An introduction to optimization for deep learning

EDOUARD PAUWELS

CIMI Thematic school: Optimization & algorithms for high-dimensional machine
learning and inference (October 2024)

I Toulouse 'm'
g School of CI I ‘F !g'\‘esl\}-ﬂzrtlj-lEMATIQUEs

) o TOULOUSE
Economics TOULOUSE

1/96

acknowledgements

o Deep learning = machine learning with a specific class of models
o Deep network training reduces to an optimization problem
o Two important structural specificities: large sum, compositional model.

o Specific context, with its own goals and difficulties, dedicated algorithms.

Many collaborators: Bolte, Boustany, Castera, Févotte, Le, Le, Glaudin, Rios-Zertuche,
Silvetti, Traoré, Vaiter ...

2/96

Why do we have Al/ML now?

1st 2nd
Beginnings Neural Neural %2"
Winter Winter
Thresholded | Multilayer Deep
iFogic UnitfaSr<erion Backprop. Nets
1948 1957 1960 1982 | 1986 1080 1007 | | Jroes 2008 2012
1940 1950 1960 2000

» <
S.McCuloch-W.Pitts R.Rosenblatt = \Widrow

et M. Minsky - S. Papert [P Werbos . Rumelhart

iU e N gl [
o i
SR i ol i |
% o ®o o
PN/ oo Vsl = & el
AAYARNE ol £ .1 = & &
)

@ Research

o Computer hardware, large amount of data, open IMAGENET
source softwares.
o A culture of competition, benchmarking, sharing

1F TensorFlow
(Donoho)

What is behind Al practically?

3/96

o The two pillars

© Algorithmic differentiation

© Stochastic gradient algorithms

0 Deep learning optimizers

© Additional variations on training

@ Favorable landscapes: gradient dominated functions
@ Nonsmoothness

© The ODE method

© Further questions

@ Conclusion

4/96

o The two pillars

5/96

Basic presentation: supervised learning, reduction to an

optimization problem

Predict y from x with n training examples:

(@i, y:) 1y, T €RY, y; €R.
F:R? x R 5 R.

Parameterized model, p

Solve F(x) ~y

7# model parameters:

n
. 2 1
min J@O) = = E F(0,x:) — yi) = - E Ji(0
OcRP n <
i=1
le+13
le+10
z 41 X
w) o
]]
€ € &
S 5 o £ s o
- -3
5 3
] ° oy g
= le+9 =] = -
o [u] m] D,’D o letf
N &7 N %
" i w
- o 0 o - 1}‘
1] 0, o0 o "
0 le+7 > 0 le+s o”-c,
I o I ‘h@r o
s p I oo Go
T Bg o o oo T 1
o O 1 o o I+] -
£ le+s L £ let2 4
£ .o A o £ e
o - =] [.
F 1 o =] &
le+3] o =] le+0
1992 1998 2004 2010 2016 2022 1955 1970 1985 2000 2015
Publication date CC BY Epoch Publication date CC BY Epoch

Villalobos and Ho (2022). Trends in Training Dataset Sizes. Online

6/96

Basic presentation: supervised learning, reduction to an optimization problem

Predict y from x with n training examples: (@i, 9:)71, © € R, y; €R.
Parameterized model, p # model parameters: F:RP x R - R.

Solve F(x) ~y

. — 2 _ vy
min - J(6) = ,Z 0,2:) — u:) = n;Jl(e)

Parameter count of ML systems through time
s Domain
1.0e+13 O Games
[Language

100412 P 5 Von
10611 op

1.0e+10
1.0e+9
1.0e+8
1.0e+7

1.00+6

Parameters

1.0e+5
1.0e+4
1.0e+3

1.0e+2

1.0e+1

1.0e+0
1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018

Publication date

Sevilla et.al. (2021). Parameter Counts in Machine Learning. Online.

6/96

Basic presentation: supervised learning, reduction to an optimization problem

Predict y from x with n training examples: (@i, 9:)71, © € R, y; €R.
Parameterized model, p # model parameters: F:RP x R - R.

Solve F(x) ~y

. — 2 _ vy
min - J(6) = ,Z 0,2:) — u:) = n;Jl(e)

Training compute (FLOPs) of milestone Machine Learning systems over time
nezt

1e+24

1e+22 £

1420

& g
tes18 8
o
3 &
T o416
° o
1e+14
2 o o 916
g Te+12 SIS 4
: ae 0
2 ter10 I
€ o
g fews T @ o 4
5 i u s
1046 o =" 2 w
-- o E %
tova | ° g 3
-l e
F; 8
o2 L
1952 1960 1968 1976 1984 1902 2000 2008 2016

Publication date

Sevilla et.al. (2022). Compute trends across three eras of machine learning. IEEE IJCNN.

6/96

Basic presentation: supervised learning, reduction to an optimization problem

Predict y from x with n training examples: (@i, 9:)71, © € R, y; €R.
Parameterized model, p # model parameters: F:RP x R - R.

Solve F(x) ~y

. — 2 _ vy
min - J(6) = ,Z 0,2:) — u:) = n;Jl(a)

Estimated training compute cost in USD: using price-performance trend
s 509% Clin egression mean —— Regression mean (051 COMsyew) & Data

Training cost in USD (log scale, inflation-adjusted)

A D 9 b P 9 o P S @ P P

Publication date of ML system

Ben Cottier (2023). Trends in the dollar training cost of machine learning systems. Online.

6/96

Extensions: self supervision, multiple models

Self supervision: n unlabeled training examples: (x:)Py, z; € RY

“Create” an instrumental learning task.
o Predict the next word in a sentence (large language models).
@ Remove noise from a noisy image (Plug and play, diffusion models).
@ Recognize similar images, rotation, translation, contrast, zoom (Vision transformers).

“Foundational models”, “generative Al", structured data.

Multiple intracting networks: for example
o Distillation: use the output of a model as input for another one.
o Generative adversarial networks.
o Mixture of experts.

o Multimodality: e.g. text + image.

Mathematical formulation: based on minimization, optimality.

7/96

First pillar: optimization

Machine
learning

D

8/96

O PyTorch

1F TensorFlow

o Adadelta (> 2010)
o Adagrad (> 2010)
o Adam (> 2010)

e AdamW (> 2010)
@ Adamax (> 2010)
Ftrl (> 2010)
Nadam (> 2010)
RMSprop (> 2010)
SGD (1951)

Adadelta (> 2010)
Adagrad (> 2010)
Adam (> 2010)
AdamW (> 2010)
SparseAdam (> 2010)
Adamax (> 2010)
Averaged SGD (90’s)
LBFGS (70’s)
RMSprop (> 2010)
Rprop, signs (90's)
SGD (1951)

9/96

Second pillar: automatized calculs

. _1 _ —_— 2
min J(9) : - Z Ji(0) Derivative of J;7

Probabilties

Nx

AJ0 & Nom
Feed
Forward

Positional ®_é Positional
Encoding Encoding
Tnout Output
Embedding Embedding
Inputs Outputs

(shifted right)

Vaswani, Ashish, et. al. Attention is all you need. (2017). (~ 70000 citations)

Derivatives in Al/ML:
@ Numbers are extremely large.

o Cannot compute by hand.
10/96

Backpropagation, autodiff: differentiating programs

from jax import *

def fun(x):
return x * x

gradFun = jax.grad(fun)
gradFun(3.14)

DeviceArray(6.28, dtype=float32, weak_type=True)

11/96

Machine learning and optimization

: 1 ¢
pp R0

o Neural network training: optimization.
o Large dimension (p): gradient algorithms.
o Large sum (n): Stochastic subsampling approximation.

o Compositional structure: algorithmic differentiation.

