
An introduction to optimization for deep learning

Edouard Pauwels

CIMI Thematic school: Optimization & algorithms for high-dimensional machine
learning and inference (October 2024)

1 / 96

Motivation, content, and acknowledgements

Deep learning = machine learning with a specific class of models

Deep network training reduces to an optimization problem

Two important structural specificities: large sum, compositional model.

Specific context, with its own goals and difficulties, dedicated algorithms.

Many collaborators: Bolte, Boustany, Castera, Févotte, Le, Le, Glaudin, Rios-Zertuche,
Silvetti, Traoré, Vaiter . . .

2 / 96

Why do we have AI/ML now?

Research

Computer hardware, large amount of data, open
source softwares.

A culture of competition, benchmarking, sharing
(Donoho)

What is behind AI practically?

3 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

4 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

5 / 96

Basic presentation: supervised learning, reduction to an optimization problem

Predict y from x with n training examples: (xi, yi)
n
i=1, xi ∈ Rd, yi ∈ R.

Parameterized model, p # model parameters: F : Rp × Rd → R.

Solve F (x) ≃ y

min
θ∈Rp

J(θ) :=
1

n

n∑
i=1

(F (θ, xi)− yi)
2 =

1

n

n∑
i=1

Ji(θ)

Villalobos and Ho (2022). Trends in Training Dataset Sizes. Online

6 / 96

Basic presentation: supervised learning, reduction to an optimization problem

Predict y from x with n training examples: (xi, yi)
n
i=1, xi ∈ Rd, yi ∈ R.

Parameterized model, p # model parameters: F : Rp × Rd → R.

Solve F (x) ≃ y

min
θ∈Rp

J(θ) :=
1

n

n∑
i=1

(F (θ, xi)− yi)
2 =

1

n

n∑
i=1

Ji(θ)

Sevilla et.al. (2021). Parameter Counts in Machine Learning. Online.

6 / 96

Basic presentation: supervised learning, reduction to an optimization problem

Predict y from x with n training examples: (xi, yi)
n
i=1, xi ∈ Rd, yi ∈ R.

Parameterized model, p # model parameters: F : Rp × Rd → R.

Solve F (x) ≃ y

min
θ∈Rp

J(θ) :=
1

n

n∑
i=1

(F (θ, xi)− yi)
2 =

1

n

n∑
i=1

Ji(θ)

Sevilla et.al. (2022). Compute trends across three eras of machine learning. IEEE IJCNN.

6 / 96

Basic presentation: supervised learning, reduction to an optimization problem

Predict y from x with n training examples: (xi, yi)
n
i=1, xi ∈ Rd, yi ∈ R.

Parameterized model, p # model parameters: F : Rp × Rd → R.

Solve F (x) ≃ y

min
θ∈Rp

J(θ) :=
1

n

n∑
i=1

(F (θ, xi)− yi)
2 =

1

n

n∑
i=1

Ji(θ)

Ben Cottier (2023). Trends in the dollar training cost of machine learning systems. Online.

6 / 96

Extensions: self supervision, multiple models

Self supervision: n unlabeled training examples: (xi)
n
i=1, xi ∈ Rd.

“Create” an instrumental learning task.

Predict the next word in a sentence (large language models).

Remove noise from a noisy image (Plug and play, diffusion models).

Recognize similar images, rotation, translation, contrast, zoom (Vision transformers).

“Foundational models”, “generative AI”, structured data.

Multiple intracting networks: for example

Distillation: use the output of a model as input for another one.

Generative adversarial networks.

Mixture of experts.

Multimodality: e.g. text + image.

Mathematical formulation: based on minimization, optimality.

7 / 96

First pillar: optimization

8 / 96

Optimizer zoo

Adadelta (> 2010)

Adagrad (> 2010)

Adam (> 2010)

AdamW (> 2010)

Adamax (> 2010)

Ftrl (> 2010)

Nadam (> 2010)

RMSprop (> 2010)

SGD (1951)

Adadelta (> 2010)

Adagrad (> 2010)

Adam (> 2010)

AdamW (> 2010)

SparseAdam (> 2010)

Adamax (> 2010)

Averaged SGD (90’s)

LBFGS (70’s)

RMSprop (> 2010)

Rprop, signs (90’s)

SGD (1951)

9 / 96

Second pillar: automatized calculs

min
θ∈Rp

J(θ) :=
1

n

n∑
i=1

Ji(θ) Derivative of Ji?

Vaswani, Ashish, et. al. Attention is all you need. (2017). (∼ 70000 citations)

Derivatives in AI/ML:

Numbers are extremely large.

Cannot compute by hand.
10 / 96

Backpropagation, autodiff: differentiating programs

11 / 96

Machine learning and optimization

min
θ∈Rp

1

n

n∑
i=1

Ji(θ)

Neural network training: optimization.

Large dimension (p): gradient algorithms.

Large sum (n): Stochastic subsampling approximation.

Compositional structure: algorithmic differentiation.

Profusion of numerical tools: democratized the usage of these models. Goes beyond
neural nets (differentiable programming).

History: algorithmic differentiation + subsampling for neural network training since at
least the 80s. Explosion of scales ∼ 2010s.

12 / 96

Neural network recipe

First step: define the problem and solution method

Choose a dataset.

Define a parametric model.

Define the modalities of training.

Described by a numerical program.

Train: transparent and automatic execution

Compile training modalities.

Optimize using available numerical solvers.

Automatized calculus of derivatives.

Tensorflow, Pytorch, Jax:
∼ transparent, efficient and flexible implementation of this recipe.

13 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

14 / 96

Differentiating programs: the two modes of automatic differentiation

f : Rp → Rm differentiable expressed as a “program” (∼ composition).
gi “elementary”, appropriate size, differentiable.

f = gL ◦ gL−1 . . . ◦ g1

autodiff : efficient algorithm implementing the chain rule.

Jac f(x0) = Jac gL(xL−1)× Jac gL−1(xL−2)× . . .× Jac g1(x0)

Straight line program
Input: x0 ∈ Rp.
1: for k = 1, 2, . . . , L do
2: xk = gi(xk−1)
3: end for

Return: xL ∈ Rm.

