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High-dimensional random landscapes

Random landscape 7 ,/(X):

Random function of a large number N of degrees of freedom X = {xy, -+, Xy}

Important topic in physics, mathematics and beyond:
~ Spin-glass energy landscape

< Utility function in economics

. : : (Review by Ros & Fyodorov "22)
~ Cost function in machine learning

— Fitness landscape in evolution

=In this talk, focus on static aspects analysed via RMT and tools from statistical physics



Number of stationary points / complexity
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Number of stationary points / complexity

A first natural observable of importance is the number of stationary points-

(minima, maxima, saddles) of the landscape
The natural self-averaging observable is the quenched complexity
| - : —
ftot,N — N In WV tot,N Al,l_fgo 5t0taN a:S ]\1,1_{20 - [gtot,N] = ot

Ergodicity breaking translates in a positive complexity =, . > 0
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The latter is difficult to compute in most cases (see however Subag 17 & Ros et al. '19)




Number of stationary points / complexity
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A first natural observable of importance is the number of stationary points* ::::
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(minima, maxima, saddles) of the landscape : \?\ |
The natural self-averaging observable is the quenched complexity e o U
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Ergodicity breaking translates in a positive complexity =, > 0 R
The latter is difficult to compute in most cases (see however Subag 17 & Ros et al. '19)

The annealed complexity provides an upper bound and can be computed explicitly

1 N
S = im —IE [V n] 2B E[Vin] = de = | ][5V yx))) | det V29 (%)
=1

N—oco IV
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Topology trivialisation transition

For one of the simplest random landscape (toy model in d = 0 of elastic manifold)
U \(X) = %xz + V(x)

with a Gaussian disordered potential

_ B - B (X} — X2)2
Vx)| =0 V(x)V(x,)] —NF( - )

(Thermodynamics: Mezard & Parisi ‘9o ‘g1 ‘92, Engel ‘93, Fyodorov & Sommers '07
Dynamics: Franz & Mezard ‘94, Cugliandolo & Le Doussal ‘96
Complexity: Fyodorov ‘o4, Bray & Dean ‘07)

Recent exact results on d = 0 and finite d : Ben Arous, Bourgade, McKenna 24, Ben Arous, Kivimae ‘24
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Topology trivialisation transition

For one of the simplest random landscape (toy model in d = 0 of elastic manifold)
F \(X) = %xz + V(x)

with a Gaussian disordered potential

A% =0 - V(X)) Vi =NF
V(x)) V(x)V(x,)| ( N )
There exists a topology trivialisation transition as a function of u (Fyodorov '04)
[ p u ; o
|- 1-In— , 1< p.=+/F"0) Large universality:
ZtOt —_ 2 //tc ll/tC

Only depends on F7(0)

0 , U > U, = \/FN(O)
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Topology trivialisation transition

S(E) = {x : #(x) < E}

Topology

trivialisation ]
transition -

I ‘I I T //tc T T I
2ot > 0 ot = Sor = 0

Complex phase Trivial phase
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Ground-state energy

A second natural observable of importance is the ground-state energy (GSE) of the landscape
This observable is also self-averaging

1 : :
€. = — min #Z (X lim €min N — lim [E [emin ,N] = €
min, N N x N( ) N—o0 a.s. N—oo P

[



Ground-state energy

A second natural observable of importance is the ground-state energy (GSE) of the landscape
This observable is also self-averaging

1 : :
€. = — min #Z (X lim €min N — lim [E [emin ,N] = €
min, N N x N( ) N—o0 a.s. N—oo P

[ts average value (and the probability of atypical fluctuations) are computed in the physics literature

via the replica method

o] 1
Emin N = — ﬂlggo NG In Z ,(p) Z (P = [dxe—ﬁ% MO E [In Zy(p)| = }ll_l”)%; InE [Z (B

There is a considerable literature in mathematics to compute the GSE rigorously

(Guerra '03, Talagrand 06, ...)
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Ground-state energy

A second natural observable of importance is the ground-state energy (GSE) of the landscape