Profusion of numerical tools: democratized the usage of these models. Goes beyond
neural nets (differentiable programming).

1 TensorFlow O PyTorch ﬁ

History: algorithmic differentiation + subsampling for neural network training since at
least the 80s. Explosion of scales ~ 2010s.

12/96

Neural network recipe

First step: define the problem and solution method
o Choose a dataset.
o Define a parametric model.
o Define the modalities of training.

Described by a numerical program.

Train: transparent and automatic execution
o Compile training modalities.
o Optimize using available numerical solvers.

o Automatized calculus of derivatives.

Tensorflow, Pytorch, Jax:
~ transparent, efficient and flexible implementation of this recipe.

13/96

© Algorithmic differentiation

14/96

Differentiating programs: the two modes of automatic differentiation

o f:RP — R™ differentiable expressed as a “program” (~ composition).
g; “elementary”, appropriate size, differentiable.

f=grLogrL—1...0q1

o autodiff : efficient algorithm implementing the chain rule.

‘Jacf(wo) = Jacgr(zr—1) X Jacgr—1(zr—2) X ... X Jac gi(zo) ‘

Straight line program Forward differentiation: F; =g;0...0¢91, FL = f,
Input: zo € R?.
1. fork=1,2,...,L do Fip1 = giv10 L%
2 ok = gi(Th-1) Backward differentiation: H; = gro...og;, Hi = f,
3: end for
Return: z; € R™. Hj = Hj410g,

JaCF—L'+1(CC()) = Jacgi.,_l(a:i) X Jac Fl(mo)
Jac Hj(xj_1) = Jach+1(:rj) X Jacgj(mj_l)

Time and space complexity
15/96

Forward derivative computation

93092° g1

Memory 1 | xo
Memory 2

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

93092° g1

Memory 1 | xo
Memory 2 | Jac gi(xo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

93092° g1

Memory 1 | zg z1 = g1(o)
Memory 2 | Jac gi(xo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

93092° g1

Memory 1 | =1 = g1(0)
Memory 2 | Jac gi(xo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

93092° g1

Memory 1 | =1 = g1(0)
Memory 2 | Jac gi(xo) Jac ga2(z1) % Jac g1 (xo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

93092° g1

Memory 1 | =1 = g1(0)
Memory 2 | Jac gz o gi(xo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

g3 ©g290 g1

Memory 1 | 1 = g1(z0) x3 = ga(r1)
Memory 2 | Jac g2 o g1(z0)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

g3 ©g290 g1

Memory 1 | @2 = g2 0 g1(z0)
Memory 2 | Jac gz o gi(xo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

g3 ©g290 g1

Memory 1 | @2 = g2 0 g1(z0)
Memory 2 | Jac g2 o g1(z0) Jac gs(z2) x Jac g2 o g1(zo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

g3 ©g290 g1

Memory 1 | @2 = g2 0 g1(z0)
Memory 2 | Jac gz o g2 o g1(zo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

93092° g1

Memory 1 | 2 = g2 0 g1(z0) r3 = g3(x2)
Memory 2 | Jacgs o g2 o g1(xo)

Take away: memory footprint independent of the length of the composition

16/96

Forward derivative computation

g3 ©g290 g1

Memory 1 | 3 = g3 0 g2 0 g1(z0)
Memory 2 | Jacgs o g2 0 g1(x0)

Take away: memory footprint independent of the length of the composition

16/96

Backward derivative computation

93092° g1

Memory 1 o
Memory 2

Take away: memory footprint depends on the length of the composition

17/96

Backward derivative computation

93092° g1

Memory 1 o z1 = g1(wo)
Memory 2

Take away: memory footprint depends on the length of the composition

17/96

Backward derivative computation

93092° g1

Memory 1 Zo z1 = g1(xo) x2 = g2(x1)
Memory 2

Take away: memory footprint depends on the length of the composition

17/96

Backward derivative computation

93092° g1

Memory 1 Zo 1 =g1(wo) | 2 =g2(x1) | w3 = g3(x2)
Memory 2

Take away: memory footprint depends on the length of the composition

17/96

Backward derivative computation

93092° g1

Memory 1 o z1 = g1(xo) z2 = g2(z1) | 3 = g3(z2)
Memory 2 Jac g3(z2)

Take away: memory footprint depends on the length of the composition

17/96

Backward derivative computation

93092° g1

Memory 1 o x1 = g1(wo) r3 = g3(x2)
Memory 2 Jac g3(z2)

Take away: memory footprint depends on the length of the composition

17/96

Backward derivative computation

g3 ©g29 g1
Memory 1 o x1 = g1(wo) r3 = g3(x2)
Memory 2 Jacgs o ga(w1) | Jacgs(z2)

Take away: memory footprint depends on the length of the composition

17/96

Backward derivative computation

93092° g1

Memory 1 o T3 = gs(z2)
Memory 2 Jac gz o ga(z1)

Take away: memory footprint depends on the length of the composition

17/96

Backward derivative computation

93092° g1

Memory 1 o T3 = gs(z2)
Memory 2 | Jacgs o g2 0 g1(z0) | Jacgs o ga(x1)

Take away: memory footprint depends on the length of the composition

17/96

Time complexity

Intuition: g: R? — RP, “elementary”.
Similar computational cost: g(x), Jac g(x)v, Jac g(z)? v for z,v € RP.

Tp

!
f(z1) v1 f'(z1)v1
o V2 v2
—
Jac g(x)
Tp Up Up
122 v1 T2V1 + 102
T2 V2 v2
—
Jac g(x)
Tp Up Up

Basic time complexity estimates:
Function evaluation ~ Jacobian vector product (JVP) ~ Vector Jacobian product (VJP).
Jacobian Jacobians product ~ px Function evaluation.

!
u1 f(x1)ur
u2 u2
. —
. Jac g(x)T
Up Up
u1 T2Ul
u2 Tiul + u2
—
Jac g(z)T
Up Up

18/96

Forward versus backward

f : R? — R differentiable expressed ~ composition, ¢: R? — R.

f=LogrLogrL-1...001
Chain rule: Jac f(x0) = V f(wo)T

Vf(xo)T = Jacl(zr)VL(2r)T x Jacgr(xr—1) x Jacgr—1(zr—2) X ... x Jac g1 (o)

Forward AD: (VET X (Jach X (Jach_1 X (...(Jang x Jacgi).))))
Backward AD: ((((VET X Jach) X Jach_l) X ...Jacgg) X Jacgl)

Straight line program

Input: zo € R?, Backward and forward algorithmic differentiation (AD)
gr: RY — RE. fwd | bwd
prog. w W
1: fork=1,2,...,Ld0 sz eval AD AD
2z = gr(Tr-1) Computation time | L | O(Lp) | O(L)
3: end for Memory footprint P O(p®) | O(Lp)

Return: {(z.) € R.

