Majorization-minimization for non-negative matrix factorization

Cédric Févotte

Institut de Recherche en Informatique de Toulouse (IRIT)

CIMI Thematic School October 2024

Outline

[Generalities](#page-2-0)

[Matrix factorization models](#page-2-0) [Nonnegative matrix factorization \(NMF\)](#page-12-0)

[Optimization for NMF](#page-19-0)

[Measures of fit](#page-20-0) [Majorization-minimization](#page-28-0) [Other algorithms](#page-42-0) [Hyperparameters selection](#page-48-0)

[Regularized NMF](#page-53-0)

[Common regularizers : sparsity, smoothness](#page-54-0) [Automatic relevance determination](#page-63-0)

[Examples in imaging](#page-67-0)

[Robust NMF for nonlinear hyperspectral unmixing](#page-68-0) [Factor analysis in dynamic PET](#page-73-0)

≈ dictionary learning low-rank approximation factor analysis latent semantic analysis

≈ dictionary learning low-rank approximation factor analysis latent semantic analysis

for dimensionality reduction (coding, low-dimensional embedding)

for unmixing (source separation, latent topic discovery)

for completion (collaborative filtering, image inpainting)

- \triangleright Simple generative $\&$ interpretable models, popular in unsupervised settings.
- \triangleright Used in many fields for a long time :
	- \triangleright Principal component analysis PCA (Pearson, 1901)
	- \blacktriangleright Factor analysis (Spearman, 1904)
	- \triangleright Latent semantic analysis LSA (Deerwester et al., 1988)
	- \triangleright Independent component analysis ICA (Comon, 1994)
	- \triangleright Nonnegative matrix factorization NMF (Lee & Seung, 1999)
	- ▶ Latent Dirichlet allocation LDA (Blei et al., 2003)
	- ▶ Sparse dictionary learning, e.g., K-SVD (Aharon et al., 2006)
- \triangleright Active topics :
	- \triangleright design of nonconvex optimization algorithms with proven convergence
	- \blacktriangleright landscape analysis, search for global optima
	- \triangleright conditions for identifiability
	- \blacktriangleright rank selection
	- \triangleright probabilistic models & statistical approaches (e.g., integer-valued or binary data)

Nonnegative matrix factorization

- Data **V** and factors **W**, **H** have nonnegative entries.
- ^I Nonnegativity of **W** ensures interpretability of the dictionary, because patterns w_k and samples v_n belong to the same space.
- ► Nonnegativity of **H** tends to produce part-based representations, because subtractive combinations are forbidden.

Early work by (Paatero and Tapper, 1994), landmark Nature paper by (Lee and Seung, 1999)

49 images among 2429 from MIT's CBCL face dataset

PCA dictionary with $K = 25$

red pixels indicate negative values

NMF dictionary with $K = 25$

experiment reproduced from (Lee and Seung, 1999) **16/67**

SAME for latent semantic analysis and all construction of the construction of the According to the generative model of Fig. 3, visible variables are

risible variables requires the and Seung, 1999; Hofmann, 1999) (Lee and Seung, 1999; Hormann, 19 1. Palmer, S. E. Hierarchical structure in perceptual representation. *Cogn. Psychol.* **9,** 441–474 (1977).

reproduced from (Lee and Seung, 1999)

NMF for audio spectral unmixing

(Smaragdis and Brown, 2003)
Resulting reconstruction is additively reconstructed by a distribution is additively reconstructed by a distri

reproduced from (Smaragdis, 2013)

NMF for hyperspectral unmixing

(Berry, Browne, Langville, Pauca, and Plemmons, 2007)

reproduced from (Bioucas-Dias et al., 2012)

Outline

[Generalities](#page-2-0)

[Matrix factorization models](#page-2-0) [Nonnegative matrix factorization \(NMF\)](#page-12-0)

[Optimization for NMF](#page-19-0)

[Measures of fit](#page-20-0) [Majorization-minimization](#page-28-0) [Other algorithms](#page-42-0) [Hyperparameters selection](#page-48-0)

[Regularized NMF](#page-53-0)

[Common regularizers : sparsity, smoothness](#page-54-0) [Automatic relevance determination](#page-63-0)

[Examples in imaging](#page-67-0)

[Robust NMF for nonlinear hyperspectral unmixing](#page-68-0) [Factor analysis in dynamic PET](#page-73-0)

NMF as a constrained minimization problem

Minimize a measure of fit between **V** and **WH**, subject to nonnegativity :

$$
\min_{\mathbf{W},\mathbf{H}\geq 0} D(\mathbf{V}|\mathbf{W}\mathbf{H}) = \sum_{fn} d([\mathbf{V}]_{fn} | [\mathbf{W}\mathbf{H}]_{fn}),
$$

where $d(x|y)$ is a scalar cost function, e.g.,

- ► squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)
- \triangleright Kullback-Leibler divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)
- Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)
- \triangleright *α*-divergence (Cichocki et al., 2008)
- **►** *β*-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)
- \triangleright Bregman divergences (Dhillon and Sra, 2005)
- \triangleright and more in (Yang and Oja, 2011)

Regularization terms often added to D(**V**|**WH**) for sparsity, smoothness, etc. Nonconvex problem.

Probabilistic models

- ^I Let **V** ∼ p(**V**|**WH**) such that
	- \blacktriangleright E[V|WH] = WH
	- \blacktriangleright $p(\mathsf{V}|\mathsf{W}\mathsf{H}) = \prod_{\mathit{fn}} p(\mathit{v}_{\mathit{fn}}|[\mathsf{W}\mathsf{H}]_{\mathit{fn}})$
- \blacktriangleright then the following correspondences apply with

*?*conditional independence over f does not apply

A popular measure of fit in NMF (Basu et al., 1998; Cichocki and Amari, 2010)

$$
d_{\beta}(x|y) \stackrel{\text{def}}{=} \left\{ \begin{array}{cl} \frac{1}{\beta(\beta-1)} \left(x^{\beta} + (\beta-1) y^{\beta} - \beta \, x \, y^{\beta-1} \right) & \beta \in \mathbb{R} \backslash \{0,1\} \\ x \, \log \frac{x}{y} + (y-x) & \beta = 1 \\ \frac{x}{y} - \log \frac{x}{y} - 1 & \beta = 0 \end{array} \right.
$$

Special cases :

- **►** squared Euclidean distance a.k.a quadratic loss ($β = 2$)
- **►** generalized Kullback-Leibler (KL) divergence ($β = 1$)
- \triangleright Itakura-Saito (IS) divergence (*β* = 0)

Properties :

- $▶$ Homogeneity : $d_{\beta}(\lambda x|\lambda y) = \lambda^{\beta} d_{\beta}(x|y)$
- \blacktriangleright d_{*β*}(x|y) is a convex function of y for $1 < \beta < 2$
- \triangleright Bregman divergence