This observable is also self-averaging

1 : :
€. = — min #Z (X lim €min N — lim [E [emin ,N] = €
min, N N x N( ) N—o0 a.s. N—oo P

[ts average value (and the probability of atypical fluctuations) are computed in the physics literature

via the replica method

1 1
Emin N = — ﬂlggo NG In Z ,(p) Z (P = de e PPV E [In Z y(B)] = hi%; InE [Z (B

Ergodicity breaking translates in replica symmetry breaking (RSB)
In many instances the criterion for RSB matches that of positive annealed complexity

(Fyodorov & Williams '07)
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Ground-state energy

For one of the simplest random landscape (toy model in d = 0 of elastic manifold)
U \(X) = %xz + V(x)
with a Gaussian disordered potential

(X — X2)2
— V — O — V V — NF
[ (X)] [ (X)) (Xz)] ( N >
The RS expression for the ground-state energy reads :
F'(0) .
e —
which becomes unstable (AT-line) for P 2 o o
u>p.=+F©0) -
matching that of the complexity 0:2- AT (U

\

See c.g. (FyOdOl‘OV & Sommers ,07) 14 %0 02 o4 o6 08 10 12 14
U



Ground-state energy

For one of the simplest random landscape (toy model in d = 0 of elastic manifold)
F \(X) = %xz + V(x)
with a Gaussian disordered potential

- _ - _ (X} — X2)2
Vx)| =0 Vx)OV(Xy)| = NF( 2N )

The transition is towards a FRSB/1RSB phase for a positive/negative Schwarzian derivative

2
F9) 3 [ FOQ)
S[F(q)] = 2
=T 2 ( F'(q) )

See e.g. (Fyodorov & Sommers '07)

15



Ground-state energy

For one of the simplest random landscape (toy model in d = 0 of elastic manifold)
F \(X) = %xz + V(x)
with a Gaussian disordered potential

- _ - _ (X} — X2)2
Vx)| =0 Vx)OV(Xy)| = NF( ~ )

In the 1RSB phase (negative Schwarzian derivative)

SF(q)] <0

Local minima are isolated, separated by high barriers
Only local minima are found in a small range of energy around Ciyp
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Ground-state energy

For one of the simplest random landscape (toy model in d = 0 of elastic manifold)
F \(X) = %xz + V(x)
with a Gaussian disordered potential

- _ - _ (X} — X2)2
Vx)| =0 Vx)OV(Xy)| = NF( ~ )

In the FRSB phase (positive Schwarzian derivative)

SF(q)] >0

The landscape displays many flat directions
All types of saddles are found in a small range of energy around Ciyp

17



Digression and motivation
for the model:
Semi-classical chaos




Semi-classical chaos

Consider a Riemmanian manifold & with strongly chaotic classical flow.

The eigenfunctions of the quantum Laplacian

— Ay, (X) = Ep,(X) E <E,< -

19
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Semi-classical chaos

Consider a Riemmanian manifold & with strongly chaotic classical flow.

The eigenfunctions of the quantum Laplacian

_Al//n(x) — Enl//n(X) E] S E2 S *e° X & QZ

Are conjectured by Berry 77 to be expressed, in the semi-classical limit n > 1, as superpositions of plane waves

Y1 - ‘/V(Oadlz)

M
— 2 —_—

[=1
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Semi-classical chaos

Consider a Riemmanian manifold & with strongly chaotic classical flow.

The eigenfunctions of the quantum Laplacian

_Al//n(x) — Enl//n(X) E] S E2 S *e° X & QZ

Are conjectured by Berry 77 to be expressed, in the semi-classical limit n > 1, as superpositions of plane waves

v, V(0,07

M

[=1
Many properties of these eigenstates have been investigated (especially in 2D):

Nodal domains: Blum, Gnutzmann, & Smilansky '02; Bogomolny & Schmit 02
Critical points: Beliaev, Cammarota & Wigman '19

Maximum norm: Aurich, Bicker, Schubert, Taglieber ‘99
21



Semi-classical chaos

Consider a Riemmanian manifold & with strongly chaotic classical flow.

