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Machine Learning and generative model

Generative modelling is a quite common task when dealing with, for instance, 
Bayesian inference

To infer/learn the parameters θ of some problem, we need to define the likelihood.
 → the likelihood is a generative model



  

Machine Learning and generative model

Some approaches taken by modern Machine Learning is to 
 → use very « expressive » but not related to the data distribution (e.g. neural networks)
 → bypass the need to compute the likelihood (e.g. Generative Adversarial Networks)

Others such as Diffusion Models (see Biroli’s talk) are based upon a different setting.



  

Supervised vs Unsupervised
Machine Learning tasks are often categorized in three categories
● Supervised Learning
● Unsupervised Learning

A dataset of M elements in dimension N, with labels (a class or real value)

“cats”
Example of 

classification

Example 
of 

regression

In both cases, we are looking to find the parameters of some 
function f that manage to predict the correct answer



  

Supervised vs Unsupervised
Machine Learning tasks are often categorized in three categories
● Supervised Learning
● Unsupervised Learning

A dataset of M elements in dimension N

Example of 
generative 

models

Then, in most settings we want to learn a probability distribution matching the 
empirical one

Examples of 
clustering



  

Example of generative modelling
This models is part of what is usually called “Unsupervised learning” or Generative model.
Its “purpose” is to learn a probability distribution based on a dataset.
Examples:

pictures of celebrity

Le
ar

ni
ng

Generating

automatic clustering

Define a mixture model: distribution P
 → learns its parameters

I do not 
exist



  

Non-exhaustive list of generative models

● Energy-based models

● Variational AutoEncoder

● Generative Adversarial Models

● Autoregressive models

● Diffusion models

Nicely related to

 → Ising model and Inverse Ising problem
 → Boltzmann distribution
 → tracktable energy function can be used
 → the Hopfield model



  

Before...
Before I had to excuse myself for dealing with Boltzmann Machine when spealing 
about Machine Learning



  

Brief recall

Hopfield model : associative memory model  it recalls « planted » patterns→
●  introduced by Hopfield in ‘82
● AGS ‘85 replica theory to recall when storing an extensive number of patterns
● Dreaming mechanism to increase the recall regime (Dotsenko Kanter, 

Sompolinski ~90’, later Barra, Agliari et al. ~2019)
● More recently : Modern Hopfield model with exponential capacity

The Restricted Boltzmann Machine : generative model  it can generate new →
complex samples
● Smolensky ‘86, then popularized by Hinton with contrastive divergence ~2000
● It was use to extract features and train deep NN in ~2000  2010→
● Re-discovered by physicists ~2010 : Barra, Agliari, Monasson, …
● Roots for energy-based models



  

The Restricted Boltzmann Machine 
from Hopfield to Hinton (and back?)

Recall on the Hopfield model (will be useful later) – we consider discrete spins si = ± 1 



  

The RBM : from Hopfield to Hinton (and back?)
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Different phases
● P : Paramagnetic q,m = 0
● R : Recall q,m ≠ 0
● SG : Spin Glass q ≠ 0, m = 0
● MR : Metastable Recall



  

From Hopfield to Bipartite architecture

Credit to Barra et al. 2018



  

From Hopfield to Bipartite architecture

Credit to Barra et al. 2018

We have a bipartite system between
 → si a layer of discrete binary spins
 → τμ a layer of continuous gaussian variables

linear response from the hidden layer



  

From Hopfield to Bipartite architecture

What if we change the nature of the hidden nodes ? τa = ±1 

Distribution on the spins :

With non-linear response (not Gaussian), we can fit higher order statistics



  

The Restricted Boltzmann Machine
Discrete si,τa = ±1 or {0,1} 
Weights : {w,a,b} 

The training is usually done by maximizing the likelihood

Curse of Monte Carlo



  

The Restricted Boltzmann Machine

Challenges :
 
➢ Practical training aspects : Monte Carlo problem

➢ Learning dynamics

➢ Landscape of the learned Machine



  

Mean-Field approach

In the small-weight regime – typically at the beginning of the learning -, we can try 
to describe the probability distribution on a set of uncoupled variables.

 → typically naive-MF, MF approximation etc

Singular Values Eqs
(in the linear regime)

The paramagnetic fixed point is 
unstable for λmax = 1 



  

Mean-Field approach
In the linear regime, the properties of the RBM is dominated by the spectral 
properties or W 

Singular Values Eqs
(in the linear regime)

Spectrum

noise signals

Consider the low-rank model matrix

r,u,u: quenched average
wα are fixed



  

Mean-Field approach

Order parameters

cr
iti

ca
l li

ne

Hopfield Recall-like

Learning trajectory

Initial state : small weight (para)
Then, the learning dynamics drives 
the system in the recall phase



  

Linear learning dynamics

We can confirm this picture first by computing the gradient in the linear regime, in 
the SVD spa ce of the W matrix



  

Empirical evidence on MNIST
Modes of MNIST

Modes of W after few iterations



  

Theory of learning dynamics 
with a simplified model of data

We can solve the gradient equation in a simplified case
 → we consider one Gaussian hidden node
 → the dataset is generated by a Curie Weiss model in the low temperature regime