A common NMF algorithm design : alternating methods

- **►** Block-coordinate update of **H** given $W^{(i-1)}$ and W given $H^{(i)}$.
- ▶ Updates of **W** and **H** equivalent by transposition :

```
\mathbf{V} \approx \mathbf{W} \mathbf{H} \Leftrightarrow \mathbf{V}^{\mathsf{T}} \approx \mathbf{H}^{\mathsf{T}} \mathbf{W}^{\mathsf{T}}
```
 \triangleright Objective function separable in the columns of **H** or the rows of **W** :

$$
D(\mathbf{V}|\mathbf{W}\mathbf{H})=\sum_{n}D(\mathbf{v}_n|\mathbf{W}\mathbf{h}_n)
$$

 \triangleright Essentially left with nonnegative linear regression :

$$
\min_{\mathbf{h}\geq 0} \ C(\mathbf{h}) \stackrel{\mathsf{def}}{=} D(\mathbf{v}|\mathbf{W}\mathbf{h})
$$

Numerous references in the image restoration literature, e.g., (Richardson, 1972; Lucy, 1974; Daube-Witherspoon and Muehllehner, 1986; De Pierro, 1993)

Block-descent algorithm, nonconvex problem, initialization is an issue.

- \triangleright Finding a good & workable local majorization is the crucial point.
- \triangleright Treating convex and concave terms separately with Jensen and tangent inequalities usually works. E.g. :

$$
C_{IS}(\mathbf{h}) = \left[\sum_{f} \frac{v_f}{\sum_{k} w_{fk} h_k}\right] + \left[\sum_{f} \log \left(\sum_{k} w_{fk} h_k\right)\right] + cst
$$

- \triangleright Finding a good & workable local majorization is the crucial point.
- \triangleright Treating convex and concave terms separately with Jensen and tangent inequalities usually works. E.g. :

$$
C_{\text{IS}}(\mathbf{h}) = \left[\sum_{f} \frac{v_f}{\sum_{k} w_{fk} h_k}\right] + \left[\sum_{f} \log \left(\sum_{k} w_{fk} h_k\right)\right] + cst
$$

In most cases, leads to nonnegativity-preserving multiplicative algorithms :

$$
h_k = \tilde{h}_k \left(\frac{\nabla_{h_k}^{\scriptscriptstyle{-}} C(\tilde{\bold{h}})}{\nabla_{h_k}^{\scriptscriptstyle{+}} C(\tilde{\bold{h}})} \right)^{\gamma}
$$

- ► $\nabla_{h_k} C(h) = \nabla_{h_k}^+ C(h) \nabla_{h_k}^- C(h)$ and the two summands are nonnegative.
- **►** if $\nabla_{h_k} C(\tilde{\mathbf{h}}) > 0$, ratio of summands $\lt 1$ and h_k decreases.
- $\blacktriangleright \gamma$ is a divergence-specific scalar exponent.
- Details in (Nakano et al., 2010; Févotte and Idier, 2011; Yang and Oja, 2011)
► IS divergence $(\beta = 0)$

$$
d_{\mathsf{IS}}(x|y) = \frac{x}{y} - \log \frac{x}{y} - 1
$$

 \triangleright Nonnegative linear regression with the IS divergence

$$
\min_{\mathbf{h} \geq 0} C_{1S}(\mathbf{h}) = \sum_{f} d_{1S}(v_{f} | [\mathbf{W}\mathbf{h}]_{f})
$$
\n
$$
= \underbrace{\left[\sum_{f} \frac{v_{f}}{\sum_{k} w_{fk} h_{k}}\right]}_{C_{1}(\mathbf{h}) \text{ (convex)}} + \underbrace{\left[\sum_{f} \log \left(\sum_{k} w_{fk} h_{k}\right)\right]}_{C_{2}(\mathbf{h}) \text{ (concave)}} + \text{cst}
$$

 \triangleright Majorization of $C_1(h)$ with Jensen's inequality. Let $f(x)$ be a convex function and $\boldsymbol{\lambda} \in \mathbb{R}_+^K$ with $\sum_k \lambda_k = 1$. Then :

$$
f\left(\sum\nolimits_k \lambda_k h_k\right) \leq \sum\nolimits_k \lambda_k f(h_k).
$$

► Let $\tilde{\mathbf{h}} \in \mathbb{R}_+^K$ be the current estimate, $\tilde{\mathbf{v}} = \mathbf{W}\tilde{\mathbf{h}}$ be the current approximation and

$$
\lambda_{fk} = \frac{w_{fk} \tilde{h}_k}{\tilde{v}_f} = \frac{w_{fk} \tilde{h}_k}{\sum_j w_{fp} \tilde{h}_j} \quad \left(\text{note that } \sum_k \lambda_{fk} = 1\right).
$$

► Then, by convexity of $f(x) = x^{-1}$, we may write :

$$
C_1(\mathbf{h}) = \sum_f v_f \left(\sum_k w_{fk} h_k\right)^{-1} = \sum_f v_f \left(\sum_k \lambda_{fk} \frac{w_{fk} h_k}{\lambda_{fk}}\right)^{-1}
$$

$$
\leq \sum_{fk} v_f \frac{\lambda_{fk}^2}{w_{fk} h_k} = \sum_{fk} w_{fk} \frac{v_f}{\tilde{v}_f^2} \frac{\tilde{h}_k^2}{h_k} = G_1(\mathbf{h}|\tilde{\mathbf{h}}).
$$

 \blacktriangleright Majorization of $C_2(h)$ with the tangent inequality. Let $g(h)$ be a concave function then :

$$
g(\mathbf{h}) \leq g(\tilde{\mathbf{h}}) + \nabla g(\tilde{\mathbf{h}})^{\top}(\mathbf{h} - \tilde{\mathbf{h}}) = \sum_{k} [\nabla g(\tilde{\mathbf{h}})]_{k} h_{k} + \text{cst.}
$$

• Given
$$
C_2(\mathbf{h}) = \sum_f \log(\sum_k w_{fk} h_k)
$$
, we have :

$$
[\nabla C_2(\tilde{\mathbf{h}})]_k = \nabla_{h_k} C_2(\tilde{\mathbf{h}}) = \sum_f \frac{w_{f_k}}{\tilde{v}_f}.
$$

Finally, we may majorize $C_2(h)$ with :

$$
G_2(\mathbf{h}|\tilde{\mathbf{h}})=\sum\nolimits_{fk}\frac{w_{fk}}{\tilde{v}_f}h_k+cst.
$$

In the end, we may majorize $C_{1S}(\mathbf{h})$ with :

$$
G(\mathbf{h}|\tilde{\mathbf{h}}) = G_1(\mathbf{h}|\tilde{\mathbf{h}}) + G_2(\mathbf{h}|\tilde{\mathbf{h}}) + cst
$$

=
$$
\sum_{f,k} w_{f,k} \left[\frac{v_f}{\tilde{v}_f^2} \frac{\tilde{h}_k^2}{h_k} + \frac{1}{\tilde{v}_f} h_k \right] + cst.
$$

 \triangleright Smooth, convex and separable majorizer. Easily minimized by cancelling its gradient, leading to the MM-based multiplicative update

$$
h_k = \tilde{h}_k \left(\frac{\sum_{f} w_{fk} v_f [\mathbf{W}\tilde{\mathbf{h}}]_f^{-2}}{\sum_{f} w_{fk} [\mathbf{W}\tilde{\mathbf{h}}]_f^{-1}} \right)^{\frac{1}{2}}.
$$

 \blacktriangleright Algorithm known from (Cao et al., 1999). The $\frac{1}{2}$ exponent can be dropped using majorization-equalization (Févotte and Idier, 2011).