The eigenfunctions of the quantum Laplacian

_Al//n(x) — Enl//n(X) E] S E2 S *e° X & @
Are conjectured by Berry 77 to be expressed, in the semi-classical limit n > 1, as superpositions of plane waves

Y1 - ‘/V(Oadlz)

M
— 2 —_—

[=1

This type of eigenfunctions will be used here to construct a high-dimensional random landscape

22



The model

Let us consider the following generally non Gaussian random landscape

M o0
) = S+ Vy(®) V0 = Y pkix)  B@) = Y 1008012+ 0,0)
[=1 n=1

23



The model

Let us consider the following generally non Gaussian random landscape

M 00
A N(X) = %Xz + Viu(X) Vu(X) = Z ¢(kx) P)(2) = Z V1 €OS(n(Z + 0, )
[=1 n=1

where the wave vectors K/'s are either:

 (Gaussian i.i.d. random variables

» Uniform vectors on the N-sphere

24



The model

Let us consider the following generally non Gaussian random landscape
! S N
A N(X) = Exz + Viu(X) Vu(X) = Z ¢(kx) P)(2) = Z V1 €OS(n(Z + 0, )
[=1 n=1

where the wave vectors K/s are either: For a non-random function ¢(z) and y = 0:

A . Maillard, Ben Arous, Biroli ‘20
 (Gaussian i.i.d. random variables

» Uniform vectors on the N-sphere

The i.i.d. random functions ¢,(x)’s have zero average E y [¢(x)] =0

and their statistics is translationally invariant (0, : U[0,2x))

25



The model

Let us consider the following generally non Gaussian random landscape

M 00
HN(X) = %Xz + Viu(X) Vu(X) = Z ¢(kx) P)(2) = Z V1 €OS(n(Z + 0, )
[=1 n=1

We are interested in the limit N,M — co with 0 < a = W < 00

26
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Average number of stationary points

For that problem let us now compute the average number of stationary points:

N
- [/Vtot,N] — de - [H o((V A (X)), | det Vz%N(X)
i=1

28



Average number of stationary points

For that problem let us now compute the average number of stationary points:

N
- [/Vtot,N] — de - [H o((V A (X)), | det Vz%N(X)
i=1

M
— . — G, =— ¢/(kx) =ysin(kx+ 6
O NX) = HX; Z Kii G l Pilkx) = yisinx +0) The statistics of the G;'s and T}'s

T N(X) = ud; Z ki T, T = — (k) = y,co8(kix + 0) is independent of x and K,

29



Average number of stationary points

For that problem let us now compute the average number of stationary points:

N M M
- [ﬂ/ tot,N] — de ~G,T .k [H5 (ﬂxi ~ Z ki; Gz) det <ﬂ5ij ~ Z kiiki; Tl) }

[=1

M
det (WSU. — ) kik, T,) ]
[=1

1
op)
-
=
I
ey
>3
—1=
%)
N
=
<3
|
M<
NN?\“
D
N




Strong self-averaging

In order to compute the annealed complexity, we suppose the strong self-averaging

property

1
Iim — In
N—o0 N

M
det (,uél-j — Z kjiki; Tz>
[=1

1
prri(A) = lim —Tr [5(A1 — KTK")|

N—oco [NV

— In

= lim

M
[=1




Results from Marchenko-Pastur ('67)

To characterise the limiting density, it is convenient to introduce its Stieltjes transform

1 1
m(z) = lim —Tr [(zl — KTK")™!| prrei(A) = —lim m(A + ie)
N—ooo IV T €¢—0
The Stieltjes transform satisfies the following self-consistent equation
1 t p(?) 1 &
=z—aqa|dt p@)=lm — ) o(t—1)
m(z) J 1 —1m(z) M—co M Z‘ |

= An unbounded distribution p(?) yields an unbounded spectrum pg7e1(4)

32



Annealed complexity

Under the strong self-averaging property, the average number of stationary points can be
expressed as a functional integral over the probability measure

