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Joint work with Nick Baskerville (Sibylla AI), Francesco Mezzadri
(Bristol), & Joseph Najnudel (Bristol):

The loss surfaces of neural networks with general activation functions,
Journal of Statistical Mechanics: Theory and Experiment 2021 (6),

064001 (2021) [arXiv:2004.03959];

A spin glass model for the loss surfaces of Generative Adversarial Networks,
Journal of Statistical Physics 186 (2), 1-45 (2022) [arXiv:2101.02524].

with Nick Baskerville (Sibylla AI) & Diego Grandiol (Oxford):

Appearance of Random Matrix Theory in deep learning, Physica A:
Statistical Mechanics and its Applications 590, 126742 (2022)
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with Nick Baskerville (Sibylla AI), Diego Grandiol (Oxford), Francesco
Mezzadri (Bristol), & Joseph Najnudel (Bristol):

Universal characteristics of deep neural network loss surfaces from random
matrix theory, Journal of Physics A, 55, 494002 (2022) [arXiv:2205.08601]

and with Connall Garrod (Oxford):

Unifying low dimensional observations in deep learning through the Deep
Linear Unconstrained Feature Model [arXiv:2404.06106]

The Persistence of Neural Collapse Despite Low-Rank Bias: An Analytic
Perspective Through Unconstrained Features [arXiv:2410.23169]
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Machine Learning 101

Assume, for example, one is given data D consisting of tuples:

D = {(~x , y)} ⊂ Rd × L.

The ~x are vector data items and the y are the labels or target values
associated with them. In classification, L = {1, 2, . . . ,C} where C is the
number of classes, and in regression L = Rt .
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The data D define a function f̂D from a finite subset of Rd to L. The
task is to find a function

f : Rd → L

such that
f |D ≈ f̂D.

In reality this f is not much use because it does not necessarily
generalise. One is really interested in data drawn from some
distribution Pdata ∈ P

(
Rd × L

)
. We will draw a particular training

set Dtrain from Pdata to construct f and will then want something like

corr
(
f |Dtrain

, f̂Dtrain

)
to be as high as possible for Dtrain ∼ Pdata.
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Motivation and definition

One defines an artificial neural network (hereafter simply a neural network
or NN) as follows

f (~x) = σ
(
W (H)σ

(
W (H−1)σ

(
. . . σ

(
W (1)~x

))))
where the W (i) are weight matrices and σ : R→ R is a non-linear
activation-function and applied element-wise. Common choices for σ are

ReLU(x) ≡ max(0, x), tanh, x 7→ 1

1 + e−x
.

Computation of f is straightforward and can be made efficient by
optimising linear algebra primitives and the implementation of σ.
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Training

The tune-able parameters are typically learned using a loss function:

` (f ,D)

which assigns a real number to a function and a dataset measuring the
performance of the function on the data. An obvious example is:

` (f ,D) =
∑

(~x ,y)∈D

||f (~x)− y ||2

Let W be shorthand for all parameters of a network f . We are then
seeking to solve the following optimisation problem

min
W

`(f ,D)
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(From: Visualizing the Loss Landscape of Neural Nets, by Hao Li, Zheng
Xu, Gavin Taylor, Christoph Studer, & Tom Goldstein)
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(From: https://losslandscape.com)
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Stochastic gradient descent

1 Too many parameters to optimise by brute force.

2 Computing ∂W `(f ,D) is conceptually simple but computationally
expensive for large datasets.

3 Solving ∂W ` = 0 is not tractable in general

4 therefore explore the surface choosing a downward direction randomly
(i.e. stochastically) at each step
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Does stochastic gradient descent work?

1 Stochastic gradient descent is guaranteed to converge to the global
minimum given some strong assumptions about the loss surface
(convexity, Lipschitz etc).

2 In practice, modern neural networks use millions of parameters and
their loss surfaces are very complicated, peppered with local optima.

3 One has no right to expect SGD to do anything other than bounce
around like a ping-pong ball in 107 dimensions before getting stuck in
some unfortunate local optimum.

4 But it works!
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Spin glasses

The Hamiltonian of a spherical p-spin glass is defined as

f (~w) =
N∑

i1,...,ip=1

Xi1...ip

p∏
l=1

wil

where the Xij ...k are i.i.d. standard Gaussians and ~w ∈ SN−1 are the spin
variables.
We will think of N as being large, so f is a random, high-dimensional
function.
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Counting critical points

One can use Kac-Rice formulae to compute for spin glasses the following
complexities asymptotically in N (Fyodorov 2004, Auffinger et al. 2013)

CN,k(u) =
∣∣∣{~w ∈ SN−1 : ∇f (~w) = 0, f (~w) ≤

√
Nu, i(∇2f ) = k

}∣∣∣
CN(u) =

∣∣∣{~w ∈ SN−1 : ∇f (~w) = 0, f (~w) ≤
√
Nu
}∣∣∣

where

i(M) = index(M) = #{negative eigenvalues of M}.