Forward differentiation: Fi = gi ◦ . . . ◦ g1, FL = f ,

Fi+1 = gi+1 ◦ Fi

Backward differentiation: Hj = gL◦. . .◦gj , H1 = f ,

Hj = Hj+1 ◦ gj

JacFi+1(x0) = Jac gi+1(xi)× JacFi(x0)

JacHj(xj−1) = JacHj+1(xj)× Jac gj(xj−1)

Time and space complexity
15 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0

Memory 2

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0

Memory 2 Jac g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0 x1 = g1(x0)

Memory 2 Jac g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x1 = g1(x0)

Memory 2 Jac g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x1 = g1(x0)

Memory 2 Jac g1(x0) Jac g2(x1)× Jac g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x1 = g1(x0)

Memory 2 Jac g2 ◦ g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x1 = g1(x0) x2 = g2(x1)

Memory 2 Jac g2 ◦ g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x2 = g2 ◦ g1(x0)

Memory 2 Jac g2 ◦ g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x2 = g2 ◦ g1(x0)

Memory 2 Jac g2 ◦ g1(x0) Jac g3(x2)× Jac g2 ◦ g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x2 = g2 ◦ g1(x0)

Memory 2 Jac g3 ◦ g2 ◦ g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x2 = g2 ◦ g1(x0) x3 = g3(x2)

Memory 2 Jac g3 ◦ g2 ◦ g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Forward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x3 = g3 ◦ g2 ◦ g1(x0)

Memory 2 Jac g3 ◦ g2 ◦ g1(x0)

Take away: memory footprint independent of the length of the composition

16 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0

x1 = g1(x0) x2 = g2(x1) x3 = g3(x2)

Memory 2

Jac g3 ◦ g2 ◦ g1(x0) Jac g3 ◦ g2(x1) Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0 x1 = g1(x0)

x2 = g2(x1) x3 = g3(x2)

Memory 2

Jac g3 ◦ g2 ◦ g1(x0) Jac g3 ◦ g2(x1) Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0 x1 = g1(x0) x2 = g2(x1)

x3 = g3(x2)

Memory 2

Jac g3 ◦ g2 ◦ g1(x0) Jac g3 ◦ g2(x1) Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0 x1 = g1(x0) x2 = g2(x1) x3 = g3(x2)

Memory 2

Jac g3 ◦ g2 ◦ g1(x0) Jac g3 ◦ g2(x1) Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0 x1 = g1(x0) x2 = g2(x1) x3 = g3(x2)

Memory 2

Jac g3 ◦ g2 ◦ g1(x0) Jac g3 ◦ g2(x1)

Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0 x1 = g1(x0)

x2 = g2(x1)

x3 = g3(x2)

Memory 2

Jac g3 ◦ g2 ◦ g1(x0) Jac g3 ◦ g2(x1)

Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0 x1 = g1(x0)

x2 = g2(x1)

x3 = g3(x2)

Memory 2

Jac g3 ◦ g2 ◦ g1(x0)

Jac g3 ◦ g2(x1) Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0

x1 = g1(x0) x2 = g2(x1)

x3 = g3(x2)

Memory 2

Jac g3 ◦ g2 ◦ g1(x0)

Jac g3 ◦ g2(x1)

Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Backward derivative computation

g3 ◦ g2 ◦ g1

Memory 1 x0

x1 = g1(x0) x2 = g2(x1)

x3 = g3(x2)

Memory 2 Jac g3 ◦ g2 ◦ g1(x0) Jac g3 ◦ g2(x1)

Jac g3(x2)

Take away: memory footprint depends on the length of the composition

17 / 96

Time complexity

Intuition: g : Rp → Rp, “elementary”.
Similar computational cost: g(x), Jac g(x)v, Jac g(x)T v for x, v ∈ Rp.

x1

x2

...
xp

 −→
g

f(x1)
x2

...
xp

v1
v2
...
vp

 −→
Jac g(x)

f ′(x1)v1

v2
...
vp

u1

u2

...
up

 −→
Jac g(x)T

f ′(x1)u1

u2

...
up

x1

x2

...
xp

 −→
g

x1x2

x2

...
xp

v1
v2
...
vp

 −→
Jac g(x)

x2v1 + x1v2

v2
...
vp

u1

u2

...
up

 −→
Jac g(x)T

x2u1

x1u1 + u2

...
up

Basic time complexity estimates:
Function evaluation ∼ Jacobian vector product (JVP) ∼ Vector Jacobian product (VJP).
Jacobian Jacobians product ∼ p× Function evaluation.

18 / 96

Forward versus backward

f : Rp → R differentiable expressed ∼ composition, ℓ : Rp → R.

f = ℓ ◦ gL ◦ gL−1 . . . ◦ g1

Chain rule: Jac f(x0) = ∇f(x0)
T

∇f(x0)
T = Jac ℓ(xL)∇ℓ(xL)

T × Jac gL(xL−1)× Jac gL−1(xL−2)× . . .× Jac g1(x0)

Forward AD:
(
∇ℓT ×

(
Jac gL ×

(
Jac gL−1 ×

(
. . . (Jac g2 × Jac g1) . . .

))))
Backward AD:

((
. . .

((
∇ℓT × Jac gL

)
× Jac gL−1

)
× . . . Jac g2

)
× Jac g1

)
Straight line program
Input: x0 ∈ Rp,

gk : Rp → Rp.
1: for k = 1, 2, . . . , L do
2: xk = gk(xk−1)
3: end for

Return: ℓ(xL) ∈ R.

Backward and forward algorithmic differentiation (AD)

L ≥ p
prog. fwd bwd
eval AD AD

Computation time L O(Lp) O(L)

Memory footprint p O(p2) O(Lp)

Remark: If f : R → Rp, or for a single directional derivative,
reversed situation.

19 / 96

Time complexity of derivative computation:

Baur-Strassen Theorem:

Computing cost (f,∇f) ≤ 5 Computing cost (f) for rational functions,

instead of the naive Computing cost (f,∇f) ≤ p Computing cost (f)

Computing cost: arithmetic circuit complexity ∼ minimal umber of operations

Proof: backward algorithmic differentiation.

20 / 96

Time complexity of derivative computation:

Baur-Strassen Theorem:

Computing cost (f,∇f) ≤ 5 Computing cost (f)

Example: (a, b, c, d, e, f) 7→ abcdef . Multiply p numbers.

ab abc abcd abcde abcdef p− 1 multiplications
bcdef cdef def ef p− 2 multiplications

acdef abdef abcef abcdf p− 2 multiplications

21 / 96

Time complexity of derivative computation:

Baur-Strassen Theorem:

Computing cost (f,∇f) ≤ 5 Computing cost (f)

Example: (a, b, c, d, e, f) 7→ abcdef . Multiply p numbers.

ab abc abcd abcde abcdef p− 1 multiplications

bcdef cdef def ef p− 2 multiplications
acdef abdef abcef abcdf p− 2 multiplications

21 / 96

Time complexity of derivative computation:

Baur-Strassen Theorem:

Computing cost (f,∇f) ≤ 5 Computing cost (f)

Example: (a, b, c, d, e, f) 7→ abcdef . Multiply p numbers.

ab abc abcd abcde abcdef p− 1 multiplications
bcdef cdef def ef p− 2 multiplications

acdef abdef abcef abcdf p− 2 multiplications

21 / 96

Time complexity of derivative computation:

Baur-Strassen Theorem:

Computing cost (f,∇f) ≤ 5 Computing cost (f)

Example: (a, b, c, d, e, f) 7→ abcdef . Multiply p numbers.

ab abc abcd abcde abcdef p− 1 multiplications
bcdef cdef def ef p− 2 multiplications

acdef abdef abcef abcdf p− 2 multiplications

21 / 96

Time complexity of derivative computation:

Baur-Strassen Theorem:

Computing cost (f,∇f) ≤ 5 Computing cost (f)

Example: (a, b, c, d, e, f) 7→ abcdef . Multiply p numbers.

ab abc abcd abcde abcdef p− 1 multiplications
bcdef cdef def ef p− 2 multiplications

acdef abdef abcef abcdf p− 2 multiplications

21 / 96

Differentiable programming and supervised learning

Differentiable programming (DP) framework:
numerical program, fixed library of basic operations
→ automatized Jacobians chaining
gL ◦ . . . ◦ g1 ∼ numerical program → Jac gL ◦ . . . ◦ g1 ∼ numerical program.