1 M
1) = lim — ot —T
p(1) M%OMZ, (t—T)

33



Annealed complexity

Under the strong self-averaging property, the average number of stationary points can be
expressed as a functional integral over the probability measure

p(H) = lim — Z 5(t — T) po(t) = E [8( - T)]

M—o0o M
M
= | N o] JHdtl po(t) e [[ddp@)in|p = 4] =Inp| _ J Dp(t) NPl PO:PyD)]
| [=1 [dtp(H)=1
p(1)
D, [p(D), py(D] = — “Jdtp(f) In ) | JdﬂﬂKTKT(ﬂ)ln u—A|—Inu
0

1
Yot = lim —InE | y] = max @ [p(), py(1)]
N—ooo N p(0):[ dt p(H)=1

34



Results

The annealed complexity can be expressed as

= |
L) = max D [p(1), py(1)] = [ dv (— + mr(—v))
p():] dt p(t)=1 " 1%

(7)
D, [p(®), pp(D)] = — aJdtp(D In ]f 0 | [d/lpmm(l)ln ju—Al—Inpy
0
where the function
m(—v) = m(—v) +im(—v) Explicit solution to the optimisation problem:
|1 —tm(—v)] D1l —tm(—v
1 Jdtfpo(f) : Dulf) = po®) | (—v)|
IR — tm(=v) [drpy(r) |1 —rm(-v)]

(=) Jdtpo(f) 11— tm(=0),

35



Results

For an unbounded distribution py(7) = E [5(t — Tl)], no trivialisation transition

Indication that ergodicity

Zioi) >0 forany u < oo
broken for any u ?

Gaussian py(7): LACT, Belga Fedeli, Fyodorov, J. Math. Phys. 63 (9) (2022)

36



Results

For an unbounded distribution py(7) = E [5(1‘ — Tl)], no trivialisation transition

Indication that ergodicity

Zioi) >0 forany u < oo
broken for any u ?

Gaussian py(7): LACT, Belga Fedeli, Fyodorov, J. Math. Phys. 63 (9) (2022)

For a bounded and zero average distribution p(?), there is a trivialisation transition

0
Ztot(,u){ 7V S K Indication that ergodicity

=0, u>
= broken for u < p_.?




Results

For a bounded and zero average distribution p,(7) = [ [5(t — Tl)], the complexity vanishes

2
. Jdt p; p«(1) N Jdt He Po(?) N
(/’tc_t)z ‘/’tc_t‘

The complexity vanishes quadratically

o) = Cy(p — ﬂc)z

38



Results

Similar results can be obtained for the annealed complexity of minima:

For unbounded py(r) = E [5(t — Tl)] o) > Zni(w) >0 forany u < oo

For bounded py(f) = E [5@ _ Tl)] s { >0, y < H,
The complexity of minima vanishes quadratically

Zmin(;u) ~ é(//t o //tc)z

39



Results

The results for the annealed complexity only provide a bound for the quenched
complexity and thus on the ergodicity breaking transition.

Zt()t — ]\lllm N InE [‘/’/tOt,N] > EtOt Etot >0 Ergodicity breaking

From the results so far, ergodicity is NOT broken for any u > u.

(however p. = + oo for unbounded support)

Can these results be confirmed from the computation of the ground-state energy?

40
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Ground-state energy

We are now interested in computing the average (and typical) ground-state energy

= lim — min & \(X)

e
t
P N—ooo N x

We will compute its value using the replica method

| s
cyp = lim E [0 T, (D] Z,49) = | dxe T

We first need to evaluate the quantity

lim —1 = Z VB
Nl—I>Iol<>Nn P

42

= (In Z \(B)| = lim ! In

n—-0n

= | Z NP




Replicated partition function

The first step to obtain the average ground-state energy is to compute the replicated partition function