Remark: If f: R — RP, or for a single directional derivative,

reversed situation.
19/96

Time complexity of derivative computation:

Baur-Strassen Theorem:

| Computing cost (f, Vf) < 5 Computing cost (f) | for rational functions,

instead of the naive Computing cost (f, Vf) < p Computing cost (f)

Computing cost: arithmetic circuit complexity ~ minimal umber of operations

Proof: backward algorithmic differentiation.

20/96

Time complexity of derivative computation:

Baur-Strassen Theorem:
| Computing cost (f, Vf) < 5 Computing cost (f) |

Example: (a,b,c,d, e, f) — abedef. Multiply p numbers.

21/96

Time complexity of derivative computation:

Baur-Strassen Theorem:
| Computing cost (f, Vf) < 5 Computing cost (f) |

Example: (a,b,c,d, e, f) — abedef. Multiply p numbers.

ab abc abed abede abedef p— 1 multiplications

21/96

Time complexity of derivative computation:

Baur-Strassen Theorem:
| Computing cost (f, Vf) < 5 Computing cost (f) |

Example: (a,b,c,d, e, f) — abedef. Multiply p numbers.

ab abc abed abede abedef p— 1 multiplications
bedef cdef def ef p — 2 multiplications

21/96

Time complexity of derivative computation:

Baur-Strassen Theorem:
| Computing cost (f, Vf) < 5 Computing cost (f) |

Example: (a,b,c,d, e, f) — abedef. Multiply p numbers.

ab abc abed abede abedef p— 1 multiplications
bedef cdef def ef p — 2 multiplications
acdef abdef abcef abedf — p— 2 multiplications

21/96

Time complexity of derivative computation:

Baur-Strassen Theorem:
| Computing cost (f, Vf) < 5 Computing cost (f) |

Example: (a,b,c,d, e, f) — abedef. Multiply p numbers.

ab abc abed abede abedef p— 1 multiplications
bedef cdef def ef p — 2 multiplications
acdef abdef abcef abedf — p— 2 multiplications

21/96

Differentiable programming and supervised learning

Differentiable programming (DP) framework:

numerical program, fixed library of basic operations

— automatized Jacobians chaining

gr ©...0 g1 ~ numerical program — Jacgr o...o g1 ~ numerical program.

Specification for elementary g;:
function evaluation + vector-Jacobian / Jacobian-vector product.

from jax import *

def fun(x):
return x * x

gradFun = jax.grad(fun)
gradFun(3.14)

DeviceArray(6.28, dtype=float32, weak_type=True)

Supervised learning: 6 model parameters, (x;,y;) input-output training data,

gi,--.,9gr elementary computational operations, from a fixed library
min 23— s (g oo 0)-) D)
0 n

22/96

Algorithmic differentiation: takeways

implements
J:RP - R

P (program)

diff autodiff

VJ:RP — RP < D (program)
implements

@ backprop is backward algorithmic differentiation.
@ Automatized implementation of the chain rule of Jacobians.

@ What one can program, one can differentiate.

o Complexity of backprop / complexity of program evaluation:
> Time: bounded
> Memory: linear in program size

@ Forward mode is favorable in some cases.

o Custom elementary g: needs evaluation + VJP / JVP.

History: Precursors (50s/60s), many independant occurences (70s / 80s),

tightly connected to neural networks since the 80s.
23/96

© Stochastic gradient algorithms

24/96

Subsampling and redundancy

. 1
min - J(0) = gZJi(G)

Main idea: Present exemples online, in sequence, not all at once.
At the heart of neural network training litterature since its very beginning.

® Data 175 oot
Individual loss ° ‘ ad.a ool
44 Individual loss 150 ndividual loss

Individual loss
125 Individual loss

Individual loss

~10 ~05 0.0 05 10 10 s 0 5 10
Typical algorithm: Or+1 = 0 — arVJr, (01).
o oy > 0.

o I €{1,...,n}.

25/96

Subsampling gradient method: example

: 1
min JO) = - ; Ji(6)
Typical algorithm: Or+1 = Ok — V1, (Or).

o ap > 0.
o I € {1,...,n}, independent, identically distributed, uniform.

104 4 "
mmmm Gradient descent
—— SGD: alpha 2
10° 5 —— SGD: alpha 0.9
—— SGD: alpha 0.3
5, 1074 —— SGD: alpha 0.1
= —— SGD: alpha 0.03
_g 10! 4 — : alpha 0.01
§ -
3 1004
107t
1072

0 50 100 150 200 250 300
Number of gradients
26 /96

Subsampling gradient method: towards an analysis

. 1
min JO) = EZJ’(G)

Vocabullary:

o Epoch: compute n gradients among (.J;)i—;, independant of how chosen.
o Examples:

> Gradient algorithm: 641 = 0 — arVJ(0k), one step = one epoch.
» Stochastic gradient algorithm: 651 = 6 — akVJIk(Gk), n steps = one epoch.

o In practice:

> (Ix)ken are not i.i.d, sampling without replacement, random permutation.
> Average gradient over a few terms, minibatch.

Nonconvexity:
@ (Matrix) multiplication is nonconvex
o Composition does not preserve convexity

@ J cannot be assumed to be convex.

27/96

Subsampling gradient method: theoretical argument

: 1
min JO) = - ; Ji(6)
Typical algorithm: Or+1 = Ok — V1, (Or).

® ap >0, I, € {1,...,n}, independent, identically distributed, uniform.

Does it optimize?

10% + .
mmmm Gradient descent
—— SGD: alpha 2
103 4 —— SGD: alpha 0.9
—— SGD: alpha 0.3
5, 1074 —— SGD: alpha 0.1
-T‘—; —— SGD: alpha 0.03
_g 10! 4 — : alpha 0.01
Q —
o
ERRT
a 1004
1071
1072

0 50 100 150 200 250 300
Number of gradients
28 /96

Taylor Lagrange and descent Lemma

Lemma: Assume that f: R? — R has, L Lipschitz gradient, then for any z,y € R%,

70 ~ (&)~ (VF(@)y—)| < 2y~ al]?

Setting v(t) =« + t(y — x)
lf(y) = f(z) = (Vf(z),y —z)|

1

- | [G0 - @@,y -oal

- | [wr6a50) - @@ - 0 dt\

- | [@+t - Vi@ -0 dt\

IN

/0 IV + tly — 2)) = V@) - |y — zlldt

! 2 L 2
< [tLily —zllfdt = Slly — |
0

29/96

Stochastic “descent”

J = %Z?:l Ji, each J; has L Lipschitz gradient, fix an input 6.

For any ¢ € {1,...,n}, for I uniform on {1,...,n}, E;[VJ;(0)] = VJ(0),

J(0—a¥.Ji(6)) < J(6) — 0 (VI(6), VI(6) + LV 5(0)|?

E1[J(0 —aVJi(0)] < J(0) — allVJI (@) + Li]EI[IIVJI(0)|I°]

=J(0) — o VIO)* + = LO‘ (IVTO))1* + EL[IV T2 (0) — VI (0)]*])

— 50 - (1— —) VIO + LB 1950 - IO)1)
< 10) - 2IVIOI + 2202 0)

where o < 1/L, 02(0) = Ef[||VJ1(0) — VJ(0)]]?]