These are random quantities and we focus on their expectation, but note

in passing that it can be shown that ECN(u)
CN(u)

P→ 1.
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Banding

Both CN,k(u) and CN(u) grow exponentially quickly with N.

In high-dimensional random energy landscapes associated with spin
glasses, the asymptotics of CN,k(u) and CN(u) reveal a potentially
favourable banded structure of the low-index saddle points:

saddle points with higher energies look more like maxima and those
with lower energies typically look more like minima

most minima have low energies – close to the lowest
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Back to machine learning

Let f : R→ R be a suitably well-behaved (e.g. differentiable almost
everywhere and with bounded gradient) non-linear activation function
which is taken to applied entry-wise to vectors and matrices.

Consider multi-layer perceptron neural networks of the form

~y(~x) = f (W (H)f (W (H−1)f (. . . f (W (1)~x) . . .)))

where the input data vectors ~x lie in Rd and the weight matrices
{W (`)}H`=1 have any shapes compatible with ~x ∈ Rd and ~y(~x) ∈ Rc .

Ignore biases in the network.

What lies behind the unreasonable efficacy of gradient descent on the
high-dimensional and strongly non-convex loss surfaces of neural network
models?
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Modelling Assumptions

1 Components of the data vectors are i.i.d. standard Gaussians.

2 The neural network can be well approximated by a much sparser
network that achieves very similar accuracy. [A network with N
weights is sparse if it has s unique weight values and s � N.]

3 The unique weights of the sparse network are approximately uniformly
distributed over the graph of weight connections.

4 The unique weights of the sparse neural network lie on a hyper-sphere
of some radius.

5 The activation function is twice-differentiable almost everywhere in R
and can be well approximated as a piece-wise linear function with
finitely many linear pieces.

6 The action of the piece-wise linear approximation to the activation
function on the network graph can be modelled as i.i.d. discrete
random variables independent of the data at each node indicating
which linear piece is active.
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Consider ~y as a random function over a high-dimensional weight-space,
the randomness coming from taking the input data to be random.

Define CH(u) to be the expected number of critical points taking values at
most u, and Ck,H(u) to be the expected number of critical points of index
k taking values at most u.

Under the above assumptions

The neural network reduces to a spin glass!

One obtains expressions for Ck,H and CH as expectations w.r.t. the
Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory
using the Kac-Rice formula. Both grow exponentially with the
number of parameters.

Essentially, the Hessian of the loss function at a random point
behaves like a GOE random matrix plus a deterministic rank-2
perturbation (which is absent when the activation function is ReLU).

One again finds a ‘banded structure’: ∃ E0 > E1 > ... > E∞ such
that, with overwhelming probability, critical points taking (scaled)
values in (−Ek ,−Ek+1) have index at most k + 2.
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RMT calculations

The special case (considered first by Choromanska et al. in 2015), where
the activation function is ReLU, can be handled by standard probabilistic
RMT techniques.

In the general case, when one has a GOE matrix plus a deterministic
rank-2 perturbation, one needs different techniques, e.g. using
supersymmetric integrals as representations of ratios of determinants
(Baskerville et al. in 2020).
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Implications

Local optima of the the neural network loss surface are arranged so that,
above a critical value −

√
NE∞, it is overwhelmingly likely that gradient

descent will encounter high-index optima and so ‘escape’ and descend to
lower loss. Below −

√
NE∞, the low-index optima are arranged in a

‘banded’ structure.

band possible indices

(−
√
NE0,−

√
NE1) 0,1,2

(−
√
NE1,−

√
NE2) 0,1,2,3

(−
√
NE2,−

√
NE3) 0,1,2,3,4

(−
√
NE3,−

√
NE4) 0,1,2,3,4,5
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Piece-wise linear activation functions

it is good enough to study piece-wise linear approximations to sensible
(but general) activation functions.

A calculation shows that the spin glass is then replaced by the related
object

g(~w) =
N∑

i1,...,iH=1

Xi1,...,iH

H∏
k=1

wik︸ ︷︷ ︸
Spin glass, stochastic

+
H∑
`=1

ρ′`

N∑
i`+1,...,iH=1

H∏
k=`+1

wik︸ ︷︷ ︸
Deterministic

Details of the activation function are in ρ′l .
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Kac-Rice formula for complexity

We can compute ECN(u) using a Kac-Rice formula:

ECN(u) =

∫
SN−1

d~x ϕ∇g(~x)(0)︸ ︷︷ ︸
Density of ∇g(~x)