Specification for elementary gi:
function evaluation + vector-Jacobian / Jacobian-vector product.

Supervised learning: θ model parameters, (xi, yi) input-output training data,
g1, . . . , gL elementary computational operations, from a fixed library

min
θ

1

n

n∑
i=1

∥yi − gL (gL−1 (. . . g1(xi, θ) . . . , . . .) , θ)∥2

22 / 96

Algorithmic differentiation: takeways

J : Rp → R P (program)

∇J : Rp → Rp D (program)

diff

implements

implements

autodiff

backprop is backward algorithmic differentiation.

Automatized implementation of the chain rule of Jacobians.

What one can program, one can differentiate.

Complexity of backprop / complexity of program evaluation:
▶ Time: bounded
▶ Memory: linear in program size

Forward mode is favorable in some cases.

Custom elementary g: needs evaluation + VJP / JVP.

History: Precursors (50s/60s), many independant occurences (70s / 80s),
tightly connected to neural networks since the 80s.

23 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

24 / 96

Subsampling and redundancy

min
θ

J(θ) :=
1

n

n∑
i=1

Ji(θ)

Main idea: Present exemples online, in sequence, not all at once.
At the heart of neural network training litterature since its very beginning.

1.0 0.5 0.0 0.5 1.0
0

1

2

3

4

5
Data
Individual loss
Individual loss
Individual loss

10 5 0 5 10
0

25

50

75

100

125

150

175
Data
Individual loss
Individual loss
Individual loss

Typical algorithm: θk+1 = θk − αk∇JIk (θk).

αk > 0.

Ik ∈ {1, . . . , n}.

25 / 96

Subsampling gradient method: example

min
θ

J(θ) :=
1

n

n∑
i=1

Ji(θ)

Typical algorithm: θk+1 = θk − αk∇JIk (θk).

αk > 0.

Ik ∈ {1, . . . , n}, independent, identically distributed, uniform.

0 50 100 150 200 250 300
Number of gradients

10 2

10 1

100

101

102

103

104

Su
bo

pt
im

al
ity

Gradient descent
SGD: alpha 2
SGD: alpha 0.9
SGD: alpha 0.3
SGD: alpha 0.1
SGD: alpha 0.03
SGD: alpha 0.01
SGD: alpha 1/k

26 / 96

Subsampling gradient method: towards an analysis

min
θ

J(θ) :=
1

n

n∑
i=1

Ji(θ)

Vocabullary:

Epoch: compute n gradients among (Ji)
n
i=1, independant of how chosen.

Examples:
▶ Gradient algorithm: θk+1 = θk − αk∇J(θk), one step = one epoch.
▶ Stochastic gradient algorithm: θk+1 = θk − αk∇JIk (θk), n steps = one epoch.

In practice:
▶ (Ik)k∈N are not i.i.d, sampling without replacement, random permutation.
▶ Average gradient over a few terms, minibatch.

Nonconvexity:

(Matrix) multiplication is nonconvex

Composition does not preserve convexity

J cannot be assumed to be convex.

27 / 96

Subsampling gradient method: theoretical argument

min
θ

J(θ) :=
1

n

n∑
i=1

Ji(θ)

Typical algorithm: θk+1 = θk − αk∇JIk (θk).

αk > 0, Ik ∈ {1, . . . , n}, independent, identically distributed, uniform.

Does it optimize?

0 50 100 150 200 250 300
Number of gradients

10 2

10 1

100

101

102

103

104

Su
bo

pt
im

al
ity

Gradient descent
SGD: alpha 2
SGD: alpha 0.9
SGD: alpha 0.3
SGD: alpha 0.1
SGD: alpha 0.03
SGD: alpha 0.01
SGD: alpha 1/k

28 / 96

Taylor Lagrange and descent Lemma

Lemma: Assume that f : Rp → R has, L Lipschitz gradient, then for any x, y ∈ Rd,

|f(y)− f(x)− ⟨∇f(x), y − x⟩ | ≤ L

2
∥y − x∥2

Setting γ(t) = x+ t(y − x)

|f(y)− f(x)− ⟨∇f(x), y − x⟩ |

=

∣∣∣∣∫ 1

0

d

dt
f(γ(t))− ⟨∇f(x), y − x⟩ dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

⟨∇f(γ(t)), γ̇(t)⟩ − ⟨∇f(x), y − x⟩ dt
∣∣∣∣

=

∣∣∣∣∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩ dt
∣∣∣∣

≤
∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥ · ∥y − x∥dt

≤
∫ 1

0

tL∥y − x∥2dt = L

2
∥y − x∥2

29 / 96

Stochastic “descent”

J = 1
n

∑n
i=1 Ji, each Ji has L Lipschitz gradient, fix an input θ.

For any i ∈ {1, . . . , n}, for I uniform on {1, . . . , n}, EI [∇JI(θ)] = ∇J(θ),

J(θ − α∇Ji(θ)) ≤ J(θ)− α ⟨∇J(θ),∇Ji(θ)⟩+
Lα2

2
∥∇Ji(θ)∥2

EI [J(θ − α∇JI(θ))] ≤ J(θ)− α∥∇J(θ)∥2 + Lα2

2
EI [∥∇JI(θ)∥2]

= J(θ)− α∥∇J(θ)∥2 + Lα2

2

(
∥∇J(θ)∥2 + EI [∥∇JI(θ)−∇J(θ)∥2]

)
= J(θ)− α

(
1− Lα

2

)
∥∇J(θ)∥2 + Lα2

2
EI [∥∇JI(θ)−∇J(θ)∥2]

≤ J(θ)− α

2
∥∇J(θ)∥2 + Lα2

2
σ2(θ)

where α ≤ 1/L, σ2(θ) = EI [∥∇JI(θ)−∇J(θ)∥2]

30 / 96

From stochastic “descent” to convergence

J(θ) = 1
n

∑n
i=1 Ji(θ), each Ji has L Lipschitz gradient, α ≤ 1/L, fix an input θ.

I uniform on {1, . . . , n}, σ2(θ) = EI [∥∇JI(θ)−∇J(θ)∥2]

EI [J(θ − α∇JI(θ))] ≤ J(θ)− α

2
∥∇J(θ)∥2 + Lα2

2
σ2(θ)

In expectation. θ is fixed (not random).

Relative magnitude of ∥∇J(θ)∥2 and σ2(θ).

α balance two antagonist objectives

31 / 96

From stochastic “descent” to convergence

J(θ) = 1
n

∑n
i=1 Ji(θ), each Ji has L Lipschitz gradient.