30/96

From stochastic “descent” to convergence

JO) =1 ©_1 Ji(8), each J; has L Lipschitz gradient, o < 1/L, fix an input 6.

n

I uniform on {1,...,n}, o*(0) = E;[||VJ(0) — VJI(O)|*]

EAJ(0 — aVJ1(0))] < J0) ~ SVIOI + Lo0™(0)

o In expectation. 6 is fixed (not random).

o Relative magnitude of |VJ(#)||* and o*(6).

@ « balance two antagonist objectives

31/96

From stochastic “descent” to convergence

J(0) =137 | Ji(0), each J; has L Lipschitz gradient.

First analysis: Suppose o(6) < o and J(0) > J*, for all 6 € R? .
(Ik:)k:EN iid unif., 0<a< 1/L, 0o € RP, Ok+1 = 0r — aVJg, (Gk)

Setforall k> 1, Ex =Ep,,...1, ;.

. 2 2J(60) — J* 2
lo < ———
120k Ex [IV7(6)I] < (k+1)a gt
If k41> EUEY=ID) and o = 2,/ Z8002T; < L the Lhs. is 2,/ LI
Ik independent of Ip, ..., Ix_1. 0 random, independent of i, [k+1,.. ..

2

L
Er[J (0 — aV 1, (60)] < J(00) = 519760 + 750"

Eip [J(0x1)] < Ex[J(00)] = SEx [IVI(00)]%] + LTQQUZ

k
3 min B (1976017 < 5575 ;IE [IV.7(6:)]12]

S J(eo) —Ek+1[.](0k+1)] + LOt20'2 S J(eo) — J* + La202
k+1 2 k+1 2

32/96

From stochastic “descent” to convergence

J(0) =137 | Ji(0), each J; has L Lipschitz gradient.

“Convergence in quadratic mean”: Suppose o(6) < o and J(0) > J*, for all 6 € R” .
(Ik)keN iid unif., 0<a< I/L, 0o € RP, Ok+1 = 0 — aVJr, (Gk)

For k € N large enough, and a > 0 small enough, SGD finds approximate critical points,
in quadratic mean.

« 2 I/Oé2 2
En [J (0 = aVIr (0))] < J(O) = SIVIOR)]" + =0

Almost sure convergence: Robbins-Monro (1951), Robbins-Sigmund (1971).

(k) ken positive:

D ken Xk = 00, Yopon @k < 00
Or+1 = 0 — axVJ, (Hk)

Suppose: (0)ken is bounded almost surely.

Then almost surely all accumulation points of (0x)ken satisfy V.J(6x) = 0.

dist (0, critJ) — 0.

33/96

Subsampling gradient method: theoretical argument

: 1
min JO) = - ; Ji(6)
Typical algorithm: Or+1 = Ok — V1, (Or).

® ap >0, I, € {1,...,n}, independent, identically distributed, uniform.

Does it optimize? Yes, in various senses. Step sizes and variance are crucial.

10% + :
mmmm Gradient descent
—— SGD: alpha 2
10° 4 —— SGD: alpha 0.9
—— SGD: alpha 0.3
5, 1074 —— SGD: alpha 0.1
-T‘—; —— SGD: alpha 0.03
£ 10! —— SGD: alpha 0.01
§ Al : alpha 1/k
Q
3 10°4
10—1 4
1072 4

0 50 100 150 200 250 300
Number of gradients

34/96

More on step-sizes: schedulers

Vocabulary: learning rate ~ step-size.

1.0 < —— Step Decay
\\) \ —— Exponential Decay
\ 1\ —— Cosine Annealing
0.8 ;
AVAR| —— Polynomial Decay
Q \ /r \ A\ —— Exp. Decay + warmup -
g 0.6 / \\ ——— Staircase Exp. Decay
=2 \ \
'g I l \ AN \
€ o4 /N \ \
o / N N\ \
| / N\ \ y
0.2 / Y !
/
/ \ N o
0.0 B .
0 20 40 60 80 100
Epoch

35/96

More on variance: mini-batch, variance reduction

. 1
min JO) = EZJ’(H)

Typical algorithm: averaging preserves the mean and reduces the variance

Ok+1 = O — .V Jr, (0k)

b
1
Ok+1 = O — ary ZVJI,M (6r)

j=1

Variance reduction: mechanisms to reduce the variance, possibly incuring bias.

36/96

Stochastic gradient algorithms, takeway

@ Subsampling helps to treat large (infinite) datasets.
o Convergence arguments for small step sizes, find critical points.
@ Local minima, saddle point etc ...

@ Theory predicts behavior for large k, practical interest for small k.

37/9

0 Deep learning optimizers

38/96

O PyTorch

1F TensorFlow

o Adadelta (> 2010)
o Adagrad (> 2010)
o Adam (> 2010)

o Adamax (> 2010)
Ftrl (> 2010)
Nadam (> 2010)
RMSprop (> 2010)
SGD (1951)

Adadelta (> 2010)
Adagrad (> 2010)
Adam (> 2010)
AdamW (> 2010)
SparseAdam (> 2010)
Adamax (> 2010)
Averaged SGD (90’s)
LBFGS (70's)
RMSprop (> 2010)
Rprop, signs (90's)
SGD (1951)

Plug in subsampled estimates: first description without noise.

39/96

“Acceleration”: momentum, Polyak’s heavy ball, Nesterov's method (70's, 80's)

Gradient update: Gradient with momentum:
9k+1 =0, — OzVJ(@k) 9k+1 =0 — aVJ(Gk) + ﬂ(ek — ak—l)
9k+1a— O FVI(0:) =0 Alternatively: Vg1 = pvg + vVJ(0k)

Or+1 = Ok — Vg1
Continuous time (Antipin, Alvarez, Haraux, Jendoubi, Attouch, Su ...): (o — 0)

z(t) + Vf(z(t) =0 Z(t) + 0(t)x(t) + Vf(z(t) =0

2

1 speed

005
010
015

Algo
Nesterov

- Heavy ball

2 1 o 1 H
x

Discounted average: 01 = 0 — ,LLZ?:() vETIN (6;).

40/96

The “ada” family, automatic adaptive stepsize

Diagonal scaling matrix: D;, € RP*?, diagonal with positive entries, (preconditioner)

Ors1 = Ok — DiV.J(0r)

o Dy, estimated online based on gradients (and hyperparameters).
o OId idea in optimization (quasi-newton, preconditioning ...).

@ In machine learning

> One preconditioner = one ada algorithm
> Very popular (light hyperparameters tuning).
> Mostly built by deep learning people for deep learning people.

41/96

“Adaptive” step size

Diagonal preconditioning: 0y1 = 0y — DV J(0x)
i-th entry of Dy:
o Adagrad (Duchi et. al. 2011): gradient coordinates
Y

e+ SilvI @)

o RMSprop (Hinton et. al. 2012): discounted average 8 € (0,1)
i

Vet (1= B) S, 81V I(0)2

o Rprop (90’s): coordinatewise gradient sign

Y
VI (0r)]:l

Remarks:
o If J(0) = 3°F_, w;f7, then the algorithm depends lightly on (w;)?_, (conditioning).
o Adagrad: step size morally scales like 1/\/E
o Adaptive to different scenarios: smooth, nonsmooth, noise ... (Levy et. al. 2018).
@ RMSprop: step size does not vanish.
42/96

Stochastic variants: plug in subsampled estimates

min - J(O) = ; Ji(6)
Plug in subsampled estimate:
replace V.J(0) mutatis mutandis , by the stochastic estimate (11, ..., I, iid)
. 1
VIO =5 > VL, (0) b<n
Jj=1

o Adaptive methods: stochastic denominator.