×

E
[
| det∇2g(~x)|1

{
g(~x) ≤

√
Nu
}
| ∇g(~x) = 0

]
︸ ︷︷ ︸

Average over X

1 Integrand is spherically symmetric so pick convenient coordinates
around a the north pole to do calculations.

2 Compute the joint density of (g , ∂ig , ∂jkg).
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Conditional distributions

g and all its derivatives are Gaussian so it suffices to compute the means
and covariances. Covariances can be computed by taking derivatives of

Cov(g(~w), g(~w ′)) = (~wT ~w ′)H =

(
~̂wT ~̂w ′ +

√
1− ||~̂w ||2

√
1− ||~̂w ′||2

)H

∂ig is independent of (g , ∂jkg), so EC `N(u) is equal to∫
SN−1

d ~wϕ∇g(~w)(0)

∫ √Nu

−∞
dxϕg(~w)(x)E

[
| det∇2g(~w) | g(~w) = x

]
.

Hence

∇2` | (` = x) ∼
√

2H(H − 1)(N − 1)GOEN−1 − HxI︸ ︷︷ ︸
GOE

+ S︸︷︷︸
from non-random term

where S is a rank-2 matrix with entries of size o(1).
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Averaging the determinant with supersymmetry

We use the supersymmetric representation:

| det(M − xI + S)| = lim
ε↘0

det(M − xI + S − iε) det(M − xI + S + iε)√
det(M − xI + S − iε)

√
det(M − xI + S + iε)︸ ︷︷ ︸

≡∆ε(M;x ,S)

∆ε(M; x , S) ∝
∫

d~x1d~x2︸ ︷︷ ︸
Commuting

dζ1dζ
†
1dζ2dζ

†
2︸ ︷︷ ︸

Anti-commuting

exp
{
−iTrMA− iTrSA + i(x + iε)~xT1 ~x1 + i(x − iε)~xT2 ~x2

}
exp

{
−i(x + iε)ζ†1ζ1 − i(x − iε)ζ†2ζ2

}
.

where A = ~x1~x
T
1 + ~x2~x

T
2 + ζ1ζ

†
1 + ζ2ζ

†
2.
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Averaging the determinant with supersymmetry

The GOE average can be performed using

EM∼GOEe
−iTrMA = exp

{
− 1

8N
Tr(A + AT )2

}
.

So we have reduced

N2 integrals (GOE average)

↓
2N commuting and 4N anti-commuting integrals.

We then reduce further to a fixed number of integrals amenable to
steepest descents analysis.

The S term gets in the way, so we expand to leading order to cope with it.
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Conditioning on index

We first calculate CN and then use an LDP to get to CN,k .

Need to calculate EM∼GOE

{
e−iTrMA1(i(M − xI ) = k)

}
.

∫ x

dµ(λ1, . . . , λk)

∫
x
dµ(λk+1, . . . , λN)∏

i≤k<j

|λi − λj |
∫

dµHaar (O)e−iTrOΛOTA
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We show that

EM∼GOE

{
e−iTrMA

1(i(M − xI ) = k)
}

≈ EM∼GOE

{
e−iTrMA

}
P(i(M − xI ) = k).

Using the interlacing property of eigenvalues, we have that

e−(k−1)NI1(x)e−
1

2N
TrA2

is

. |EM∼GOE

{
e−iTrMA

1(i(M + S − xI ) ∈ {k − 1, k, k + 1)
}
|

. e−(k+1)NI1(x)e−
1

2N
TrA2

The rest of the calculation can then proceed as for CN .
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Summary

Understanding the highly complex landscape functions/surfaces that arise
in machine learning problems is a key challenge in the area.

The banding structure ‘explains’ the unreasonable efficacy of methods to
find the overall minimum: high saddles look more like maxima, lower
saddles look more like minima, and actual minima band together with
similar heights.
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Is this Emperor clothed?

Some (all?) of the assumptions made are questionable from the ML
perspective and are not compellingly supported by numerical
experiments

In particular, the mean density of states of the Hessian of the loss
function at a random point looks nothing like that of a GOE random
matrix!

Moreover, there is considerable rank-degeneracy, and outliers in the
spectrum play an important role.

This raises the question as to what one should expect of a model.
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On the other hand . . .

Local statistics of the eigenvalues of the Hessian of the loss function
(i.e. correlations on the scale of the mean eigenvalue separation) do match
those of random GOE matrices closely! (Baskerville et al. 2022).
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Towards a realistic random matrix model

a model can be developed based on general principles relating to local
laws and eigenvector ergodicity

removes any need for GOE-type assumptions about the Hessian and
instead leverages universal properties of the eigenvectors and
eigenvalues of random matrices which are expected to hold for real
networks

seems to model both the bulk of the spectrum of the Hessian, and
the outliers

appears to describe experimental data accurately, both qualitatively
and quantitatively.

in particular, when applied to the Deep Linear Unconstrained Feature
Model, this type of model describes well (and in this context explains)
the important phenomenon of neural collapse.
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Neural Collapse: Setting the Scene

A DNN f : Rd → RK is applied to a K -class classification problem.
View f as having two parts:

1 a feature map hθ : Rd → Rp.