First analysis: Suppose σ(θ) ≤ σ and J(θ) ≥ J∗, for all θ ∈ Rp .
(Ik)k∈N iid unif., 0 < α ≤ 1/L, θ0 ∈ Rp, θk+1 = θk − α∇JIk (θk)

Set for all k ≥ 1, Ek = EI0,...,Ik−1 ,

min
i=0...k

Ek

[
∥∇J(θi)∥2

]
≤ 2J(θ0)− J∗

(k + 1)α
+ Lασ2.

If k + 1 ≥ 4L(J(θ0)−J∗)
σ2 and α = 2

√
J(θ0)−J∗

(k+1)Lσ2 ≤ 1
L
, the l.h.s. is 2

√
(J(θ0)−J∗)Lσ2

k+1
.

Ik independent of I0, . . . , Ik−1. θk random, independent of Ik, Ik+1,

EIk [J(θk − α∇JIk (θk))] ≤ J(θk)−
α

2
∥∇J(θk)∥2 +

Lα2

2
σ2

Ek+1[J(θk+1)] ≤ Ek[J(θk)]−
α

2
Ek

[
|∇J(θk)∥2

]
+

Lα2

2
σ2

α

2
min

i=0...k
Ek

[
∥∇J(θk)∥2

]
≤ α

2(k + 1)

k∑
i=0

Ei

[
∥∇J(θi)∥2

]
≤ J(θ0)− Ek+1[J(θk+1)]

k + 1
+

Lα2σ2

2
≤ J(θ0)− J∗

k + 1
+

Lα2σ2

2
32 / 96

From stochastic “descent” to convergence

J(θ) = 1
n

∑n
i=1 Ji(θ), each Ji has L Lipschitz gradient.

“Convergence in quadratic mean”: Suppose σ(θ) ≤ σ and J(θ) ≥ J∗, for all θ ∈ Rp .
(Ik)k∈N iid unif., 0 < α ≤ 1/L, θ0 ∈ Rp, θk+1 = θk − α∇JIk (θk)

For k ∈ N large enough, and α > 0 small enough, SGD finds approximate critical points,
in quadratic mean.

EIk [J(θk − α∇JIk (θk))] ≤ J(θk)−
α

2
∥∇J(θk)∥2 +

Lα2

2
σ2

Almost sure convergence: Robbins-Monro (1951), Robbins-Sigmund (1971).

(αk)k∈N positive:
θk+1 = θk − αk∇JIk (θk)

Suppose:

∑
k∈N αk = ∞,

∑
k∈N α

2
k < +∞

(θk)k∈N is bounded almost surely.

Then almost surely all accumulation points of (θk)k∈N satisfy ∇J(θk) = 0.

dist(θk, critJ) →
a.s.

0.

33 / 96

Subsampling gradient method: theoretical argument

min
θ

J(θ) :=
1

n

n∑
i=1

Ji(θ)

Typical algorithm: θk+1 = θk − αk∇JIk (θk).

αk > 0, Ik ∈ {1, . . . , n}, independent, identically distributed, uniform.

Does it optimize? Yes, in various senses. Step sizes and variance are crucial.

0 50 100 150 200 250 300
Number of gradients

10 2

10 1

100

101

102

103

104

Su
bo

pt
im

al
ity

Gradient descent
SGD: alpha 2
SGD: alpha 0.9
SGD: alpha 0.3
SGD: alpha 0.1
SGD: alpha 0.03
SGD: alpha 0.01
SGD: alpha 1/k

34 / 96

More on step-sizes: schedulers

Vocabulary: learning rate ∼ step-size.

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Le

ar
ni

ng
 R

at
e

Step Decay
Exponential Decay
Cosine Annealing
Polynomial Decay
Exp. Decay + warmup
Staircase Exp. Decay

35 / 96

More on variance: mini-batch, variance reduction

min
θ

J(θ) :=
1

n

n∑
i=1

Ji(θ)

Typical algorithm: averaging preserves the mean and reduces the variance

θk+1 = θk − αk∇JIk (θk)

θk+1 = θk − αk
1

b

b∑
j=1

∇JIk,j (θk)

Variance reduction: mechanisms to reduce the variance, possibly incuring bias.

36 / 96

Stochastic gradient algorithms, takeway

Subsampling helps to treat large (infinite) datasets.

Convergence arguments for small step sizes, find critical points.

Local minima, saddle point etc ...

Theory predicts behavior for large k, practical interest for small k.

37 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

38 / 96

Optimizer zoo

Adadelta (> 2010)

Adagrad (> 2010)

Adam (> 2010)

Adamax (> 2010)

Ftrl (> 2010)

Nadam (> 2010)

RMSprop (> 2010)

SGD (1951)

Adadelta (> 2010)

Adagrad (> 2010)

Adam (> 2010)

AdamW (> 2010)

SparseAdam (> 2010)

Adamax (> 2010)

Averaged SGD (90’s)

LBFGS (70’s)

RMSprop (> 2010)

Rprop, signs (90’s)

SGD (1951)

Plug in subsampled estimates: first description without noise.

39 / 96

“Acceleration”: momentum, Polyak’s heavy ball, Nesterov’s method (70’s, 80’s)

Gradient update:

θk+1 = θk − α∇J(θk)

θk+1 − θk
α

+∇J(θk) = 0

Gradient with momentum:

θk+1 = θk − α∇J(θk) + β(θk − θk−1)

Alternatively: vk+1 = µvk + ν∇J(θk)

θk+1 = θk − vk+1

Continuous time (Antipin, Alvarez, Haraux, Jendoubi, Attouch, Su . . .): (α → 0)

ẋ(t) +∇f(x(t)) = 0 ẍ(t) + δ(t)ẋ(t) +∇f(x(t)) = 0

−2

−1

0

1

2

−2 −1 0 1 2
x

y

speed

0.05

0.10

0.15

Algo

Nesterov

Gradient

Heavy ball

Discounted average: θk+1 = θk − µ
∑k

j=0 ν
k−j∇J(θj).

40 / 96

The “ada” family, automatic adaptive stepsize

Diagonal scaling matrix: Dk ∈ Rp×p, diagonal with positive entries, (preconditioner)

θk+1 = θk −Dk∇J(θk)

Dk estimated online based on gradients (and hyperparameters).

Old idea in optimization (quasi-newton, preconditioning . . .).

In machine learning
▶ One preconditioner = one ada algorithm
▶ Very popular (light hyperparameters tuning).
▶ Mostly built by deep learning people for deep learning people.

41 / 96

“Adaptive” step size

Diagonal preconditioning: θk+1 = θk −Dk∇J(θk)
i-th entry of Dk:

Adagrad (Duchi et. al. 2011): gradient coordinates

γ√
ϵ+

∑k
l=0[∇J(θl)]2i

RMSprop (Hinton et. al. 2012): discounted average β ∈ (0, 1)

γ√
ϵ+ (1− β)

∑k
l=0 β

k−l[∇J(θl)]2i

Rprop (90’s): coordinatewise gradient sign

γ

|[∇J(θk)]i|

Remarks:

If J(θ) =
∑p

i=1 wiθ
2
i , then the algorithm depends lightly on (wi)

p
i=1 (conditioning).

Adagrad: step size morally scales like 1/
√
k.