The multiplicative updates (MU) for NMF with *β*-divergence

- ▶ Alternating updates of **W** and **H**.
- In standard practice, only one MM update applied to **W** and **H**, rather than fully solving subproblems min_{W>0} D(V|WH) and min_H D(V|WH).
- E Leads to a valid descent algorithm with multiplicative updates given by :

$$
\mathbf{H} \leftarrow \mathbf{H}. \left(\frac{\mathbf{W}^T \left[(\mathbf{W} \mathbf{H})^{.(\beta - 2)} \mathbf{.} \mathbf{V} \right]}{\mathbf{W}^T \left[\mathbf{W} \mathbf{H} \right]^{.(\beta - 1)}} \right)^{\gamma(\beta)}
$$

$$
\mathbf{W} \leftarrow \mathbf{W}. \left(\frac{\left[(\mathbf{W} \mathbf{H})^{.(\beta - 2)} \mathbf{.} \mathbf{V} \right] \mathbf{H}^T}{\left[\mathbf{W} \mathbf{H} \right]^{.(\beta - 1)} \mathbf{H}^T} \right)^{\gamma(\beta)}
$$

- \triangleright Very straightforward implementation, no hyperparameters!
- Nonnegativity is automatically preserved given positive initializations.
- Linear complexity per iteration.
- In practice, minimizing $D(V + \epsilon)$ **WH** + ϵ) prevents from numerical issues.

Convergence of the iterates

- \triangleright By design, we have convergence of the objective values $C(W, H) = D(V|WH)$.
- \triangleright What about the iterates? Only partial answers so far.
- \triangleright A theoretical challenge arises from the lack of coercivity of the objective : $\|\mathbf{W}\|$ or $\|\mathbf{H}\| \to \infty \neq C(\mathbf{W}, \mathbf{H}) \to \infty$.
- ► Due to the scale indeterminacy : $C(\mathsf{W}\bm{\Lambda}^{-1},\bm{\Lambda}\mathsf{H})=C(\mathsf{W},\mathsf{H}),$ with $\bm{\Lambda}\to 0.$

Possible remedies (modified problems)

- 1) Impose $W > \epsilon$, $H > \epsilon$ (Takahashi et al., 2018; Hien and Gillis, 2021).
- 2) Slightly change the objective function to ensure coercivity (Zhao and Tan, 2018) :

$$
\mathcal{C}(\mathbf{W},\mathbf{H}) = \mathit{D}(\mathbf{V}|\mathbf{W}\mathbf{H}) + \epsilon \|\mathbf{W}\|_1 + \epsilon \|\mathbf{H}\|_1
$$

MM results in adding ϵ at the denominator of the multiplicative updates.

Other alternating optimization methods

- \triangleright MM-based multiplicative updates are a simple and competitive choice for many divergences (beyond *β*-divergences).
- \triangleright More efficient options have been proposed for specific measures of fit, see books by Cichocki et al. (2009); Gillis (2020)

Quadratic loss (selection)

- \triangleright Active-set methods (Kim and Park, 2011)
- \triangleright Hierarchical alternating LS (Cichocki et al., 2007; Gillis and Glineur, 2012)
- Proximal gradient descent (Lin, 2007; Guan et al., 2012; Bolte et al., 2014)
- ▶ ADMM (Sun and Févotte, 2014; Huang et al., 2016)

Kullback-Leibler divergence (selection)

- ▶ Second-order coordinate descent methods (Hsieh and Dhillon, 2011)
- \blacktriangleright Hybrid Newton-type algorithms with line search and MU (Hien and Gillis, 2021)

- \triangleright Optimize $C(W, H) = D(V|W, H)$ jointly in W and H.
- \triangleright Exciting line of research, driven by recent results in non-convex optimization. Possibly better optima and lower complexity.

- \triangleright Optimize $C(W, H) = D(V|W, H)$ jointly in W and H.
- Exciting line of research, driven by recent results in non-convex optimization. Possibly better optima and lower complexity.
- 1) Proximal gradient algorithms with global smoothness constant (∼Lipschitz) for the quadratic loss (Rakotomamonjy, 2013; Mukkamala and Ochs, 2019).

- \triangleright Optimize $C(W, H) = D(V|W, H)$ jointly in W and H.
- \triangleright Exciting line of research, driven by recent results in non-convex optimization. Possibly better optima and lower complexity.
- 1) Proximal gradient algorithms with global smoothness constant (∼Lipschitz) for the quadratic loss (Rakotomamonjy, 2013; Mukkamala and Ochs, 2019).
- 2) Joint MM algorithm for the *β*-divergence (Marmin, Goulart, and Févotte, 2023a) :
	- \triangleright Global majorizer constructed using Jensen and tangent inequalities :

 $C(W, H) \leq G(W, H|\tilde{W}, \tilde{H})$ $C(\tilde{W}, \tilde{H}) = G(\tilde{W}, \tilde{H}|\tilde{W}, \tilde{H})$

- \triangleright Global minimizer of G not available in closed form. G non-convex.
- \triangleright Alternate minimization of G leads to closed-form updates and new multiplicative rules. Important computational savings for some values of *β* (see paper).

- \triangleright Optimize $C(W, H) = D(V|W, H)$ jointly in W and H.
- \triangleright Exciting line of research, driven by recent results in non-convex optimization. Possibly better optima and lower complexity.
- 1) Proximal gradient algorithms with global smoothness constant (∼Lipschitz) for the quadratic loss (Rakotomamonjy, 2013; Mukkamala and Ochs, 2019).
- 2) Joint MM algorithm for the *β*-divergence (Marmin, Goulart, and Févotte, 2023a) :
	- \triangleright Global majorizer constructed using Jensen and tangent inequalities :

 $C(W, H) \leq G(W, H|\tilde{W}, \tilde{H})$ $C(\tilde{W}, \tilde{H}) = G(\tilde{W}, \tilde{H}|\tilde{W}, \tilde{H})$

- \triangleright Global minimizer of G not available in closed form. G non-convex.
- \triangleright Alternate minimization of G leads to closed-form updates and new multiplicative rules. Important computational savings for some values of *β* (see paper).
- 3) Second-order method for *β*-NMF based on efficient Hessian approximations and tricks to maintain semidefinite positivity (Vandecappelle et al., 2020).