M

N(,B)n — JHCZX e_ﬁT 2mi 31_[ - _e_ﬁZZﬂCbz(kzxa)_

Each term of the product can be re-expressed in terms of inverse overlap as

_ Xo " X
_e‘ﬁzzﬂcb(kxa)- — \/det(ﬂQ) P .(0) (¢ 1>ab B N b
(27)>

20z

P,(Q) = sze_T = PTG

43



Replicated partition function

One can now obtain ",

= [ 2] = JHane‘ﬁT”zzl’%H - [ T )
a=1 ] -

[=1

= cN,nJQ‘ldQQ*(det(Q»-(”?” eN¥raQ)

l —«a
2

pu
p)

¥, (0)=-2Tr (1) Indet O + aln P.(Q) + % (1 — @)In(27) + 1]

44



Replicated partition function

One can now obtain ",

= [ 2] = JHane‘ﬁT”zzl’%H - [ T )
a=1 ] -

[=1

= cN,nJQ‘ldQQ*(det(Q»-(”?” eN¥raQ)

1 —
‘Pn,a(Q) — ﬁ; It (Q_1> 5 -

The average and typical GSE is obtained as

Indet O + aln P.(Q) + % (1 — @)In(27) + 1]

R ()
= — ext lim
0>0 n»0 np

€typ

45



Parisi formula

The average GSE is obtained from the Parisi formula

€typ

sup
Lw(l')

Lad
2

JO
U+

dt l—a

r 1

J0

2 2
w(7) dT)

46
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rl

70

w(7)dr

alnE, [£(0,0)]




Parisi formula

The average GSE is obtained from the Parisi formula

!l dt l—a (! dt

2 o) r !
JO r ! J0
(,u + | w(r) a’r) pt | wodr

Jo
0
The function f(#, 1) satisfies Parisi’s PDE
1
0,f = —

with the random boundary condition 2

= sup | alnE,, [£(0,0)]

Lw(l')

€typ

G f+w)(9,0)”

[
f(t>Lh)=—e€ (,M + J w(7) dr, h) where €, (v, /1) = min lgzz — hz + ¢(2)

0 <

47




Replica-symmetric solution

The simplest solution corresponds to a replica-symmetric solution

i X'X,  [r,a#b
(Q )ab_ N _{rd,a:b

If that solution is correct, the system is ergodic

48



Replica-symmetric solution

The simplest solution corresponds to a replica-symmetric solution

i X'X,  [r,a#b
(Q )ab_ N _{rd,a:b

If that solution is correct, the system is ergodic

The properties of that solution can be expressed in term of an effective 1D disordered system

H, \(2) = %22 — hz+ $(2)

In particular

€yp — X ICy [emin(ﬂao)] €min(/’t9 h) = min Hﬂ,h(z)

<

2
F=al- Zmln(//t’()) .
¢ [ ] Zmin(#, 1) = argmin H, ,(2)

lim A(r, — r) = — )

p— 00 12 49



De-Almeida-Thouless line

For the RS solution to be stable, one needs to ensure that the solution corresponds indeed to a
maximum, i.e. the eigenvalues of the quadratic form

2
o PO
(ab),(cd) aQabanal

are all negativeasn — 0

The replicon (i.e. largest eigenvalue) reads

/42
Irs(H) = a E 1
rs(k) = a [(,,, O zmin(1)1)? ]

50



De-Almeida-Thouless line

In particular, using that

Ars(ie) =0 =ak, [(//t

d(z) = ycos(z + 6)

¢"(2) = —ycos(z+0) = — §(2)
and denoting p.(r) the PDF of ¢[z .. (1)]

The marginality criterion for the replicon reads

u?

¢ N[Zmin(/’tc)] )2

and matches the criterion for the complexity to vanish

[ [ar




Ergodicity breaking

As the two criterion concur, one can safely conclude that:

Ergodicity is broken for any value of ¢ for an unbounded distribution of ¢(z)

52



Ergodicity breaking

As the two criterion concur, one can safely conclude that:

Ergodicity is broken for any value of ¢ for an unbounded distribution of ¢(z)

For a bounded support, there exist a finite value y . which satisfies

o [dt HePo®f
‘/’tc_t‘

below which ergodicity is broken

53



Ergodicity breaking

For the simplest case with bounded support

d(z) = cos(z + 0) Po(?)