Adaptive to different scenarios: smooth, nonsmooth, noise . . . (Levy et. al. 2018).

RMSprop: step size does not vanish.
42 / 96

Stochastic variants: plug in subsampled estimates

min
θ

J(θ) :=
1

n

n∑
i=1

Ji(θ)

Plug in subsampled estimate:
replace ∇J(θ) mutatis mutandis , by the stochastic estimate (I1, . . . , Ib iid)

∇̂J(θ) =
1

b

b∑
j=1

∇JIj (θ) b < n

Adaptive methods: stochastic denominator.

Momentum: variance reduction effect.

43 / 96

Adam (Kingma et. al. 2014) soon 2× 105 citations ∼ most cited paper of all times

Adaptive steps

Momentum

Discounted averages

Large steps.

44 / 96

“Adaptive” step size illustration , rotation equivariance

−2

−1

0

1

2

−2 −1 0 1 2
x

y

speed

0.05

0.10

0.15

Algo

Nesterov

Gradient

Heavy ball

−2

−1

0

1

2

−2 −1 0 1 2
x

y

speed

0.05

0.10

0.15

Algo

Adam

Adagrad

RMSprop

0

1

2

−1

0

1

2

3

x

y

type

NesterovGradientHeavy ballspeed
100

200
300

0

1

2

−1

0

1

2

x

y

type

Adam
AdagradRMSpropspeed

0.25
0.50

0.75

45 / 96

Deep learning optimizers takeways

Combines stochastic gradient estimates with

Momentum

Preconditioning

More . . .

46 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

47 / 96

Additional variations on training

Mixed with the network structure, affect the optimization process.

Dropout (set randomly weights to 0 during backpropagation).

Batch-normalization (center and scale intermediate layers (on each minibatch))

Weight decay.

Data augmentation: generate synthetic data (rotation, scaling . . .)

Network structure: (xi, yi)
n
i=1, xi ∈ Rd, yi ∈ R.

F : Rp × Rd → R. F (θ, x) ∼ y.

min
θ∈Rp

J(θ) :=
1

n

n∑
i=1

(F (θ, xi)− yi)
2

F (θ, x) = ϕL (WL ϕL−1 (WL−1 (. . . ϕ1 (W1x+ b1)) + bL−1) + bL)

ϕi : Rpi 7→ Rpi “activation functions”, nonlinear.
Wi ∈ Rpi×pi−1 , bi ∈ Rpi , θ = (W1, b1, . . . ,WL, bL), model parameters.

48 / 96

Dropout

Srivastava et.al. (2014). Dropout: a simple way to prevent neural networks from overfitting. JMLR.

F (θ, x) = ϕL (WL ϕL−1 (WL−1 (. . . ϕ1 (W1x+ b1)) + bL−1) + bL)

Implementation: Wi ∈ Rpi×pi−1 , Di ∈ Rpi−1×pi−1 diagonal with iid binary entries.

Run each stochastic gradient step with WiDi instead of Wi.

49 / 96

Batch normalization (Ioffe, Szegedy, 2015)

F (θ, x) = ϕL (WL ϕL−1 (WL−1 (. . . ϕ1 (W1x+ b1)) + bL−1) + bL)

Input: z0(x) = x ∈ Rp.
1: for k = 1, 2, . . . , L do
2: zk(x) =

ϕi(Wizi−1(x) + bi)
3: end for

Return: zL(x) ∈ Rm.

Mini-batch: subsampled estimate x1, . . . , xb. Center and
scale each layer

zi(x1), . . . , zi(xb) → z̃i(x1), . . . , z̃i(xb)

Differentiable operation.

Stabilizes training, crucial for some architectures (e.g. ResNet).

After training, variance and mean are estimated on the whole training set.

Mechanism not well understood.

Breaks iid hypotheses.

Breaks the empirical risk minimization interpretation.

50 / 96

Weight decay and L2 regularization

min
θ

J(θ) :=
1

n

n∑
i=1

Ji(θ) +
λ

2
∥θ∥2

Typical algorithm: αk > 0, Ik ∈ {1, . . . , n}, independent, identically distributed,
uniform.

gk = ∇JIk (θk)

θk+1 = θk − αkgk

{
either gk = gk + λθk

or θk = (1− λα)θk

Equivalent for SGD.

Not equivalent for momentum or adaptive scaling.

AdamW, baseline for some problems such as transformers language models.

51 / 96

Data augmentation

Training set: (xi, yi)
n
i=1, xi → x̃i1, . . . , x̃iN

Credit UBIAI.

Crucial for some vision models.

Fits the iid interpretation in SGD.

52 / 96

What is the best algorithm?

Wilson et. al. 2017: The Marginal Value of
Adaptive Gradient Methods

Choi et. al. 2019: On Empirical Comparisons of
Optimizers

Teja et. al. 2020: Optimizer Benchmarking
Needs to Account for Hyperparameter Tuning

53 / 96

Difficult empirical comparison

Parameter tuning.

Huge variability: tasks (datasets), architectures.

Many additional factors mixed between optimization and the network architecture.

Computation cost: 1k euro for a single network training.

No uniformly better algorithm.

54 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

55 / 96

Gradient dominated functions

Network structure: (xi, yi)
n
i=1, xi ∈ Rd, yi ∈ R.

F : Rp × Rd → R. F (θ, x) ∼ y.

min
θ∈Rp

J(θ) :=
1

n

n∑
i=1

(F (θ, xi)− yi)
2

= min
θ

∥F (θ)− y∥2

F : Rp → Rn, y ∈ Rn.

Gradient domination: quadratic growth property, there is c > 0.

∥∇J(θ)∥2 ≥ cJ(θ)

A long history in the study of gradient systems.

One of the keys behind recent theoretical developments for neural network training.

World leading expert in Toulouse.

In a deep network context: critical points are global minima interpolating the data.

56 / 96

A result from Lojasiewicz 1963 on gradient flow

57 / 96

A result from Polyak 1963 on the gradient algorithm

58 / 96

Lojasiewicz’s trap mechanism in continuous time (same in discret time)

Let f : Rp → R be analytic, f(0) = 0, f ≥ 0.

∃q ∈ (0, 1), R > 0, ∥∇f(θ)∥ ≥ f(θ)q and x, ∥θ∥ ≤ R.

Assume that 0 < f(θ0)
1−q

1−q
+ ∥θ0∥ < R and

θ̇(t) = −∇f(θ(t)), θ(0) = θ0

Lyapunov analysis: if ∥θ(t)∥ < R,

d

dt

f(θ(t))1−q

1− q
= f(θ(t))−q

〈
∇f(θ(t)), θ̇(t)

〉
= −f(θ(t))−q∥∇f(θ(t))∥ ∥θ̇(t)∥ ≤ −∥θ̇(t)∥.

Finite length and convergence, for any T > 0

∥θ(T)∥ ≤ ∥θ0∥+
∫ T

0

∥θ̇(t)∥dt ≤ ∥θ0∥ −
∫ T

0

d

dt

f(θ(t))1−q

1− q
dt

= ∥θ0∥+
f(θ0)

1−q

1− q
− f(θ(T))1−q

1− q
< R.

f(θ(t)) converges: to 0 because lim inft→∞ ∥∇f(θ(t))∥ = 0 .
59 / 96

Convergence rate in continuous time (same in discret time)

Let f : Rp → R be C2 (q = 1
2
).