Large-scale NMF

Online NMF

- **Large number of samples** $N \gg F$ **.**
- \blacktriangleright Update **W** as samples v_n become available.
- \triangleright Vectors \mathbf{h}_n act as latent variables, minimize :

$$
C(\mathbf{W}) = \sum_{n=1}^{N} \min_{\mathbf{h}_n \geq 0} D(\mathbf{v}_n | \mathbf{W} \mathbf{h}_n)
$$

 \triangleright Solved with online MM (Lefèvre et al., 2011; Mairal, 2015; Zhao et al., 2017)

Stochastic NMF

- \blacktriangleright Large F and N.
- \triangleright Online NMF with stochastic subsampling :

$$
\min_{\mathbf{h}_n\geq 0} D(\mathbf{v}_n[\mathcal{I}]|\mathbf{W}[\mathcal{I},:] \mathbf{h}_n)
$$

where $\mathcal I$ is a random set of indices (Mensch et al., 2018).

Selecting hyperparameters K and *β* with matrix completion

- Matrix completion of held out data using a range of values of β (or K).
- **►** Select β (or K) that best reconstructs held out coefficients v_f with $[WH]$ _{fn}.

Selecting *β* with matrix completion

- ▶ Remove some coefficients of V randomly.
- ^I Pick a candidate value of *β* and solve :

$$
\min_{\mathbf{W}, \mathbf{H} \geq \mathbf{0}} D(\mathbf{V}|\mathbf{W}\mathbf{H}) = \sum_{(f,n) \in \mathcal{O}} d_{\beta}([\mathbf{V}]_{fn} | [\mathbf{W}\mathbf{H}]_{fn})
$$

where \hat{O} is the set of remaining ("observed") coefficients.

I Optimization can be handled using a mask $\gamma_{fn} \in \{0, 1\}$:

$$
\sum_{(f,n)\in\mathcal{O}}d_{\beta}([\mathbf{V}]_{\mathit{fn}}|[\mathbf{W}\mathbf{H}]_{\mathit{fn}})=\sum_{\mathit{fn}}\gamma_{\mathit{fn}}d_{\beta}([\mathbf{V}]_{\mathit{fn}}|[\mathbf{W}\mathbf{H}]_{\mathit{fn}})=\sum_{\mathit{fn}}d_{\beta}(\gamma_{\mathit{fn}}[\mathbf{V}]_{\mathit{fn}}|\gamma_{\mathit{fn}}[\mathbf{W}\mathbf{H}]_{\mathit{fn}})
$$

Assess β using a given reconstruction error on held out data :

$$
L(\beta) = \sum_{(f,n)\in\overline{\mathcal{O}}} \ell(v_{fn}|[\mathbf{WH}]_{fn})
$$

Repeat for other values of β and pick $\hat{\beta}$ with minimum $L(\beta)$.

Selecting *β* with matrix completion (Févotte and Dobigeon, 2015)

Moffett Field hyperspectral data

reproduced from (Dobigeon, 2007)

Experimental setting :

- \triangleright Two unfolded hyperspectral cubes, $F \sim 150$, $N = 50 \times 50$
	- Aviris instrument over Moffett Field (CA) , lake, soil & vegetation.
	- \blacktriangleright Hyspex/Madonna instrument over Villelongue (FR), forested area.
- $K = 3$ (\sim ground truth)
- \blacktriangleright $\beta \in [-1, 3]$
- \triangleright Evaluation using the average spectral angle mapper (aSAM) :

$$
L(\beta) = \text{aSAM}(\mathbf{V}, \hat{\mathbf{V}}) = \frac{1}{N} \sum_{n=1}^{N} \text{acos} \left(\frac{\langle \mathbf{v}_n, \hat{\mathbf{v}}_n \rangle}{\|\mathbf{v}_n\| \|\hat{\mathbf{v}}_n\|} \right)
$$

Selecting *β* with matrix completion (Févotte and Dobigeon, 2015)

Estimated value $\hat{\beta} \approx 1.5$ for these datasets (compromise between Poisson and additive Gaussian noise).

Outline

[Generalities](#page-2-0)

[Matrix factorization models](#page-2-0) [Nonnegative matrix factorization \(NMF\)](#page-12-0)

[Optimization for NMF](#page-19-0)

[Measures of fit](#page-20-0) [Majorization-minimization](#page-28-0) [Other algorithms](#page-42-0) [Hyperparameters selection](#page-48-0)

[Regularized NMF](#page-53-0)

[Common regularizers : sparsity, smoothness](#page-54-0) [Automatic relevance determination](#page-63-0)

[Examples in imaging](#page-67-0)

[Robust NMF for nonlinear hyperspectral unmixing](#page-68-0) [Factor analysis in dynamic PET](#page-73-0)

Induce prior information or desired structure on **H** (or **W**) using penalty terms :

 $C(W, H) = D(V|WH) + \alpha S(H)$

 \triangleright MM algorithms are easily adapted to that setting :

 $D(V|WH)$ $\leq G(H|\tilde{H}, W)$

- Only the minimization step is changed.
- May however become intractable ; sometimes $S(H)$ needs to be majorized itself.
- \triangleright Similar to adjusting the proximal operator in proximal gradient descent.

Induce prior information or desired structure on **H** (or **W**) using penalty terms :

 $C(W, H) = D(V|WH) + \alpha S(H)$

 \triangleright MM algorithms are easily adapted to that setting :

 $D(V|WH) + \alpha S(H) \leq G(H|\tilde{H}, W) + \alpha S(H)$

- Only the minimization step is changed.
- May however become intractable ; sometimes $S(H)$ needs to be majorized itself.
- \triangleright Similar to adjusting the proximal operator in proximal gradient descent.

Sparse NMF

Goal : promote zeros in H (or **W**)

$$
\min_{\mathbf{W}, \mathbf{H} \geq 0} C(\mathbf{W}, \mathbf{H}) = D(\mathbf{V}|\mathbf{W}\mathbf{H}) + \alpha S(\mathbf{H})
$$

 \blacktriangleright Exemple : ℓ_1 norm

$$
S(\mathbf{H}) = \|\mathbf{H}\|_1 = \sum_{kn} h_{kn}
$$

 \blacktriangleright Exemple : log-sparsity

$$
S(\mathbf{H}) = \sum\nolimits_{kn} \log(h_{kn} + \epsilon)
$$

- ▶ Or terms that induce a group structure, e.g., cancel some rows of **H**.
- \triangleright Vast literature ! Seminal paper by Hoyer (2004).