The gradient for the weight matrix is given by

ξ a preferred direction



  

Theory of learning dynamics 
with a simplified model of data

The gradient for the weight matrix is given by

The correlation of the dataset is given by

The correlation of the RBM is given by



  

Theory of learning dynamics 
with a simplified model of data

The correlation of the dataset is given by

The correlation of the RBM is given by

for small W

We can project the equations on



  

Theory of learning dynamics 
with a simplified model of data

Exponential growth in the direction of ξ 

As the weights grow, we can for instance monitor the suceptibility of the model

It diverges as 

 → signal of a phase transition, the magnetization departs from zero, the critical 
exponent associated to the sucesptibility is γ = 1 



  

Theory of learning dynamics 
with a simplified model of data
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At late learning time, we can show that
 → the orthogonal directions to ξ are 

suppressed
 → wi = w ξi and w = √β 



  

Theory of learning dynamics 
with a simplified model of data

We can also analyze the dynamics 
in the case of a binary-binary RBM
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Theory of learning dynamics 
with a simplified model of data

It is actually possible to study a problem with two correlated patterns



  

Theory of learning dynamics 
with a simplified model of data

Phase diagram of such model :

At T1 = 1+κ , magnetization along the direction ξ1 

At T2 = 1-κ , m1 ≠ m2  

Tamarit et al. 1990



  

Theory of learning dynamics 
with a simplified model of data

We can decompose the correlation function of the dataset upon the SVD

where



  

Theory of learning dynamics 
with a simplified model of data

We can control the growth 
into each direction :
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Theory of learning dynamics 
with a simplified model of data

We can control the growth 
into each direction :
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Numerical evidence
Are those transitions observed in this simple regime meanningful ?
We the behavior of several training on various dataset :

 → MNIST
 → genetic dataset
 → CelebA

MNIST CelebA The 1000 Genomes 
Project Consortium

28x28 pixels
10.000 samples

128x128 pixels
30.000 samples

805 bases
4500 samples



  

Numerical evidence

What do we want to observe :

 → phase transition as the eigenvalues pass a certain threshold

 → critical exponent

 → relaxation time

 → hysteresis ?                    … first order transition in field

Here, we will use binary {0,1} variables, for which the phase transition threshold is λ = 4 

(variance of the 
order parameter)



  

Numerical evidence

A B C

D

DNA dataset

Samples  →
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Numerical evidenceCelebA dataset

A BA

C D

E



  

How is that useful for ?

● Be carefull to the relaxation time (now you know) !

● Monitor the learning of the model

● Do these phenomena happen in other generative models (e.g. Diffusion) ?

● You might want to use the « cascade of phase transition » to « understand » the model



  

Hierarchical carving
Now that we know that the landscape is shaped by a sequence of phase transitions, 
we can try to use them to explore what the RBM is learning.

Lorenzo
Rosset

Decelle, A., Rosset, L., & 
Seoane, B. PRE (2023)

We follow the maximum of the prob. Dist. using the Mean-Field equations



  

Save machines

More and more structure 
are added to the model

● Approximate the Free energy 
(Plefka’82,Plefka, Georges & Yedidia’91)

● Identify the nearest minima (TAP)

● Use the minima for hierarchical 
clustering

* Gabrié et al. (2015), Tramel et al. (2018), Maillard et al. (2019)
* Decelle, Rosset, Seoane (2023)



  

Hierarchical carving
We can approximate the free energy using the Plefka expansion (small coupling)

Gabrié et al, Neurips 2015

Self-consistent eqs.



  

Example on the genetic dataset

● 5008 sequences of mutated 
or not (0/1) genes (samples)

● 805 genes (variables)



  

Tree reconstruction of the minima

A) B)

Data

C)

Learning Trajectory

A) B)

Data

C)

Building a hierarchical tree from it !



  

On MNIST

Toward the center: older and older machines
The leafs: dataset



  

On MNIST



  

On DNA dataset
Continental Area

European

South Asian

East Asian

American

African

Population

Finnish in Finland

British From England and Scotland, UK

Utah residents with European ancestry

Iberian populations in Spain

Toscani in Italia

Han Chinese South, China

Chinese Dai - Xishuangbanna, China

Han Chinese in Beijing, China

Japanese in Tokyo, Japan

Kinh in Ho Chi Minh City, Vietnam

Gujarati Indians in Houston, Texas, USA

Sri Lankan Tamil in the UK

Punjabi in Lahore, Pakistan

Indian Telugu in the U.K.

Bengali in Bangladesh

Peruvian in Lima, Peru

Mexican Ancestry in Los Angeles, California, USA

Colombian in Medellin, Colombia

Puerto Rican in Puerto Rico

African Ancestry in Southwest USA

African Caribbean in Barbados

Gambian in Western Division, The Gambia – Mandinka

Yoruba in Ibadan, Nigeria

Luhya in Webuye, Kenya

Esan in Nigeria

Mende in Sierra Leone



  

Conclusion

● RBMs undergoe phase transition at the beginning of the learning

● We can associate mean-field critical exponents to this transition

● Concrete effect : the relaxation time diverges
 → strong constraints on the Monte Carlo estimation

● Possible application : Hierarchical shattering of the landscape as the learning goes
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