Assume ∥∇f(θ)∥2 ≥ f(θ) ≥ 0 for all θ.

Assume that

θ̇(t) = −∇f(θ(t)), θ(0) = 0

Lyapunov analysis:

d

dt
f(θ(t)) =

〈
∇f(θ(t)), θ̇(t)

〉
= −∥∇f(θ(t))∥2 ≤ −f(θ(t)).

Exponential convergence: f(θ(t)) ≤ f(0) exp(−t) (Gronwall).

60 / 96

Data interpolation and overparameterization

Loss structure: F : Rp → Rn C2, y ∈ Rn.

min
θ∈Rp

J(θ) := ∥F (θ)− y∥2

∥∇J(θ)∥2

J(θ)
= 2

∥JF (θ)
T (F (θ)− y)∥2

∥F (θ)− y∥2 ≥ 2λmin(JF (θ)JF (θ)
T)

JFJ
T
F =

p∑
i=1

(
∂F

∂θi

)(
∂F

∂θi

)T

∈ Rn×n

Overparameterization intuition: For p ≫ n, JF is surjective, JFJ
T
F is invertible.

Set y = F (θ0), λ > 0

∃R > 0, ∥∇J(θ)∥2 ≥ λJ(θ), ∀θ, ∥θ − θ0∥ ≤ R.

Main challenge: Estimate R and λ.

Historical remark: a classical argument, revisited in a deep learning context

61 / 96

Two global convergence results

∃R > 0, ∥∇J(θ)∥2 ≥ λJ(θ), ∀θ, ∥θ − θ0∥ ≤ R.

One hidden layer: Random initialization θ.
For large p, quantitative gradient domination, controlled w.h.p. λ,R as p → ∞.
Trap mechanism, linear convergence. Many extensions.

Infinite width limit: Gradient domination in function space. NTK: JFJ
T
F , stabilizes

and remains constant during training.

Lazy training: both theories suggest that the length of the trajectory is very small.
62 / 96

Convergence of constant step SGD under gradient domination and interpolation

J = 1
n

∑n
i=1 Ji, each Ji ≥ 0 has L Lipschitz gradient, fix an input θ,

and ∥∇J∥2 ≥ λJ , λ > 0.

Interpolation: If ∇J(θ) = 0, then Ji(θ) = 0 and ∇Ji(θ) = 0, i = 1, . . . , n, and
σ2(θ) = 0.

For I uniform on {1, . . . , n}, EI [∇JI(θ)] = ∇J(θ),
Descent lemma: 0 ≤ JI(θ − α∇JI(θ)) ≤ JI(θ)− 1

2L
∥∇JI(θ)∥2.

EI [J(θ − α∇JI(θ))] ≤ J(θ)− α∥∇J(θ)∥2 + Lα2

2
EI [∥∇JI(θ)∥2]

≤ J(θ)(1− λα+ L2α2)

= J(θ)

(
1− λ2

4L2

)
where α ≤ λ/(2L2). Linear convergence to global min.

63 / 96

Non exhaustive historical landmarks

1963. Lojasiewicz: analyticity ⇒ Lojasiewicz gradient inequality. Trap mechanism.

1963. Polyak: gradient domination (exponent 1/2) implies linear convergence of GD.

Geometers mention Lojasiewicz’s inequality.
Russian optimizers mention gradient dominated function.

1998. Kurdyka, generalizes Lojasiewicz arguments to o-minimal structures.

2005. Absil, Mahony, Andrews, Lojasiewicz’s trap mechanism for GD on analytic losses.

2005’s. Bolte, Daniilidis, Lewis, Shiota, extend Kurdyka’s argument to nonsmooth losses.
Introduce the name Kurdyka-Lojasiewicz inequality.

2010’s. Bolte et. al. Extend the trap argument to many algorithm. Connection with error
bounds. Convergence rates. Complexity for convex optimization . . .

2015. Karimi, Nutini, Schmidt. Revisit Polyak’s arguments in a machine learning context.
Introduce the name Polyak-Lojasiewicz inequality for
global gradient domination with power 1/2.

Since then: trap argument ubiquitous in analysing training of overparameterized networks.
under the name “PL” inequality.

64 / 96

Gradient domination and favorable landscape summary

Revisit classical arguments for convergence of gradient flows.

High probability quantitative estimates for wide deep networks.

Lazy training: small length trajectory, idealized explaination.

65 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

66 / 96

Nonsmoothness is needed

Differentiate programs: if ... then ... or while

Massive practice: elementary functions: relu, maxpool, sort, implicit layers
Ex: 75% of torchvision models.

67 / 96

Nonsmooth deep learning

Nonsmooth optimization (analysis):

Google book: > 150 results with “nonsmooth optimization” in the title.

Important bibliography (starting ∼ 70’s), well established concepts.

Signal processing (inverse problems), machine learning (lasso, SVM . . .).

Stochastic approximation (subsampling / minibatching).

Nonsmooth algorithmic differentiation: requires special care.

68 / 96

Subgradients: F : Rp 7→ R Lipschitz continuous

F convex (Moreau-Rockafellar): global lower affine tangent

F (y) ≥ F (x) +∇F (x)T (y − x), ∀y ∈ Rp if F is differentiable at x

∂convF (x) =
{
v ∈ Rp, F (y) ≥ F (x) + vT (y − x), ∀y ∈ Rp

}
.

1: smooth 2: nonsmooth

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

0.0

0.4

0.8

x

y

plot

function

tangent

Example: F : x 7→ |x|.

∂convF (x) =

{−1} if x < 0

{1} if x > 0

[−1, 1] if x = 0

.

69 / 96

Subgradients: F : Rp 7→ R Lipschitz continuous

F general (Clarke): Rademacher, the set R ⊂ Rp where F is differentiable has full
measure.

Sequential closure: limits of neighboring gadients.

∂clF (x) =
{
v ∈ Rp, ∃ (yk, vk)k∈N , yk →

k→∞
x, vk →

k→∞
v, yk ∈ R, vk = ∇F (yk), k ∈ N

}
.

Clarke subgradient: convex closure.

∂ClarkeF (x) = conv(∂clF (x)).

Example: F : x 7→ |x|.

∂ClarkeF (x) = ∂convF (x) =

{−1} if x < 0

{1} if x > 0

[−1, 1] if x = 0

.

Fermat rule: If x is a local minimum of F , then 0 ∈ ∂ClarkeF (x).

70 / 96

Calculus is partly unpredictible

relu(t) = max{0, t} relu2(t) = relu(−t) + t relu3(t) = 1/2(relu(t) + relu2(t))

Then relu = relu2 = relu3.

TensorFlow (TF) set backprop relu(0) = 0. TF’s gives

backprop relu2(0) = 1 and backprop relu3(0) = 1/2.