Ill-posed problem

 \triangleright $S(.)$ can be made arbitrary small :

$$
C(\mathbf{W}\mathbf{\Lambda}^{-1},\mathbf{\Lambda}\mathbf{H})=D(\mathbf{V}|\mathbf{W}\mathbf{H})+S(\mathbf{\Lambda}\mathbf{H})
$$

► Need to control $\|\mathbf{W}\|$ to avoid degenerate solutions $\|\mathbf{W}\| \to \infty$, $\|\mathbf{H}\| \to 0$.

Sparse NMF

Remedy 1 : penalized optimization

 $\begin{array}{l} \mathsf{min}\ \mathsf{w}, \mathsf{H} \geq 0 \end{array}$ $\mathsf{C}(\mathsf{W},\mathsf{H}) = D(\mathsf{V}|\mathsf{W}\mathsf{H}) + \alpha S(\mathsf{H}) + \delta \|\mathsf{W}\|$

- \blacktriangleright Gentle optimization problem.
- \blacktriangleright Need to tune an extra parameter δ .

Remedy 2 : constrained optimization

 $\min_{\mathbf{W},\mathbf{H}\geq 0} C(\mathbf{W},\mathbf{H})=D(\mathbf{V}|\mathbf{W}\mathbf{H})+\alpha S(\mathbf{H})\quad \text{subject to}\quad \forall k,\|\mathbf{w}_k\|=1$

- \blacktriangleright Harder optimization problem.
- \blacktriangleright More natural in a dictionary learning perspective.

Sparse NMF with unit *`*1-norm dictionary constraint

Optimization problem

 $\min_{\mathbf{W}, \mathbf{H} \geq 0} C(\mathbf{W}, \mathbf{H}) = D(\mathbf{V}|\mathbf{W}\mathbf{H}) + \alpha S(\mathbf{H})$ subject to $\forall k, \|\mathbf{w}_k\|_1 = 1$

1) Lagragian method (Leplat, Gillis, and Idier, 2021) Search for saddle points of

$$
L(\mathbf{W}, \mathbf{H}, \boldsymbol{\nu}) = D(\mathbf{V}|\mathbf{W}\mathbf{H}) + \alpha S(\mathbf{H}) + \sum_{k} \nu_k(\|\mathbf{w}_k\|_1 - 1)
$$

- \blacktriangleright $\nu \in \mathbb{R}^K$ is the vector of Lagrangian multipliers. $S(\mathsf{H}) = \|\mathsf{H}\|_1$.
- \triangleright MM-based block-coordinate algorithm that updates **W**, **H** given ν .
- ► Only applies to $\beta \leq 1$ or $\beta \in \{\frac{5}{4}, \frac{4}{3}, \frac{3}{2}, 2\}$.
- \triangleright Update of ν given **W**, **H** requires a Newton-Raphson procedure.
- Conceptually well-grounded but limited scope.

Sparse NMF with fixed-norm dictionary constraint

2) Heuristic method (Eggert and Körner, 2004; Le Roux et al., 2015) Unconstrained optimization using reparametrization :

 $\mathbf{W} \leftarrow \mathbf{W} \mathbf{\Lambda}^{-1}$ with $\lambda_k = \|\mathbf{w}_k\|_1$

- \triangleright Minimize $C(W, H) = D(V|WΛ^{-1}H) + αS(H)$.
- \blacktriangleright Heuristic multiplicative algorithm using gradient splitting.
- No convergence guarantees (not even monotonicity of the objective function).

3) Block-descent MM method (Marmin, Goulart, and Févotte, 2023b) Unconstrained optimization of

$$
C(\mathbf{W},\mathbf{H})=D(\mathbf{V}|\mathbf{W}\mathbf{H})+\alpha S(\mathbf{\Lambda}\mathbf{H})
$$

 \triangleright Shown equivalent to the original problem (after renormalization of the solution).

- \triangleright Convergent multiplicative MM algorithm for all $\beta \in \mathbb{R}$ ©
- \blacktriangleright $S(H) = \ell_1$ or log-sparsity \heartsuit

Smooth NMF

Impose temporal or spatial regularization, e.g.,

$$
S(\mathbf{H}) = \sum_{kn} d(h_{kn} | h_{k(n-1)})
$$

- Least squares penalization (Virtanen, 2007; Essid and Févotte, 2013)
- Gamma Markov chains (Smaragdis et al., 2014; Filstroff et al., 2021)

Smooth NMF

Impose temporal or spatial regularization, e.g.,

$$
S(\mathbf{H}) = \sum_{kn} d(h_{kn} | h_{k(n-1)})
$$

- \blacktriangleright Least squares penalization (Virtanen, 2007; Essid and Févotte, 2013)
- ▶ Gamma Markov chains (Smaragdis et al., 2014; Filstroff et al., 2021)

One row of **H** with increasing smoothness (Févotte, 2011)

Other common regularizers

 \triangleright Orthogonal NMF : **HH**^T = **I**. Essentially nonnegative clustering (Ding et al., 2006).

- \blacktriangleright Projective NMF : $H = W^T V$. Essentially nonnegative PCA (Yang and Oja, 2010).
- \blacktriangleright Symmetric NMF : $H = W^T$. Popular in graph clustering (Kuang et al., 2012; Huang et al., 2013).
- ▶ Separable NMF : **W** is a subset of columns of **V**. Very active research topic ! (Donoho and Stodden, 2004; Gillis and Vavasis, 2014; Arora et al., 2016).
- ▶ Archetypal NMF : **W** belongs to the column-range of **V**. A relaxation of separable NMF (Ding et al., 2010; Chen et al., 2014).
- \triangleright Minimum-volume NMF : penalize the aperture of **W**. Very active research topic ! (Miao and Qi, 2007; Chan et al., 2009) (Leplat, Gillis, and Ang, 2020)

Outline

[Generalities](#page-2-0)

[Matrix factorization models](#page-2-0) [Nonnegative matrix factorization \(NMF\)](#page-12-0)

[Optimization for NMF](#page-19-0)

[Measures of fit](#page-20-0) [Majorization-minimization](#page-28-0) [Other algorithms](#page-42-0) [Hyperparameters selection](#page-48-0)

[Regularized NMF](#page-53-0)

[Common regularizers : sparsity, smoothness](#page-54-0) [Automatic relevance determination](#page-63-0)

[Examples in imaging](#page-67-0)

[Robust NMF for nonlinear hyperspectral unmixing](#page-68-0) [Factor analysis in dynamic PET](#page-73-0)

Automatic relevance determination in NMF (Tan and Févotte, 2013)

- Another way to select K, inspired by Bayesian PCA (Bishop, 1999).
- **F** Tie each column w_k and row h_k with a common scale parameter ϕ_k .
- **P** Probabilistic setting with priors $p(\mathbf{w}_k | \phi_k)$ and $p(\mathbf{h}_k | \phi_k)$.

- ^I Estimate **W** and **H** together with the scale parameters *φ*.
- Some scale parameters converge to 0 and the components are pruned.

