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Matrix factorization models
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Matrix factorization models
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Matrix factorization models
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Matrix factorization models

Data often available in matrix form.
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Matrix factorization models

≈ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H
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Matrix factorization models

≈ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H
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Matrix factorization models

for dimensionality reduction (coding, low-dimensional embedding)

≈
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Matrix factorization models

for unmixing (source separation, latent topic discovery)

≈
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Matrix factorization models

for completion (collaborative filtering, image inpainting)

≈
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Matrix factorization models

I Simple generative & interpretable models, popular in unsupervised settings.
I Used in many fields for a long time :

I Principal component analysis PCA (Pearson, 1901)
I Factor analysis (Spearman, 1904)
I Latent semantic analysis LSA (Deerwester et al., 1988)
I Independent component analysis ICA (Comon, 1994)
I Nonnegative matrix factorization NMF (Lee & Seung, 1999)
I Latent Dirichlet allocation LDA (Blei et al., 2003)
I Sparse dictionary learning, e.g., K-SVD (Aharon et al., 2006)

I Active topics :
I design of nonconvex optimization algorithms with proven convergence
I landscape analysis, search for global optima
I conditions for identifiability
I rank selection
I probabilistic models & statistical approaches (e.g., integer-valued or binary data)
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Nonnegative matrix factorization
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I Data V and factors W, H have nonnegative entries.
I Nonnegativity of W ensures interpretability of the dictionary, because patterns

wk and samples vn belong to the same space.
I Nonnegativity of H tends to produce part-based representations, because

subtractive combinations are forbidden.
Early work by (Paatero and Tapper, 1994), landmark Nature paper by (Lee and Seung, 1999)
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49 images among 2429 from MIT’s CBCL face dataset
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PCA dictionary with K = 25

red pixels indicate negative values
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NMF dictionary with K = 25

experiment reproduced from (Lee and Seung, 1999)
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NMF for latent semantic analysis
(Lee and Seung, 1999; Hofmann, 1999)
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.

vn W hn

reproduced from (Lee and Seung, 1999)
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NMF for audio spectral unmixing
(Smaragdis and Brown, 2003)

11 

Non-Negative Matrix Factorization 

! All factors are positive-valued:  
! Resulting reconstruction is additive 
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reproduced from (Smaragdis, 2013)
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NMF for hyperspectral unmixing
(Berry, Browne, Langville, Pauca, and Plemmons, 2007)

2

Fig. 1. Hyperspectral imaging concept.

I. INTRODUCTION

Hyperspectral cameras [1]–[11] contribute significantly to earth observation and remote sensing [12],

[13]. Their potential motivates the development of small, commercial, high spatial and spectral resolution

instruments. They have also been used in food safety [14]–[17], pharmaceutical process monitoring and

quality control [18]–[22], and biomedical, industrial, and biometric, and forensic applications [23]–[27].

HSCs can be built to function in many regions of the electro-magnetic spectrum. The focus here is

on those covering the visible, near-infrared, and shortwave infrared spectral bands (in the range 0.3µm

to 2.5µm [5]). Disregarding atmospheric effects, the signal recorded by an HSC at a pixel is a mixture

of light scattered by substances located in the field of view [3]. Fig. 1 illustrates the measured data.

They are organized into planes forming a data cube. Each plane corresponds to radiance acquired over a

reproduced from (Bioucas-Dias et al., 2012)
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Outline

Generalities
Matrix factorization models
Nonnegative matrix factorization (NMF)

Optimization for NMF
Measures of fit
Majorization-minimization
Other algorithms
Hyperparameters selection

Regularized NMF
Common regularizers : sparsity, smoothness
Automatic relevance determination

Examples in imaging
Robust NMF for nonlinear hyperspectral unmixing
Factor analysis in dynamic PET
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NMF as a constrained minimization problem
Minimize a measure of fit between V and WH, subject to nonnegativity :

min
W,H≥0

D(V|WH) =
∑
fn

d([V]fn|[WH]fn),

where d(x |y) is a scalar cost function, e.g.,

I squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)
I Kullback-Leibler divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)
I Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)
I α-divergence (Cichocki et al., 2008)
I β-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)
I Bregman divergences (Dhillon and Sra, 2005)
I and more in (Yang and Oja, 2011)

Regularization terms often added to D(V|WH) for sparsity, smoothness, etc.
Nonconvex problem.
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Probabilistic models
I Let V ∼ p(V|WH) such that

I E[V|WH] = WH
I p(V|WH) =

∏
fn p(vfn|[WH]fn)