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu'
relu

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu2'
relu2

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu3'
relu3

Artifacts: zero(x) = relu2(x)− relu(x) = 0.

2 1 0 1 2
x

0.00

0.25

0.50

0.75

1.00 zero'
zero

Actually s× zero = 0 and backprop [s× zero](0) = s ∈ R arbitrary

Spurious critical point: identity(x) := x− zero(x) = x but backprop identity(0) = 0

71 / 96

Subgradient calculus

No convexity, no calculus: g1 : Rp → R, g2 : Rp → R locally Lipschitz.

∂c(g1 + g2) ⊂ ∂cg1 + ∂cg2.

holds with equality if g1 and g2 are continuously differentiable.

holds with equality if g1 and g2 are convex.

no equality in general: g : x 7→ |x|

∂c(g − g) = ∂c(x 7→ 0) = {0} ⊂ ∂c(g) + ∂c(−g) =

{
0 if x ̸= 0

[−2, 2] if x = 0
.

Deep learning: no convexity, no smoothness. Calculus rules?

Backpropagating subgradients does not produce subgradients.

Sampling subgradients does not produce subgradients in expectation.

Important remark: it works extremely well in practice, despite artifacts.

72 / 96

Descent mechanism: chain rule along Lipschitz curves

J Lipschitz (locally), J(θk+1) ≤ J(θk)?

θk+1 = θk − αkvk ⇔ θk+1 − θk
αk

∈ −∂J(θk)

vk ∈ ∂J(θk).

Chain rule along Lipschiz curves (Brézis 1973, Valadier 1989).
Hypothesis: For any Lipschitz γ : [0, 1] 7→ Rp

d

dt
J(γ(t)) = ⟨v, γ̇(t)⟩ ∀v ∈ ∂J(γ(t)), a.e. t ∈ [0, 1]

= −∥γ̇(t)∥2, a.e. t ∈ [0, 1]

Suppose: γ̇(t) ∈ −∂J(γ(t)) for almost all t ∈ [0, 1],
then t 7→ J(γ(t)) decreases, strictly if 0 ̸∈ ∂J(γ(t)).

Stochastic approximation (Benaim-Haufbauer-Sorin (2005), Faure-Roth (2013)),
subgradient plus zero mean noise, under proper assumptions:

Vanishing step sizes, almost surely all accumulation points are critical points.
73 / 96

Generic triviality, generic rigidity

Borwein-Moors (2000),Loewen-Wang (2000): Let f be a typical 1-Lipschitz function (in
sup norm), then

∂f is the unit ball everywhere (no chain rule, no subgradient algorithm).
local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

−1.0 −0.5 0.0 0.5 1.0

−
0.

00
6

0.
00

0

x

f(
x)

DL losses are tame: Let J be a typical locally Lipschitz deep learning loss, then

Relu network + square loss: J piecewise polynomial.
More generally: J semi-algebraic, definable.
Bolte-Daniilidis-Lewis 2007, Davis et.al. 2019: Chain rule along Lipschitz curves.

−1.0 −0.5 0.0 0.5 1.0

−
2

2
4

x

f(
x)

74 / 96

Semi-algebraic?

Basic set: Solution set of finitely many polynomial inequalities.
Set: Finite union of Basic semi-algebraic sets.
Function, set valued map: Semi-algebraic graph.
Examples: polynomials, square root, quotients, norm, relu, rank . . .

Tarski Seidenberg: first order formula involving semi-algebraic sets → semi-algebraic.
gradient / subgradient of semi-algebraic function, partial minima, composition

Bolte-Daniilidis-Lewis 2007, Davis et.al. 2019: Chain rule along Lipschitz curves.

75 / 96

Lyapunov mechanism (continuous time)

Chain rule (Davis et.al.): for any γ : R → Rp Lipschitz, for almost all t ∈ R,

d

dt
(J ◦ γ)(t) = ⟨v, γ̇(t)⟩ , ∀v ∈ ∂cJ(γ(t)).

Chain rule from the projection formula of Bolte, Daniilidis, Lewis, Shiota.

76 / 96

Generic triviality, generic rigidity

Typical Lipschitz function: pathological

No chain rule (no convergence).

−1.0 −0.5 0.0 0.5 1.0

−
0.

00
6

0.
00

0

x

f(
x)

Typical DL loss: rigid (definable / semi-algebraic / piecewise polynomial)

Chain rule (rich convergence theory).

−1.0 −0.5 0.0 0.5 1.0

−
2

2
4

x

f(
x)

77 / 96

Nonsmooth backpropagation (Bolte-Pauwels 2020, Castera et. al. 2019)

θk+1 = θk − αkbackprop JIk (θk).

Let D be the (set-valued) output of backpropagation applied to the DL loss J (with Clarke
subgradient in place of gradients).

Conservativity:
For any Lipschitz γ : [0, 1] 7→ Rp

d

dt
J(γ(t)) = ⟨v, γ̇(t)⟩ ∀v ∈ D(γ(t)), a.e. t ∈ [0, 1].

Convergence of SGD for DL: under proper assumptions,

almost surely accumulation points of SGD sequences are D-critical: 0 ∈ D(θ)

for most sequences, accumulation points are Clarke critical 0 ∈ ∂J(θ).

78 / 96

Main takeways regarding nonsmoothness

Practice usually flows transparently as in the smooth case.

Theoretical analysis is possible, details handled with care.

79 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

80 / 96

Back to convergence arguments

J(θ) = 1
n

∑n
i=1 Ji(θ), each Ji has L Lipschitz gradient.

“Convergence in quadratic mean”: Suppose σ(θ) ≤ σ and J(θ) ≥ J∗, for all θ ∈ Rp .
(Ik)k∈N iid unif., 0 < α ≤ 1/L, θ0 ∈ Rp, θk+1 = θk − α∇JIk (θk)

For k ∈ N large enough, and α > 0 small enough, SGD finds approximate critical points,
in quadratic mean.

EIk [J(θk − α∇JIk (θk))] ≤ J(θk)−
α

2
∥∇J(θk)∥2 +

Lα2

2
σ2

So called: Martingale method.

ODE method: alternative arguments.

Relate to continuous time dynamics.

Main theoretical option to handle nonsmoothness.

Qualitative.

81 / 96

The ODE method

Stochastic approximation: θk+1 = θk − αk(∇J(θk) + ϵk+1).
Zero mean noise ϵk+1 ∈ Rp, independent of the past.

Differentiable J (Ljung 1977): The sequence (θk)k∈N behaves in the small step limit as
solutions to the differential equation

θ̇ = −∇J(θ)

Developments: Benäım, Kushner, Yin

Nonsmooth setting:
θk+1 ∈ θk − αk(H(θk) + ϵk+1)

H : Rp ⇒ Rp, set valued, locally bounded, convex non-empty values, closed graph.

Clarke’s subdifferential ∂cJ .

Set-valued output of nonsmooth backpropagation conv(D).

First order dynamics in phase space → second order dynamics.

Noise averaging: Zero mean + independent of the past + boundedness conditions
→ negligible effect, martingale argument.