@ Momentum: variance reduction effect.

43/96

Adam (Kingma et. al. 2014) soon 2 x 10° citations ~ most cited paper of all times

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square gr < gr. Good default settings for the tested machine learning problems are o = 0.001,
By =09, By = 0.999 and ¢ = 10~%. All operations on vectors are element-wise. With 3} and 3}
we denote) and 5 to the power .
Require: o: Stepsize
Require: /3, 5 € [0, 1): Exponential decay rates for the moment estimates
Require: f(f): Stochastic objective function with parameters
Require: 6;: Initial parameter vector
my + 0 (Initialize 1% moment vector)
vy + 0 (Initialize 2* moment vector)
t « 0 (Initialize timestep)
while 6, not converged do
tet+1
9¢ < Vo fi(6;—1) (Get gradients w.r.t. stochastic objective at timestep)
my « B1-my—1 + (1= B1) - g (Update biased first moment estimate)
vy ¢ P2 vy + (1 — fa) - g7 (Update biased second raw moment estimate)
fi + me /(1 — B}) (Compute bias-corrected first moment estimate)
U; < v¢/(1 — B5) (Compute bias-corrected second raw moment estimate)
; B _1 — a -7, /(VT, + €) (Update parameters)
end while
return 6, (1 i)

o Adaptive steps
o Momentum
@ Discounted averages

o Large steps.

44/96

“Adaptive” step size illustration , rotation equivariance

2 2
1 speed 1 & speed
© 005 v 4 005
010 010
015 015
> 0 = >0 >
Algo Algo
Nesterov Adam
N N N I S |
Gradient Adagrad
—_ Heawbal RuSprop
- -
2 1 0 i 2 2 1 0 i H
x X
2. Y S~/
_ .
B B
2 2
o o
L 7%
C/st@'%
’YGQ:L%W
N N AL,
. oy, .
[N[A 6
.) ‘o
E ®
¥ '~/ ~)
. 0

45/96

Deep learning optimizers takeways

Combines stochastic gradient estimates with
o Momentum
o Preconditioning

e More ...

46/96

© Additional variations on training

47/96

Additional variations on training

Mixed with the network structure, affect the optimization process.

o Dropout (set randomly weights to 0 during backpropagation).
@ Batch-normalization (center and scale intermediate layers (on each minibatch))
@ Weight decay.

o Data augmentation: generate synthetic data (rotation, scaling ...)

Network structure: (z;,v:)% 1, z: € R, y; € R.
F:RP xR 5 R. F(6,z) ~y.

n

. 1
min J(O) = E F(0,z:) —y:)*

F(8,z) = ¢r (WL -1 (We—1 (... é1(Wiz+b1)) +br—1)+0br)
¢i: RPi — RP¢ “activation functions”, nonlinear.

W; € RPi*Pi-1 p, € RPi, 0 = (W1,b1,...,Wg,br), model parameters.

48/96

a) Standard Neural Net (b) After applying dropout.

Srivastava et.al. (2014). Dropout: a simple way to prevent neural networks from overfitting. JMLR.

Fl,2) =¢r W ¢p-1 (W1 (... ¢ (Wiz+b1)) +br—1)+br)
Implementation: W; € RPi*Pi-1 D, € RPi-1*Pi-1 diagonal with iid binary entries.

Run each stochastic gradient step with Wi D; instead of W;.

49/96

Batch normalization (loffe, Szegedy, 2015)

FO,2)=¢r WL ¢dr—1(Wr-1 (... 1 (Wiz+b1)) +br—1)+br)

Input: 2(z) =z € R. Mini-batch: subsampled estimate z1,. .., 2. Center and
L fork=1,2,...,Ldo gcqle each layer
2. zp(xz) =
¢i(Wizi—1(x) + bs) zi(1), .., zi(me) = Z(@),..., Zi(@e)
3: end for

Return: zp(z) € R™.

Differentiable operation.

Stabilizes training, crucial for some architectures (e.g. ResNet).

After training, variance and mean are estimated on the whole training set.

@ Mechanism not well understood.

Breaks iid hypotheses.

Breaks the empirical risk minimization interpretation.

50/96

Weight decay and L regularization

1 A2
=~ Ji0) + S0l

=1

min J(6)

Typical algorithm: «, > 0, I € {1,...,n}, independent, identically distributed,
uniform.

gk = VJIk (Gk) either gk = gk + A0y

or 0, = (1 —)b
Or+1 = Ok — okgr

o Equivalent for SGD.
o Not equivalent for momentum or adaptive scaling.

o AdamW, baseline for some problems such as transformers language models.

51/96

Data augmentation

Training set: (z;,y:)i-, Ti = Tily -, TiN

Horizontal Vertically +45 Rotation -45 Rotation Blur

Original Image

Brighter Noise added Grayscale

Augmented Images

Credit UBIAI.

@ Crucial for some vision models.
o Fits the iid interpretation in SGD.

52/96

What is the best algorithm?

Wilson et. al. 2017: The Marginal Value of Choi et. al. 2019: On Empirical Comparisons of
Adaptive Gradient Methods Optimizers
— — — -— -— — VGG on CIFAR-10
N Boos T
£ 1 AdaGrad: 11.34:0.46 Boelpte e -[--f-"l"{' tEet
H iy asamDefuty 1221030 %00
S £ 4 o 578 £
B s GAd ST over IR Tamng (R 157 Taring (R schedule ——Turiing TR schedule
£ " 1ol il
| [5G0 Womentum o RiSProp o Adam] T
N R w0 7k
Epoch Epoch
(@) CIFAR-10 (Train) (b) CIFAR-10 (Test)

B

SGD (tuned .., fixed mom. and w.d.) | %

°
B3

°
By

Teja et. al. 2020: Optimizer Benchmarking
Needs to Account for Hyperparameter Tuning

°
=

Adam (only L. tuned) |5+

Probability of being the best
-
S

00

10 20 30 40 50 60
Budget for hyperparameter optimization (# models trained)

53/96

Difficult empirical comparison

Parameter tuning.

Huge variability: tasks (datasets), architectures.

Many additional factors mixed between optimization and the network architecture.

Computation cost: 1k euro for a single network training.

No uniformly better algorithm.

54 /96

@ Favorable landscapes: gradient dominated functions

55/96

Gradient dominated functions

Network structure: (z;,v:)% 1, z;: € R%, y; € R.
F:RP xR 5 R. F(6,z) ~y.

min JO) = o Z 0,2:) —:)?
= min 7)ol
F:RP - R", y e R™.
Gradient domination: quadratic growth property, there is ¢ > 0.

IVI@O)]* = e (6)

@ A long history in the study of gradient systems.
@ One of the keys behind recent theoretical developments for neural network training.

@ World leading expert in Toulouse.
In a deep network context: critical points are global minima interpolating the data.