2 A last layer linear classifier W (·) + b : Rp → RK , where W ∈ RK×p,
b ∈ RK .

The parameters (θ,W , b) are trained on a dataset ∪Kc=1{xic}ni=1, where
xic ∈ Rd , using some variant of SGD on a loss function L, potentially with
regularisation

minθ,W ,b

{
K∑

c=1

n∑
i=1

L(Whθ(xic) + b, yc) + R(θ,W , b)

}
.
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Early Stages of NC: The Simplex ETF

Define the following quantities:

µc =
1

n

n∑
i=1

h(xic), µG =
1

K

K∑
c=1

µc , µ̃c = µc − µG

NC1: The feature vectors collapse to their class means h(xic)→ µc

NC2: The globally centred feature means converge to a simplex
equiangular tight frame

|µ̃c | − |µ̃c ′ | → 0, ∀c , c ′

µ̃c · µ̃c ′
|µ̃c ||µ̃c ′ |

→ − 1

K − 1
, ∀c 6= c ′
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Late Stages of NC: Self-Duality

NC3: The linear classifier converges to the centred class means up to
rescaling ∥∥∥∥ W T

‖W ‖F
− M

‖M‖F

∥∥∥∥
F

→ 0

Where M = [µ̃1, ..., µ̃K ] ∈ Rp×K is the matrix whose columns are the
centred class means.

NC4: The network classifier simplifies to performing nearest class centre
classification

argmaxc ′(w
T
c ′ h + bc ′)→ argminc ′‖h − µc ′‖2
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Neural Collapse in Action
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NC: A Connection to The Loss Surface

We can also choose to define our feature vectors as the output of an
earlier layer than the penultimate one.

Unconstrained features: treat hic = h(xic) as freely optimised variables.
We are now optimising over the parameters ({hic},W1, ...,WL).

Within this model neural collapse occurs on all of the separated layers.
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NC: A Connection to The Loss Surface

Theorem (Keating and Garrod):
Consider the deep linear UFM. Let the width of the separated layers be
greater than K , and regularisation be suitably small. Let (W ∗

L , ...,W
∗
1 ,H

∗
1 )

be a global optimum, then the rank of Hessl at this optimum is K 2. The
(unnormalised) eigenvectors corresponding to non-zero eigenvalues are
given by

µ
(l+1)
c ⊗ µ(l)

c ′ , for c , c
′ ∈ {1, ...,K}.

In addition all the non-zero eigenvalues are equal, and have value

α(l+1)2‖µ(l+1)
c ‖2

2‖µ
(l)
c ′ ‖

2
2/K , where α(l+1) is a scaling constant expressible

in terms of hyperparameters of the network.
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Low Rank Bias: Is Neural Collapse Really Optimal?

outside of the linear MSE case, neural collapse is not globally optimal in
deep unconstrained feature models. The culprit is a low-rank bias induced
by weight decay.

1

2
Lλ‖HL‖

2/L
S2/L

= min
Wl ,H1:HL=WL−1...W1H1

{
1

2
λ

L−1∑
l=1

‖Wl‖2
F +

1

2
λ‖H1‖2

F

}
,

‖M‖2/L
S2/L

=

rank(M)∑
i=1

s
2
L
i .

Theorem (Keating & Garrod): Consider the linear CE deep UFM, with
d ≥ K . If K ≥ 4, L ≥ 3, or K ≥ 6, L = 2, then no solution with DNC
structure can be a global minimum.
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Neural Collapse Persists Despite Low Rank Bias

Theorem (Keating & Garrod): Consider the linear CE deep UFM with
d ≥ K . When the level of regularization λ > 0 is suitably small, we have
the following:

(i) There exists solutions with DNC structure at two different scales that
are optimal points of the model. One of these scales induces a Hessian
matrix that is positive semi-definite to leading order.

(ii) Let DDNC denote the dimension of the space of network parameters
that produce this DNC structure. Similarly, let DLR denote the dimension
of the space of parameters that produce some other optimal point of rank
r ∈ [2,K − 1). Define the ratio of these dimensions
R(d) = DDNC(d)/DLR(d). This ratio is a monotonic increasing function
on d ≥ K , starting below 1 and tending towards (K − 1)/r > 1 as
d →∞.
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Conclusions

Ideas from random matrix theory and statistical mechanics appear
naturally in the analysis of statistical features of machine learning.

They model experimental data and explain key generic features that
have been observed.

Much remains to be done in refining these connections and in
analysing them asymptotically.
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