82 / 96

Intuitive ideas

Euler discretization: J : Rp → R, Lipschitz, semi-algebraic,

θk+1 − θk
αk

∈ −∂cJ(θk) ∼ θ̇(t) ∈ −∂cJ(θ(t))

Invariance.

Regular values are repulsive.

Leverage Semi-algebraicity.

Noiseless setting.

83 / 96

Continuous time flow and invariance

Differential inclusion: J : Rp → R, Lipschitz, semi-algebraic,

γ̇(t) ∈ −(∂cJ(γ(t))

Solutions: γ : R → Rp Lipschitz, almost all t (Aubin, Celina, Filippov . . .)

Invariant set: S ⊂ Rp, fo all x ∈ S,
there is γ : R → Rp, Lipschitz solution,
γ(0) = x and γ(R) ⊂ S.

Theorem: θk+1 ∈ θk − αk∂J(θk). Under boundedness assumptions.
acc denote the set of accumlation points, the following are invariant sets

Vanishing steps: αk → 0 as k → ∞,
∑

αk = ∞ (Benaim, Hoffbauer, Sorin),

S = acc (θk)k→∞

Constant steps: θk(α) with αk = α > 0 for all k (Bolte, Le, Moulines, Pauwels)

S =
⋂
α>0

cl
⋃

0<s≤α

acc (θk(s))k→∞ = “acc (acc (θk(α))k→∞)α→0+ ”

84 / 96

Proof intuition

Euler discretization:

θk+1 − θk
αk

∈ −∂cJ(θk) ∼ θ̇(t) ∈ −∂cJ(θ(t))

Sequences as Lipschitz functions: there is a nearby solution, closer as step size decreases

Vanishing step: Constant step:

85 / 96

Regular values are repulsive

Recursion: αk > 0, θk+1 ∈ θk − αk∂
cJ(θk)

crit J = {θ : 0 ∈ ∂cJ(θ)} vcrit J = J (crit J)

Lemma: If l ̸∈ vcrit , there is ᾱ > 0 such that if αk ≤ ᾱ and
∑

αk = +∞,
either lim supk→∞ ∥θk∥ = +∞, or lim infk→∞ J(θk) > l or lim supk→∞ J(θk) < l.

Proof crucially relies on the chain rule and Lyapunov decrease.

Consequence: θk+1 ∈ θk − αk∂J(θk). Under boundedness assumptions.
acc denote the set of accumlation points, the following are invariant sets

Vanishing steps: αk → 0 as k → ∞,
∑

αk = ∞

S = acc (θk)k→∞ J(S) ⊂ vcrit .

Constant steps: θk(α) with αk = α > 0 for all k

S =
⋂
α>0

cl
⋃

0<s≤α

acc (θk(s))k→∞ J(S) ⊂ vcrit

86 / 96

Overall strategy

Let S ⊂ Rp be invariant and J(S) ⊂ vcrit J , what can I say about S?

In general: not much. For well structured f : a lot more.

−1.0 −0.5 0.0 0.5 1.0

−
0.

00
6

0.
00

0

x

f(
x)

Semi-algebraic J : S ⊂ crit .

vcrit J is finite (Morse-Sard), J(S) is constant.

For any Lipschitz γ, d
dt
J(γ(t)) = −minv∈∂cJ(γ(t)) ∥v∥2 a.a. t (chain rule).

Invariance, for any x ∈ S, γ(0) = x, γ(R) ⊂ S, J(γ(R)) singleton, d
dt
J(γ(t)) = 0.

87 / 96

Conclusion regarding the ODE method

Theorem: θk+1 ∈ θk − αk∂J(θk). Under boundedness assumptions.
acc denote the set of accumlation points

Vanishing steps: αk → 0 as k → ∞,
∑

αk = ∞ (Benaim, Hoffbauer, Sorin),

acc (θk)k→∞ ⊂ crit lim
k→∞

dist(θk, crit) = 0.

Constant steps: θk(α) with αk = α > 0 for all k (Josz et. al.)⋂
α>0

cl
⋃

0<s≤α

acc (θk(s))k→∞ ⊂ crit lim
α→0

lim sup
k→∞

dist(θk, crit) = 0.

Many extensions:
Averaging out noise, more complicated dynamics, avoidance of traps

88 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

89 / 96

Understanding deep networks

Why can we train deep networks (non convex, NP-hard)?

Why do deep network generalize?

Statistical learning theory: Understanding Deep Learning Requires Rethinking
Generalization (Zhang et. al. 2017). Challenge the notion of overfitting.

Important factor:

Optimization algorithms

Beyond computational efficiency (contrary to traditional statistical learning).

Loss structure (compositional, rigidity).

90 / 96

Favorable loss landscape

Absence of convexity: cannot garanty better than critical points.

Heuristic explaination: gradient methods succeed in deep network training

All (most) local minima are close to global

(most) saddle points have negligible effect

Many results for specific model classes (linear, approximation by physics models . . .).

91 / 96

Large dimension, many escapes

Extreme overparametrization: many more parameters than data.

Classical view: red flag.

Theoretical studies (starting 2018): this could have some benefit

Approximate well optimization in function space (possibly convex).

Global minima almost dense, SGD converges to them (lazy training).

Neural tangent kernel.

Mean field approximation.

92 / 96

Algorithmic bias

Many minima: Gradient method “chooses” good global minima, A ∈ Rn×p, p > n,
x̄ ∈ Rp unknown, Ax̄ known:

min
x

∥Ax−Ax̄∥22

Gradient descent initialized at 0 will converge (linearly) to

argminx ∥x∥22
s.t. Ax = Ax̄

1.0 0.5 0.0 0.5 1.0
Input, univariate

2

0

2

4

6

Ob
se

rv
at

io
n,

 p
re

di
ct

io
n

Trained relu network (adam)
Small network
Linear model
Data

1.0 0.5 0.0 0.5 1.0
Input, univariate

2

0

2

4

6

Ob
se

rv
at

io
n,

 p
re

di
ct

io
n

Trained relu network (adam)
Another network interpolator
Data

Implicit bias: solution algorithm is key, directional convergence, benign overfitting . . .
93 / 96

Understanding deep networks, still far

Donoho: Data science at the singularity 2024.

94 / 96

Plan

1 The two pillars

2 Algorithmic differentiation

3 Stochastic gradient algorithms

4 Deep learning optimizers

5 Additional variations on training

6 Favorable landscapes: gradient dominated functions

7 Nonsmoothness

8 The ODE method

9 Further questions

10 Conclusion

95 / 96

Conclusion

Optimization for deep learning:

Renewed interest in nonconvex optimization, algorithm design and analysis.

Specific community / practice, sometimes different from classical math programming

Practice is evolving extremely fast.

Algorithmic ideas are difficult to evaluate (benchmarking is a full time job).

Theoretical arguments to explain empirical successes for idealized situations.

Thanks

96 / 96

	The two pillars
	Algorithmic differentiation
	Stochastic gradient algorithms
	Deep learning optimizers
	Additional variations on training
	Favorable landscapes: gradient dominated functions
	Nonsmoothness
	The ODE method
	Further questions
	Conclusion