56 /96

A result from Lojasiewicz 1963 on gradient flow

102 S. LOJASIEWICZ

One can relatively easily notice that the second theorem for analytic functions
is equivalent to the following

INEQUALITY.
|grad g(z)| > |g(2)|® in the neighbourhood of zero,

for any analytic function g # 0 in the neighbourhood of 0 in R™, with some
exponent © such that

0<O<1.
This inequality is used in the proof of the
THEOREM ON LIMITS OF TRAJECTORIES of a dynamical system
i = —grad (),

where f > 0 is analytic in a neighbourhood of zero of the R™ space. Namely, each
of the trajectories x(t), starting from the points sufficiently near to zero, has a
limit when t — co.

57/96

A result from Polyak 1963 on the gradient algorithm

Theorem 4.2
In addition to the conditions of Theorem 4.1, let
If (@) 12 = Alf(z) — F], A>0. (4.6)

Then the sequence (4.1) is convergent to the minimum at the rate of a
geometric progression.

The conditions of the theorem only need to be satisfied in a neighbour-
hood of x*.

58/96

Lojasiewicz's trap mechanism in continuous time (same in discret time)

Let f: R” — R be analytic, f(0) =0, f > 0.
3q € (0,1), R> 0, |[V£(0)| > f(0)? and z, ||0] < R.

Assume that 0 < % + [|6o]| < R and

0(t) = =V f(0(2)), 0(0) = 6o

Lyapunov analysis: if ||0(¢)|| < R,

IO sowy(re).60)
= —10) IV FE)] 19 <).

Finite length and convergence, for any T' > 0

W@WSWﬂ+AHMWﬁ§Wﬂ_AAiﬂ&&jﬁ

dt 1—gq
(60)' = _ f(O(T)'*

f
oo+ L SOTD

< R.

f(6(t)) converges: to 0 because liminf; . ||V f(0(t))|| =0 .

59/96

Convergence rate in continuous time (same in discret time)

Let f: R” — R be C* (¢ = 1).
Assume ||V £(0)]|2 > £(8) > 0 for all 6.

Assume that

6(t) =~V f(6(1)), 6(0) =0

Lyapunov analysis:

& 500) = (V0. 0)
= —|IVfO@)I”* < —f(6(1).
Exponential convergence: f(6(¢)) < f(0) exp(—t) (Gronwall).

60/96

Data interpolation and overparameterization

Loss structure: F: R? — R" C?, y € R".

In%{l’}l’ JO) = |F@®) -yl

oe

IVIOI _ 1Ie @) (FO =9I _ ,, :
L B 10 R

P T
T _ oF oF nxmn
USEEDD (ae) <aa,-> cR

i=1

Overparameterization intuition: For p > n, Jr is surjective, JFJ; is invertible.
SetyIF(Go), A>0

3R >0, [VJ(0)]* > AJ(0), V0, [|0 — 60|l < R.

Main challenge: Estimate R and A.

Historical remark: a classical argument, revisited in a deep learning context

61/96

Two global convergence results

3R >0, |[VJ(O)* = \J(6), V0, |6 — 6o|| < R.

GRADIENT DESCENT PROVABLY OPTIMIZES
OVER-PARAMETERIZED NEURAL NETWORKS

Simon S. Du* Xiyu Zhai* Barnabas Poczés Aarti Singh

One hidden layer: Random initialization 6.
For large p, quantitative gradient domination, controlled w.h.p. A, R as p — oo.

Trap mechanism, linear convergence. Many extensions.

Neural Tangent Kernel:
Convergence and Generalization in Neural Networks

Arthur Jacot Franck Gabriel Clément Hongler

Infinite width limit: Gradient domination in function space. NTK: JrJZ, stabilizes

and remains constant during training.

Lazy training: both theories suggest that the length of the trajectory is very small.
62/96

Convergence of constant step SGD under gradient domination and interpolation

J = %Z?:l Ji, each J; > 0 has L Lipschitz gradient, fix an input 6,
and [[VJ||?2 > AJ, A > 0.

Interpolation: If VJ(0) = 0, then J;(0) = 0 and VJ;(0) =0, % = 1,...,n, and
a%(9) = 0.

For I uniform on {1,...,n}, E;[VJ(0)] = VJ(0),
(0) -

Descent lemma: 0 < J1(9 —aVJri(0)) < Jr IV I (0)])°.

Er[J(0 = aVJi(0)] < J(0) — o V()] + Li]EI[IIVJI(0)I1°)

< JO)(1 — A+ LPa?)
— J(6) (1 - %)

where o < A\/(2L?). Linear convergence to global min.

63/96

Non exhaustive historical landmarks

1963. Lojasiewicz: analyticity = Lojasiewicz gradient inequality. Trap mechanism.
1963. Polyak: gradient domination (exponent 1/2) implies linear convergence of GD.

Geometers mention Lojasiewicz's inequality.
Russian optimizers mention gradient dominated function.

1998. Kurdyka, generalizes Lojasiewicz arguments to o-minimal structures.
2005. Absil, Mahony, Andrews, Lojasiewicz's trap mechanism for GD on analytic losses.

2005’s. Bolte, Daniilidis, Lewis, Shiota, extend Kurdyka's argument to nonsmooth losses.
Introduce the name Kurdyka-Lojasiewicz inequality.

2010’s. Bolte et. al. Extend the trap argument to many algorithm. Connection with error
bounds. Convergence rates. Complexity for convex optimization ...

2015. Karimi, Nutini, Schmidt. Revisit Polyak’s arguments in a machine learning context.
Introduce the name Polyak-Lojasiewicz inequality for
global gradient domination with power 1/2.

Since then: trap argument ubiquitous in analysing training of overparameterized networks.
under the name “PL" inequality.

64/96

Gradient domination and favorable landscape summary

@ Revisit classical arguments for convergence of gradient flows.
o High probability quantitative estimates for wide deep networks.

o Lazy training: small length trajectory, idealized explaination.

65/96

@ Nonsmoothness

66 /96

Nonsmoothness is needed

Differentiate programs: if ... then ... or while

2.0 4 -
—— relu' explicit

def myRelu(x): 1.5 { — relu explicit

if x<=0:

return 0 1.0 4
else:

return x 0.5 1

0.0 ‘ .

Massive practice: elementary functions: relu, maxpool, sort, implicit layers
Ex: 75% of torchvision models.

S\\ stack overflow About Products For Teams

Can | use automatic differentiation for non-differentiable functions?

Home
PUBLIC Asked 1year, 5monthsago Active 1year, 5monthsago Viewed 346 times
® Questions
N I am testing performance of different solvers on minimizing an objective function derived from I
ags i
o simulated method of moments. Given that my objective function is not differentiable, | wonder if

67/96

Nonsmooth deep learning

Nonsmooth optimization (analysis):
o Google book: > 150 results with “nonsmooth optimization” in the title.
o Important bibliography (starting ~ 70’s), well established concepts.
o Signal processing (inverse problems), machine learning (lasso, SVM ...).

o Stochastic approximation (subsampling / minibatching).

Nonsmooth algorithmic differentiation: requires special care.