I then the following correspondences apply with

D(V|WH) = − log p(V|WH) + cst

data support distribution/noise divergence examples
real-valued additive Gaussian quadratic loss many
integer multinomial? weighted KL word counts
integer Poisson generalized KL photon counts

nonnegative multiplicative
Gamma Itakura-Saito spectrogram

generally
nonnegative Tweedie β-divergence generalizes

above models

?conditional independence over f does not apply
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The β-divergence

A popular measure of fit in NMF (Basu et al., 1998; Cichocki and Amari, 2010)

dβ(x |y) def=


1

β (β−1)
(
xβ + (β − 1) yβ − β x yβ−1

)
β ∈ R\{0, 1}

x log x
y + (y − x) β = 1

x
y − log x

y − 1 β = 0

Special cases :
I squared Euclidean distance a.k.a quadratic loss (β = 2)
I generalized Kullback-Leibler (KL) divergence (β = 1)
I Itakura-Saito (IS) divergence (β = 0)

Properties :
I Homogeneity : dβ(λx |λy) = λβdβ(x |y)
I dβ(x |y) is a convex function of y for 1 ≤ β ≤ 2
I Bregman divergence
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The β-divergence
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The β-divergence
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The β-divergence
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The β-divergence
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A common NMF algorithm design : alternating methods

I Block-coordinate update of H given W(i−1) and W given H(i).
I Updates of W and H equivalent by transposition :

V ≈WH⇔ VT ≈ HTWT

I Objective function separable in the columns of H or the rows of W :

D(V|WH) =
∑
n

D(vn|Whn)

I Essentially left with nonnegative linear regression :

min
h≥0

C(h) def= D(v|Wh)

Numerous references in the image restoration literature, e.g., (Richardson, 1972;
Lucy, 1974; Daube-Witherspoon and Muehllehner, 1986; De Pierro, 1993)

Block-descent algorithm, nonconvex problem, initialization is an issue.
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Majorization-minimization (MM)
Build G(h|h̃) such that G(h|h̃) ≥ C(h) and G(h̃|h̃) = C(h̃).
Optimize (iteratively) G(h|h̃) instead of C(h).
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Majorization-minimization (MM)
I Finding a good & workable local majorization is the crucial point.
I Treating convex and concave terms separately with Jensen and tangent

inequalities usually works. E.g. :

CIS(h) =
[∑

f

vf∑
k wfkhk

]
+
[∑

f
log
(∑

k
wfkhk

)]
+ cst

I In most cases, leads to nonnegativity-preserving multiplicative algorithms :

hk = h̃k

(
∇−hk C(h̃)
∇+

hk C(h̃)

)γ

I ∇hk C(h) = ∇+
hk C(h)−∇−

hk C(h) and the two summands are nonnegative.
I if ∇hk C(h̃) > 0, ratio of summands < 1 and hk decreases.
I γ is a divergence-specific scalar exponent.

I Details in (Nakano et al., 2010; Févotte and Idier, 2011; Yang and Oja, 2011)
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Example : derivation for the Itakura-Saito divergence

I IS divergence (β = 0)

dIS(x |y) = x
y − log x

y − 1

I Nonnegative linear regression with the IS divergence

min
h≥0

CIS(h) =
∑
f

dIS(vf |[Wh]f )

=
[∑

f

vf∑
k wfkhk

]
︸ ︷︷ ︸

C1(h) (convex)

+
[∑

f
log
(∑

k
wfkhk

)]
︸ ︷︷ ︸

C2(h) (concave)

+cst
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Example : derivation for the Itakura-Saito divergence
I Majorization of C1(h) with Jensen’s inequality.

Let f (x) be a convex function and λ ∈ RK
+ with

∑
k λk = 1. Then :

f
(∑

k
λkhk

)
≤
∑

k
λk f (hk).

I Let h̃ ∈ RK
+ be the current estimate, ṽ = Wh̃ be the current approximation and

λfk = wfk h̃k
ṽf

= wfk h̃k∑
j wfj h̃j

(
note that

∑
k
λfk = 1

)
.

I Then, by convexity of f (x) = x−1, we may write :

C1(h) =
∑

f
vf
(∑

k
wfkhk

)−1
=
∑

f
vf
(∑

k
λfk

wfkhk
λfk

)−1
≤
∑

fk
vf

λ2fk
wfkhk

=
∑

fk
wfk

vf
ṽ2
f

h̃2k
hk

= G1(h|h̃).
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Example : derivation for the Itakura-Saito divergence

I Majorization of C2(h) with the tangent inequality.
Let g(h) be a concave function then :

g(h) ≤ g(h̃) +∇g(h̃)>(h− h̃) =
∑
k

[∇g(h̃)]khk + cst.