Automatic relevance determination in NMF

(Tan and Févotte, 2013)

Statistical model

- \blacktriangleright Observation model : **V** ∼ \prod_{fn} Tweedie($v_{fn}|$ [**WH**]_{*fn, σ*², *β*)}
- ^I half-normal or exponential priors : **w**^k ∼ p(**w**^k |*φ*^k) and **h**^k ∼ p(**h**^k |*φ*^k)
- ^I inverse-Gamma prior : *φ*^k ∼ IG(*φ*^k |a*,* b)

Maximum a posteriori estimation

I Boils down to minimizing (using closed-form solution of ϕ_k)

$$
C(\mathbf{W}, \mathbf{H}) = D_{\beta}(\mathbf{V}|\mathbf{W}\mathbf{H}) + \lambda \sum_{k=1}^{K} \log \left(\|\mathbf{w}_{k}\| + \|h_{k}\| + b \right)
$$

 \blacktriangleright $\|\mathbf{x}\| = \frac{1}{2}\|\mathbf{x}\|_2^2$ or $\|\mathbf{x}\|_1$

- \blacktriangleright λ is a weight parameter that depends on a and σ^2
- \triangleright b acts as a sparsity shape parameter
- **Concave term** $log(x + b)$ **induces group-sparsity at the column & row level.**
- Block-descent multiplicative MM algorithm.
- Follow-up study with more general regularizations by (Cohen and Leplat, 2024).

Automatic relevance determination in NMF

Swimmer data decomposition

(b) ℓ_1 -ARD decomposition wih $K = 32$

Outline

[Generalities](#page-2-0)

[Matrix factorization models](#page-2-0) [Nonnegative matrix factorization \(NMF\)](#page-12-0)

[Optimization for NMF](#page-19-0)

[Measures of fit](#page-20-0) [Majorization-minimization](#page-28-0) [Other algorithms](#page-42-0) [Hyperparameters selection](#page-48-0)

[Regularized NMF](#page-53-0)

[Common regularizers : sparsity, smoothness](#page-54-0) [Automatic relevance determination](#page-63-0)

[Examples in imaging](#page-67-0)

[Robust NMF for nonlinear hyperspectral unmixing](#page-68-0) [Factor analysis in dynamic PET](#page-73-0)

 \triangleright Variants of the linear mixing model account for "non-linear" effects :

 $\mathbf{v}_n \approx \mathbf{W} \mathbf{h}_n + \mathbf{r}_n$

- ► Often, **r**_n has a parametric form such as linear combination of quadratic components $\{w_k \odot w_i\}_{ki}$ (Nascimento and Bioucas-Dias, 2009; Fan et al., 2009)
- \triangleright Nonlinear effects usually affect few pixels only.
- \triangleright We treat them as non-parametric sparse outliers.

$$
\min_{\mathbf{W},\mathbf{H},\mathbf{R}\geq 0} D_{\beta}(\mathbf{V}|\mathbf{W}\mathbf{H}+\mathbf{R})+\lambda \|\mathbf{R}\|_{2,1}
$$

where $\|\mathbf{R}\|_{2,1} = \sum_{n=1}^{N} \|\mathbf{r}_n\|_2$ induces sparsity at group level.

- ▶ A form of robust NMF (Candès et al., 2009)
- Block descent MM-based algorithm.

Moffett Field data

reproduced from (Dobigeon, 2007)

Unmixing results

Outlier term captures specific water/soil interactions.

Villelongue/Madonna data (forested area)

Robust NMF for nonlinear hyperspectral unmixing (Févotte and Dobigeon, 2015)

Unmixing results

Outlier term seems to capture patterns due to sensor miscalibration.

Factor analysis in dynamical PET

(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

- \triangleright 3D functional imaging
- ▶ Observe the temporal evolution of the brain activity after injecting a radiotracer (biomarker of a specific compound).
- \triangleright **v**_n is the time-activity curve (TAC) in voxel *n*.
- \blacktriangleright \mathbf{v}_n is the time-activity curve (TAC) in voxer *n*.
 \blacktriangleright Neuroimaging : mixed contributions of 4 TAC signatures in each voxel.

Dynamic positron emission tomography

PET voxel decomposition

reproduced from (Cavalcanti, 2018)

Factor analysis in dynamical PET

(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

Mixing model

 \triangleright the specific-binding TAC signature varies in space :

$$
\mathbf{v}_n \approx [\mathbf{w}_1 + \delta_n] h_{1n} + \sum_{k=2}^K \mathbf{w}_k h_{kn}
$$

$$
\approx [\mathbf{w}_1 + \mathbf{D} \mathbf{b}_n] h_{1n} + \sum_{k=2}^K \mathbf{w}_k h_{kn}
$$

 \approx Wh_n + h_{1n} Db_n

▶ **D** is fixed and pre-trained using labeled or simulated data.

Estimation

$$
\min_{\mathbf{W},\mathbf{H},\mathbf{B}\geq 0} D_{\beta}(\mathbf{V}|\mathbf{W}\mathbf{H}+\mathbf{1}\underline{\mathbf{h}}_1\odot\mathbf{D}\mathbf{B})+\lambda\|\mathbf{B}\|_{2,1}
$$

 \triangleright Optimized with majorization-minimization.

Factor analysis in dynamical PET

(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

Unmixing results

- \triangleright real dynamic PET image of a stroke subject injected with a tracer for neuroinflammation.
- MRI ground-truth region of the stroke.

Fig. : Specific-binding activation (h_{1n}) and variability maps $(\|\mathbf{b}_n\|_{2,1})$ in three different planes and for three values of *β*

Conclusions

- \triangleright NMF has become a popular data processing tool over the last 25 years.
- \triangleright Well suited to unmixing problems in unsupervised settings.
- Exciting non-convex optimization problem with non-Euclidean measures of fit.
- MM is a versatile algorithmic framework for NMF :
	- ^I Simple multiplicative algorithms for the *β*-divergence and beyond.
	- \triangleright Can be adapted to regularized NMF and variants.
	- \triangleright More efficient algorithms exist for the quadratic loss.

Funding acknowledgement : European Research Council, Agence Nationale de la Recherche France, National Research Foundation Singapore.

References I

- S. Arora, R. Ge, R. Kannan, and A. Moitra. Computing a nonnegative matrix factorization—provably. SIAM Journal on Computing, 45(4) :1582–1611, 2016.
- A. Basu, I. R. Harris, N. L. Hjort, and M. C. Jones. Robust and efficient estimation by minimising a density power divergence. Biometrika, 85(3) :549–559, Sep. 1998.
- M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics & Data Analysis, 52(1) :155–173, Sep. 2007.
- J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot. Hyperspectral unmixing overview : Geometrical, statistical, and sparse regression-based approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2) :354–379, 2012.
- C. M. Bishop. Bayesian PCA. In Advances in Neural Information Processing Systems (NIPS), 1999.
- J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1) :459–494, 2014.
- E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis ? Journal of ACM, 58(1) : 1–37, 2009.
- Y. Cao, P. P. B. Eggermont, and S. Terebey. Cross Burg entropy maximization and its application to ringing suppression in image reconstruction. IEEE Transactions on Image Processing, 8(2):286-292, Feb. 1999. doi : 10.1109/83.743861.
- Y. C. Cavalcanti. Factor analysis of dynamic PET images. PhD thesis, Toulouse INP, 2018.