68/96

Subgradients: F': RP — R Lipschitz continuous

F convex (Moreau-Rockafellar): global lower affine tangent
F(y) > F(z) + VF(z)" (y — z), Yy € RP if F is differentiable at x
Deony F(2) = {v € R, F(y) 2 F(z) + 0" (y — 2), ¥y € R }.

1: smooth 2: nonsmooth

plot

7Z function

-5 tangent

Example: F: x — |z|.

{-1} if £ <0
aconvlr(ilf) = {1} ifx>0.
[~1,1] ifz=0

69/96

Subgradients: F': RP — R Lipschitz continuous

F general (Clarke): Rademacher, the set R C R? where I is differentiable has full
measure.

Sequential closure: limits of neighboring gadients.

OaF(x) = {v cRP 3 (Yk> Vi) pen > Uk k:joo x, Vg choo v,y € R, vy = VF(yx), k € N} .

Clarke subgradient: convex closure.

Octarke F'(x) = conv(0a F(z)).

Example: F: x — |z|.

{-1} if £ <0
aClarkeF(x) = 6convF(m) - {l} ifz>0.
[—1,1] ifz=0

Fermat rule: If z is a local minimum of F, then 0 € Ociarke F'(2).

70/96

Calculus is partly unpredictible

relu(t) = max{0, ¢} relug(t) = relu(—t) +¢ relus(t) = 1/2(relu(t) + relua(t))

Then relu = relus = relus.
o TensorFlow (TF) set backproprelu(0) = 0. TF's gives

backprop reluz(0) = 1 and backprop relus(0) = 1/2.

20 20 2.0

— relu’ — relu2' — relu3'
154 — relu 154 — relu2 15 — relu3
10 10 10
05 05 05
0.0 0.0 0.0

o Artifacts: zero(x) = reluz(z) — relu(z) = 0.

1.00

— zero'
0.75 —— zero

0.50
0.25
0.00

-2 -1 0 1 2

@ Actually s x zero = 0 and backprop [s X zero|(0) = s € R arbitrary
@ Spurious critical point: identity(x) := = — zero(x) = x but backprop identity(0) = 0
71/96

Subgradient calculus

No convexity, no calculus: g1: R” — R, g2: R? — R locally Lipschitz.
(g1 + g2) C g1 + Oga.

@ holds with equality if g1 and g2 are continuously differentiable.
@ holds with equality if g1 and g2 are convex.

@ no equality in general: g: = — |z

0 ifx #0

(g—9g)=0(x—0)={0}C 9°g)+09°(—g) = .

(9 —9) = 9(z—0) = {0} (9) +8°(=9) {[_272] 0
Deep learning: no convexity, no smoothness. Calculus rules?

o Backpropagating subgradients does not produce subgradients.

o Sampling subgradients does not produce subgradients in expectation.

Important remark: it works extremely well in practice, despite artifacts.

72/96

Descent mechanism: chain rule along Lipschitz curves

J Lipschitz (locally), J(Or+1) < J(6k)?

0 -0
Or+1 = Ok — agvy & % € —0J(6r)
k

V€ 8J(9k).

Chain rule along Lipschiz curves (Brézis 1973, Valadier 1989).
Hypothesis: For any Lipschitz v: [0, 1] — R?
d .
770W) =) Wwedl(), ae tel0]]
=yl ae te[o,1]

Suppose: ¥(t) € —9J(y(t)) for almost all ¢ € [0, 1],
then ¢ — J(y(t)) decreases, strictly if 0 € 0J(y(t)).

Stochastic approximation (Benaim-Haufbauer-Sorin (2005), Faure-Roth (2013)),
subgradient plus zero mean noise, under proper assumptions:

Vanishing step sizes, almost surely all accumulation points are critical points.
73/96

Generic triviality, generic rigidity

Borwein-Moors (2000),Loewen-Wang (2000): Let f be a typical 1-Lipschitz function (in
sup norm), then

o Of is the unit ball everywhere (no chain rule, no subgradient algorithm).

@ local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

(x)

-0.006 0.000

-1.0 -05 0.0 0.5 1.0

X

DL losses are tame: Let J be a typical locally Lipschitz deep learning loss, then
@ Relu network + square loss: J piecewise polynomial.
o More generally: J semi-algebraic, definable.
o Bolte-Daniilidis-Lewis 2007, Davis et.al. 2019: Chain rule along Lipschitz curves.

74/96

Semi-algebraic?

Basic set: Solution set of finitely many polynomial inequalities.
Set: Finite union of Basic semi-algebraic sets.

Function, set valued map: Semi-algebraic graph.

Examples: polynomials, square root, quotients, norm, relu, rank ...

Tarski Seidenberg: first order formula involving semi-algebraic sets — semi-algebraic.
o gradient / subgradient of semi-algebraic function, partial minima, composition

Bolte-Daniilidis-Lewis 2007, Davis et.al. 2019: Chain rule along Lipschitz curves.

75/96

Lyapunov mechanism (continuous time)

Chain rule (Davis et.al.): for any v: R — RP Lipschitz, for almost all ¢t € R,

L (Ton® =AY, Yo e IO

KF°‘7)' < (OF):) v w(z) =proju 9 {'(z)

Chain rule from the projection formula of Bolte, Daniilidis, Lewis, Shiota.

76/ 96

Generic triviality, generic rigidity

Typical Lipschitz function: pathological
@ No chain rule (no convergence).

f(x)

-0.006 0.000

I '

T T T T T
-1.0 -05 0.0 0.5 1.0

Typical DL loss: rigid (definable / semi-algebraic / piecewise polynomial)
@ Chain rule (rich convergence theory).

f(x)

I I —

-1.0 -0.5 0.0 0.5 1.0

77/96

Nonsmooth backpropagation (Bolte-Pauwels 2020, Castera et. al. 2019)

Or+1 = O — asbackprop Jr, (0k).

Let D be the (set-valued) output of backpropagation applied to the DL loss J (with Clarke
subgradient in place of gradients).

Conservativity:
For any Lipschitz v: [0, 1] — R?
d .
Z770@) =3@) YweDn(), ae te[01].
Convergence of SGD for DL: under proper assumptions,
@ almost surely accumulation points of SGD sequences are D-critical: 0 € D(6)

o for most sequences, accumulation points are Clarke critical 0 € 9.J(0).

78/96

Main takeways regarding nonsmoothness

o Practice usually flows transparently as in the smooth case.

o Theoretical analysis is possible, details handled with care.

79/96

© The ODE method

80/96

Back to convergence arguments

J(0) =137 | Ji(f), each J; has L Lipschitz gradient.

“Convergence in quadratic mean”: Suppose o(f) < o and J(6) > J~, for all 6 € R” .
(Ik)keN iid unif., 0<a< l/L, 0o € RP, 9k+1 = O — aVJ[k (0k)

For k € N large enough, and o > 0 small enough, SGD finds approximate critical points,
in quadratic mean.

e 2 .LO[2 2
En [J(Or —aV I (0x))] < J(0k) = SIVIE@)II" + =0

So called: Martingale method.

ODE method: alternative arguments.
@ Relate to continuous time dynamics.

@ Main theoretical option to handle nonsmoothness.
o Qualitative.

81/96

The ODE method

Stochastic approximation: 61 = 0r — ax(VJ(0r) + €xt1).
Zero mean noise €1 € R?, independent of the past.

