
l=1

ϕl(klx)



To go further

This model of superposition of plane waves offers a new type of random landscapes  

• The large deviation function of the ground-state energy can be computed for this model 

• The annealed complexity of minima at fixed energy can be computed and provides a lower bound 
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ℋN(x) =
μ
2

x2 + VM(x) VM(x) =
M

∑
l=1

ϕl(klx)

ℒ(e) = − lim
N→∞

1
N

ln 𝔼 [δ(e − emin ,N)]

ℒ(e)≥−Σmin(e) = − lim
N→∞

1
N

ln 𝔼 [ρmin(e)]
SK model: Parisi & Rizzo ’08,  

2-spin: Fyodorov & Le Doussal ’14, Dembo & Zeitouni ’15 

General spherical: LACT, Fyodorov & Le Doussal ’24