References II

- Y. C. Cavalcanti, T. Oberlin, N. Dobigeon, C. Févotte, S. Stute, M. Ribeiro, and C. Tauber. Factor analysis of dynamic PET images : Beyond Gaussian noise. IEEE Transactions on Medical Imaging, 38(9) :2231–2241, Sep. 2019. ISSN 0278-0062. doi : 10.1109/TMI.2019.2906828. URL <https://arxiv.org/pdf/1807.11455>.
- T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Transactions on Signal Processing, 57(11) :4418-4432. 2009.
- Y. Chen, J. Mairal, and Z. Harchaoui. Fast and robust archetypal analysis for representation learning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.
- A. Cichocki and S. Amari. Families of Alpha- Beta- and Gamma- divergences : Flexible and robust measures of similarities. Entropy, 12(6) :1532–1568, June 2010.
- A. Cichocki, R. Zdunek, and S. Amari. Csiszar's divergences for non-negative matrix factorization : Family of new algorithms. In Proc. International Conference on Independent Component Analysis and Blind Signal Separation (ICA), pages 32–39, Charleston SC, USA, Mar. 2006.
- A. Cichocki, R. Zdunek, and S.-i. Amari. Hierarchical ALS algorithms for nonnegative matrix and 3d tensor factorization. In International Conference on Independent Component Analysis and Signal Separation, 2007.
- A. Cichocki, H. Lee, Y.-D. Kim, and S. Choi. Non-negative matrix factorization with *α*-divergence. Pattern Recognition Letters, 29(9) :1433–1440, July 2008.
- A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari. Nonnegative matrix and tensor factorizations : Applications to exploratory multi-way data analysis and blind source separation. John Wiley & Sons. 2009.
- J. E. Cohen and V. Leplat. Efficient algorithms for regularized nonnegative scale-invariant low-rank approximation models. arXiv :2403.18517, 2024.

References III

- M. Daube-Witherspoon and G. Muehllehner. An iterative image space reconstruction algorthm suitable for volume ECT. IEEE Transactions on Medical Imaging, $5(5)$:61 – 66, 1986, doi : 10.1109/TMI.1986.4307748.
- A. R. De Pierro. On the relation between the ISRA and the EM algorithm for positron emission tomography. IEEE Trans. Medical Imaging, 12(2) :328–333, 1993. doi : 10.1109/42.232263.
- I. S. Dhillon and S. Sra. Generalized nonnegative matrix approximations with Bregman divergences. In Advances in Neural Information Processing Systems (NIPS), 2005.
- C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In Proc. ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 126–135. ACM, 2006.
- C. H. Q. Ding, T. Li, and M. I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1) :45 – 55, 2010. doi : 10.1109/TPAMI.2008.277.
- D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct decomposition into parts ? In Advances in Neural Information Processing Systems (NIPS), 2004.
- J. Eggert and E. Körner. Sparse coding and NMF. In Proc. IEEE International Joint Conference on Neural Networks, pages 2529–2533, 2004.
- S. Essid and C. Févotte. Smooth nonnegative matrix factorization for unsupervised audiovisual document structuring. IEEE Transactions on Multimedia, 15(2) :415–425, Feb. 2013. doi : 10.1109/TMM.2012.2228474. URL https://www.irit.fr/~Cedric.Fevotte/publications/journals/ieee_multimedia_smoothnmf.pdf.

References IV

- W. Fan, B. Hu, J. Miller, and M. Li. Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data. International Journal of Remote Sensing, 30(11) :2951–2962, June 2009.
- C. Févotte. Majorization-minimization algorithm for smooth Itakura-Saito nonnegative matrix factorization. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 2011. URL <https://www.irit.fr/~Cedric.Fevotte/publications/proceedings/icassp11a.pdf>.
- C. Févotte and N. Dobigeon. Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization. IEEE Transactions on Image Processing, 24(12) :4810–4819, Dec. 2015. doi : 10.1109/TIP.2015.2468177. URL <https://www.irit.fr/~Cedric.Fevotte/publications/journals/tip2015.pdf>.
- C. Févotte and J. Idier. Algorithms for nonnegative matrix factorization with the beta-divergence. Neural Computation, 23(9) :2421–2456, Sep. 2011. doi : 10.1162/NECO_a_00168. URL <https://www.irit.fr/~Cedric.Fevotte/publications/journals/neco11.pdf>.
- C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis. Neural Computation, 21(3) :793–830, Mar. 2009. doi : 10.1162/neco.2008.04-08-771. URL https://www.irit.fr/~Cedric.Fevotte/publications/journals/neco09_is-nmf.pdf.
- L. Filstroff, O. Gouvert, C. Févotte, and O. Cappé. A comparative study of Gamma Markov chains for temporal non-negative factorization. IEEE Transactions on Signal Processing, 69 :1614–1626, 2021. doi : 10.1109/TSP.2021.3060000. URL <https://arxiv.org/pdf/2006.12843>.

References V

- L. Finesso and P. Spreij. Nonnegative matrix factorization and I-divergence alternating minimization. Linear Algebra and its Applications, 416 :270–287, 2006.
- N. Gillis. Nonnegative Matrix Factorization. SIAM, 2020.
- N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization. Neural Computation, 24(4) :1085–1105, 04 2012. ISSN 0899-7667. doi : 10.1162/NECO_a_00256. URL https://doi.org/10.1162/NECO_a_00256.
- N. Gillis and S. A. Vavasis. Fast and robust recursive algorithmsfor separable nonnegative matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(4) :698–714, 2014. doi : 10.1109/TPAMI.2013.226.
- N. Guan, D. Tao, Z. Luo, and B. Yuan. NeNMF : An optimal gradient method for nonnegative matrix factorization. IEEE Transactions on Signal Processing, 60(6) :2882–2898, 2012.
- L. T. K. Hien and N. Gillis. Algorithms for nonnegative matrix factorization with the Kullback–Leibler divergence. Journal of Scientific Computing, 87(3) :93, 2021.
- T. Hofmann. Probabilistic latent semantic indexing. In Proc. 22nd International Conference on Research and Development in Information Retrieval (SIGIR), 1999. URL <http://www.cs.brown.edu/~th/papers/Hofmann-SIGIR99.pdf>.
- P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research, 5 :1457–1469, 2004.
- C. J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with variable selection for non-negative matrix factorization. In Proc. 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 1064 – 1072, Aug. 2011.