4.0

3.5 -
3.0 -
2.5 -

S 2.0 -
1.5 -
1.0 -

0.5 -

0.0




Ergodicity breaking

The transition is expected to be continuous if the rescaled “breaking point” is positive
au’ E |65
2 a3 E |G3] — (a+2)|

WAT =

1
€min(/ftao) — emin(//ta h) = lim E ln<eﬁhZ>H Cgk - alli Gmin(//ta h)

p— oo

55



Ergodicity breaking

The transition is expected to be continuous if the rescaled “breaking point” is positive
au’ E |65
2 a3 E |G3] — (a+2)|

WAT =

1
€min(/ftao) — emin(//ta h) = lim E ln<eﬁhZ>H Cgk - alli Gmin(//ta h)

p— oo

and the transition is towards a FRSB/1IRSB phase if the following is positive/negative

au® (E [€5] — 12war E [656,| + 6War E [63]) — 6(a + 3)wiy
2 [a,u3 - [‘5%] — (a 2)]

For the simplest model w,t > 0 while wy > Ofor a < 22.9... and w,+ < 0 otherwise

56



1RSB solution

In addition to the AT line, a so-called random first order transition (RFOT) may occur when
the ground-state energy obtained from a 1RSB solution matches that of the RS solution

57



1RSB solution

In addition to the AT line, a so-called random first order transition (RFOT) may occur when
the ground-state energy obtained from a 1RSB solution matches that of the RS solution

The ground-state energy difference reads

| [ ]l —«a ml
Aetyp = ext [— ( — In (1 -+ —> ) The difference vanishes both for:
m>0 |2 \ u+ ml m 7,

[ — O (continuous transition)

o =B dh —ﬁ—me - (u+ml,h) . . .
_ n e~ 2 M€min — me,; (1) m — (0 (discontinuous transition)

m \/ 27l

where the properties depend on the effective 1D model

Emin(H, ) = min H, ,(z)
H 5 <

H, (z) ==z — hz + ¢(2)
w,h N ¢ Zmin(lu’ h) — argmin H//t,h(z)

58 7



1RSB solution

The RFOT transition occurs as m — 0 which is obtained by solving

2
1%(1 + dh 2 dh 12
A(l) = — (1+0a) + a B (J' e_%emin(,u, h)) — J e~ [eéin(//t, h) — lzéin(//t, h)]

4p? \/ 27l

59



1RSB solution

The RFOT transition occurs as m — 0 which is obtained by solving

2
(1 + dh _» dh  »
Al = - ( 2“) +ak J e~ Te . (uh) | — J e~ €2 (u,h) — 122 (u, h)
4y \/ 27l \/ 27l

The AT line is recovered as [ — (

ﬂ2
a _¢ g - 1 — 1 — O
(/’tc T §b [Zmin(luc)])2

The domain of stability of the RS ansatz is reduced
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Conclusion

This model of superposition of plane waves offers a new type of random landscapes
M
H
H \(X) = Exz +Vu® V) = ) lkx)
=1

* The annealed complexity can be computed for a large class of i.i.d. zero-mean translationally
invariant random functions ¢(x)

* For unbounded support there is no topology trivialisation transition

* For bounded support there exists a critical value p. above which the landscape is topologically
trivial

* These results are confirmed and extended from the computation of the ground-state energy
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To go further

This model of superposition of plane waves offers a new type of random landscapes

M
F (%) = §x2 FV® V= Y k)
=1

* The large deviation function of the ground-state energy can be computed for this model

|
F(e)=—1lim —Ink |6(e — e, v)
Nesoo N [ min ,N ]
* The annealed complexity of minima at fixed energy can be computed and provides a lower bound

g(e)z_zmin(e) — _Al]lm %ln - [pmin(e)]

SK model: Parisi & Rizzo '08,
2-spin: Fyodorov & Le Doussal '14, Dembo & Zeitouni '15

General spherical: LACT, Fyodorov & Le Doussal 24