Differentiable J (Ljung 1977): The sequence (0%),.y behaves in the small step limit as
solutions to the differential equation

0=—-vJ()

Developments: Benaim, Kushner, Yin

Nonsmooth setting:
Okt1 € Ok — o (H(Ok) + €xr1)
H: RP = RP, set valued, locally bounded, convex non-empty values, closed graph.
o Clarke's subdifferential 0°J.
@ Set-valued output of nonsmooth backpropagation conv(D).

o First order dynamics in phase space — second order dynamics.

Noise averaging: Zero mean + independent of the past + boundedness conditions
— negligible effect, martingale argument.

82/96

Intuitive ideas

Euler discretization: J: R? — R, Lipschitz, semi-algebraic,

Okr1— 0 .
% € —0°J (k) ~ 0(t) € —0°J(0(t))
k
@ Invariance.
@ Regular values are repulsive.

Leverage Semi-algebraicity.

Noiseless setting.

83/96

Continuous time flow and invariance

Differential inclusion: J: R? — R, Lipschitz, semi-algebraic,
Y(t) € —(9°J(v(1))

Solutions: 7: R — R? Lipschitz, almost all ¢ (Aubin, Celina, Filippov . ..)

. S
Invariant set: S C R?, fo all z € S,

there is 7: R — RP, Lipschitz solution,
~7(0) =z and v(R) C S.

Theorem: 0511 € 0, — ardJ(0r). Under boundedness assumptions.
acc denote the set of accumlation points, the following are invariant sets

o Vanishing steps: o — 0 as k — 00, > a = oo (Benaim, Hoffbauer, Sorin),
S = acc (0k)k—oo
o Constant steps: 6 () with ap = o > 0 for all k& (Bolte, Le, Moulines, Pauwels)

S= (e [J acc(@c(s)ksoo = “acc(acc(0k(@))ro0)asor”

a>0 0<s<a

84/96

Proof intuition

Euler discretization:
Ok+1 — 0

- E e 000 (0n) o o(t) € —0°J(0(t))

Sequences as Lipschitz functions: there is a nearby solution, closer as step size decreases

Constant step:

Vanishing step:

. . e —9°
g€ -0°J(y) 7 < ™ ye-0°J(v)

[] 9(0.8))

85/96

Regular values are repulsive

Recursion: o > 0, 9k+1 € 0, — akBCJ(Gk)

critJ ={6 : 0€09°J(0)} verit J = J (crit J)

Lemma: If [& vcrit, there is @ > 0 such that if o < @ and Y o = +00,
either limsup,,_, . ||0k|| = 400, or liminfy_, o J(0x) > 1 or limsup,_, . J(0x) < L.

Proof crucially relies on the chain rule and Lyapunov decrease.

Consequence: 011 € 0 — a,dJ(0%). Under boundedness assumptions.
acc denote the set of accumlation points, the following are invariant sets

o Vanishing steps: ay — 0 as k — 00, >, ap = 00

S = acc (Or) koo J(S) C verit .
o Constant steps: 0(«) with oy = a > 0 for all k

S = ﬂ cl U ace (0k(8))k—oo J(S) C verit

a>0 0<s<a

86/96

Overall strategy

Let S C R? be invariant and J(S) C verit J, what can | say about S?

o In general: not much. For well structured f: a lot more.

()
-0.006 0.000

-1.0 -0.5 0.0 0.5 1.0

Semi-algebraic J: S C crit.
o vcrit J is finite (Morse-Sard), J(.S) is constant.
o For any Lipschitz v, % J(y(t)) = —min,eae st [|v]|> a.a. ¢ (chain rule).
o Invariance, for any z € S, v(0) = z, ¥(R) C S, J(v(R)) singleton, < J(y(t)) = 0.

87/96

Conclusion regarding the ODE method

Theorem: 041 € 0, — a,0J(01). Under boundedness assumptions.
acc denote the set of accumlation points

o Vanishing steps: ar — 0 as k — 0o, > ay = oo (Benaim, Hoffbauer, Sorin),

acc (0r) k—oo C crit lim dist(6, crit) = 0.

k— o0
o Constant steps: (o) with ax = « > 0 for all k (Josz et. al.)

ﬂ cl U ace (0 (s))k—oo C crit lim limsup dist(0, crit) = 0.
a>0 0<s<a @70 k—oo

Many extensions:
Averaging out noise, more complicated dynamics, avoidance of traps

88/96

© Further questions

89/96

Understanding deep networks

@ Why can we train deep networks (non convex, NP-hard)?
o Why do deep network generalize?

Statistical learning theory: Understanding Deep Learning Requires Rethinking
Generalization (Zhang et. al. 2017). Challenge the notion of overfitting.

i

R

Important factor:
@ Optimization algorithms
o Beyond computational efficiency (contrary to traditional statistical learning).
o Loss structure (compositional, rigidity).
90 /96

Favorable loss landscape

Absence of convexity: cannot garanty better than critical points.

Heuristic explaination: gradient methods succeed in deep network training

@ All (most) local minima are close to global

@ (most) saddle points have negligible effect

Many results for specific model classes (linear, approximation by physics models .. .).

91/96

Large dimension, many escapes

Extreme overparametrization: many more parameters than data.
Classical view: red flag.

Theoretical studies (starting 2018): this could have some benefit
@ Approximate well optimization in function space (possibly convex).
@ Global minima almost dense, SGD converges to them (lazy training).
@ Neural tangent kernel.

o Mean field approximation.

92/96

Algorithmic bias

Many minima: Gradient method “chooses” good global minima, A € R™*?, p > n,
T € RP unknown, AZ known:

min || Az — AZ||3
x
Gradient descent initialized at 0 will converge (linearly) to

. 2
argmin, ||z|3

s.t. Ar = Az
—— Trained relu network (adam) —— Trained relu network (adam)
~—— Small network 64 — Another network interpolator

—— Linear model e Data
e Data

Observation, prediction
Observation, prediction

-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
Input, univariate Input, univariate

Implicit bias: solution algorithm is key, directional convergence, benign overfitting . ..
93/96

Understanding deep networks, still far

"M BenRecht

The only reliable theory in machine learning is the holdout method.

Donoho: Data science at the singularity 2024.

The emergence of frictionless reproducibility follows from the maturation of 3 data science
principles that came together after decades of work by many technologists and numerous re-
search communities. The mature principles involve data sharing, code sharing, and competitive
challenges, however implemented in the particularly strong form of frictionless open services.
Empirical Machine Learning (EML) is today’s leading adherent field, and its consequent rapid
changes are responsible for the AI progress we see.

94/96

@ Conclusion

95/96

Conclusion

Optimization for deep learning:
@ Renewed interest in nonconvex optimization, algorithm design and analysis.
@ Specific community / practice, sometimes different from classical math programming
@ Practice is evolving extremely fast.
o Algorithmic ideas are difficult to evaluate (benchmarking is a full time job).

@ Theoretical arguments to explain empirical successes for idealized situations.

Thanks

96 /96

	The two pillars
	Algorithmic differentiation
	Stochastic gradient algorithms
	Deep learning optimizers
	Additional variations on training
	Favorable landscapes: gradient dominated functions
	Nonsmoothness
	The ODE method
	Further questions
	Conclusion