References VI

- K. Huang, N. D. Sidiropoulos, and A. Swami. Non-negative matrix factorization revisited : Uniqueness and algorithm for symmetric decomposition. IEEE Transactions on Signal Processing, 62(1) :211–224, 2013.
- K. Huang, N. D. Sidiropoulos, and A. P. Liavas. A flexible and efficient algorithmic framework for constrained matrix and tensor factorization. IEEE Transactions on Signal Processing, 64(19) :5052-5065, 2016. doi : 10.1109/TSP.2016.2576427.
- J. Kim and H. Park. Fast nonnegative matrix factorization : An active-set-like method and comparisons. SIAM Journal on Scientific Computing, 33 :3261–3281, 2011.
- D. Kuang, C. Ding, and H. Park. Symmetric nonnegative matrix factorization for graph clustering. In Prco. SIAM International Conference on Data Mining, pages 106–117, 2012.
- J. Le Roux, F. J. Weninger, and J. R. Hershey. Sparse NMF–half-baked or well done ? Technical report, Mitsubishi Electric Research Labs (MERL), 2015.
- D. D. Lee and H. S. Seung. Learning the parts of objects with nonnegative matrix factorization. Nature, 401 : 788–791, 1999.
- D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances in Neural and Information Processing Systems 13, pages 556–562, 2001.
- A. Lefèvre, F. Bach, and C. Févotte. Online algorithms for nonnegative matrix factorization with the Itakura-Saito divergence. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Mohonk, NY, Oct. 2011. URL <https://www.irit.fr/~Cedric.Fevotte/publications/proceedings/waspaa11.pdf>.
- V. Leplat, N. Gillis, and A. M. Ang. Blind audio source separation with minimum-volume beta-divergence NMF. IEEE Transactions on Signal Processing, 68 :3400–3410, 2020.

References VII

- V. Leplat, N. Gillis, and J. Idier. Multiplicative updates for nmf with *β*-divergences under disjoint equality constraints. SIAM Journal on Matrix Analysis and Applications, 42(2) :730–752, 2021.
- C.-J. Lin. Projected gradient methods for nonnegative matrix factorization. Neural Computation, 19 : 2756–2779, 2007.
- L. B. Lucy. An iterative technique for the rectification of observed distributions. Astronomical Journal, 79 : 745–754, 1974. doi : 10.1086/111605.
- J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. SIAM Journal on Optimization, 25(2) :829–855, 2015.
- A. Marmin, J. H. de M.. Goulart, and C. Févotte. Joint majorization-minimization for nonnegative matrix factorization with the beta-divergence. Signal Processing, 209 :109048, 2023a. URL <https://arxiv.org/pdf/2106.15214>.
- A. Marmin, J. H. de M.. Goulart, and C. Févotte. Majorization-minimization for sparse nonnegative matrix factorization with the beta-divergence. IEEE Transactions on Signal Processing, 71 :1435–1447, 2023b. doi : 10.1109/TSP.2023.3266939. URL <https://arxiv.org/pdf/2207.06316>.
- A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Stochastic subsampling for factorizing huge matrices. IEEE Transactions on Signal Processing, 66(1) :113–128, 2018. doi : 10.1109/TSP.2017.2752697.
- L. Miao and H. Qi. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing, 45(3) :765–777, 2007. ISSN 0196-2892. doi : 10.1109/TGRS.2006.888466.
- M. C. Mukkamala and P. Ochs. Beyond alternating updates for matrix factorization with inertial bregman proximal gradient algorithms. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

References VIII

- M. Nakano, H. Kameoka, J. Le Roux, Y. Kitano, N. Ono, and S. Sagayama. Convergence-guaranteed multiplicative algorithms for non-negative matrix factorization with beta-divergence. In Proc. IEEE International Workshop on Machine Learning for Signal Processing (MLSP'2010), Sep. 2010.
- J. M. P. Nascimento and J. M. Bioucas-Dias. Nonlinear mixture model for hyperspectral unmixing. In Proc. SPIE Image and Signal Processing for Remote Sensing XV, 2009.
- P. Paatero and U. Tapper. Positive matrix factorization : A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5 :111–126, 1994.
- A. Rakotomamoniy. Direct optimization of the dictionary learning problem. IEEE Transactions on Signal Processing, 61(12) :5495–5506, 2013.
- W. H. Richardson. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 62 :55–59, 1972.
- P. Smaragdis. About this non-negative business. WASPAA keynote slides, 2013. URL <http://web.engr.illinois.edu/~paris/pubs/smaragdis-waspaa2013keynote.pdf>.
- P. Smaragdis and J. C. Brown. Non-negative matrix factorization for polyphonic music transcription. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct. 2003.
- P. Smaragdis, C. Févotte, G. Mysore, N. Mohammadiha, and M. Hoffman. Static and dynamic source separation using nonnegative factorizations : A unified view. IEEE Signal Processing Magazine, 31(3) : 66–75, May 2014. doi : 10.1109/MSP.2013.2297715. URL <https://www.irit.fr/~Cedric.Fevotte/publications/journals/spm2014.pdf>.

References IX

- D. L. Sun and C. Févotte. Alternating direction method of multipliers for non-negative matrix factorization with the beta-divergence. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014, URL <https://www.irit.fr/~Cedric.Fevotte/publications/proceedings/icassp14a.pdf>.
- N. Takahashi, J. Katayama, M. Seki, and J. Takeuchi. A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization. Computational Optimization and Applications, $71(1)$: 221–250, 2018.
- V. Y. F. Tan and C. Févotte. Automatic relevance determination in nonnegative matrix factorization with the beta-divergence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7) :1592 – 1605, July 2013. URL https://www.irit.fr/~Cedric.Fevotte/publications/journals/pami13_ardnmf.pdf.
- M. Vandecappelle, N. Vervliet, and L. De Lathauwer. A second-order method for fitting the canonical polyadic decomposition with non-least-squares cost. IEEE Transactions on Signal Processing, 68 :4454–4465, 2020.
- T. Virtanen. Monaural sound source separation by non-negative matrix factorization with temporal continuity and sparseness criteria. IEEE Transactions on Audio, Speech and Language Processing, 15(3) :1066–1074, Mar. 2007.
- Z. Yang and E. Oja. Linear and nonlinear projective nonnegative matrix factorization. IEEE Transactions on Neural Networks, 21(5) :734–749, 2010.
- Z. Yang and E. Oja. Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization. IEEE Transactions on Neural Networks, 22 :1878 – 1891, Dec. 2011. doi : http://dx.doi.org/10.1109/TNN.2011.2170094.
- R. Zhao and V. Y. F. Tan. A unified convergence analysis of the multiplicative update algorithm for regularized nonnegative matrix factorization. IEEE Transactions on Signal Processing, 66(1) :129–138, Jan 2018. ISSN 1053-587X. doi : 10.1109/TSP.2017.2757914.
- R. Zhao, V. Y. Tan, and H. Xu. Online nonnegative matrix factorization with general divergences. In Proc. AISTATS, 2017.