I Given C2(h) =
∑

f log (
∑

k wfkhk), we have :

[∇C2(h̃)]k = ∇hk C2(h̃) =
∑

f

wfk
ṽf
.

I Finally, we may majorize C2(h) with :

G2(h|h̃) =
∑

fk

wfk
ṽf

hk + cst.
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Example : derivation for the Itakura-Saito divergence

I In the end, we may majorize CIS(h) with :

G(h|h̃) = G1(h|h̃) + G2(h|h̃) + cst

=
∑
fk

wfk

[
vf
ṽ2
f

h̃2k
hk

+ 1
ṽf

hk
]

+ cst.

I Smooth, convex and separable majorizer. Easily minimized by cancelling its
gradient, leading to the MM-based multiplicative update

hk = h̃k

(∑
f wfkvf [Wh̃]−2f∑
f wfk [Wh̃]−1f

) 1
2

.

I Algorithm known from (Cao et al., 1999). The 1
2 exponent can be dropped using

majorization-equalization (Févotte and Idier, 2011).
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The multiplicative updates (MU) for NMF with β-divergence

I Alternating updates of W and H.
I In standard practice, only one MM update applied to W and H, rather than

fully solving subproblems minW≥0 D(V|WH) and minH D(V|WH).
I Leads to a valid descent algorithm with multiplicative updates given by :

H←H.
(
WT [(WH).(β−2).V]
WT [WH].(β−1)

)γ(β)

W←W.

(
[(WH).(β−2).V]HT

[WH].(β−1) HT

)γ(β)

I Very straightforward implementation, no hyperparameters !
I Nonnegativity is automatically preserved given positive initializations.
I Linear complexity per iteration.
I In practice, minimizing D(V + ε|WH + ε) prevents from numerical issues.
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Convergence of the iterates

I By design, we have convergence of the objective values C(W,H) = D(V|WH).
I What about the iterates ? Only partial answers so far.
I A theoretical challenge arises from the lack of coercivity of the objective :
‖W‖ or ‖H‖ → ∞ 6⇒ C(W,H)→∞.

I Due to the scale indeterminacy : C(WΛ−1,ΛH) = C(W,H), with Λ→ 0.

Possible remedies (modified problems)
1) Impose W ≥ ε, H ≥ ε (Takahashi et al., 2018; Hien and Gillis, 2021).
2) Slightly change the objective function to ensure coercivity (Zhao and Tan,

2018) :

C(W,H) = D(V|WH) + ε‖W‖1 + ε‖H‖1

MM results in adding ε at the denominator of the multiplicative updates.
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Other alternating optimization methods

I MM-based multiplicative updates are a simple and competitive choice for many
divergences (beyond β-divergences).

I More efficient options have been proposed for specific measures of fit, see
books by Cichocki et al. (2009); Gillis (2020)

Quadratic loss (selection)
I Active-set methods (Kim and Park, 2011)
I Hierarchical alternating LS (Cichocki et al., 2007; Gillis and Glineur, 2012)
I Proximal gradient descent (Lin, 2007; Guan et al., 2012; Bolte et al., 2014)
I ADMM (Sun and Févotte, 2014; Huang et al., 2016)

Kullback-Leibler divergence (selection)
I Second-order coordinate descent methods (Hsieh and Dhillon, 2011)
I Hybrid Newton-type algorithms with line search and MU (Hien and Gillis, 2021)
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Non-alternating methods (joint optimization)
I Optimize C(W,H) = D(V|W,H) jointly in W and H.
I Exciting line of research, driven by recent results in non-convex optimization.

Possibly better optima and lower complexity.

1) Proximal gradient algorithms with global smoothness constant (∼Lipschitz) for
the quadratic loss (Rakotomamonjy, 2013; Mukkamala and Ochs, 2019).

2) Joint MM algorithm for the β-divergence (Marmin, Goulart, and Févotte, 2023a) :
I Global majorizer constructed using Jensen and tangent inequalities :

C(W,H) ≤ G(W,H|W̃, H̃)
C(W̃, H̃) = G(W̃, H̃|W̃, H̃)

I Global minimizer of G not available in closed form. G non-convex.
I Alternate minimization of G leads to closed-form updates and new multiplicative

rules. Important computational savings for some values of β (see paper).

3) Second-order method for β-NMF based on efficient Hessian approximations and
tricks to maintain semidefinite positivity (Vandecappelle et al., 2020).
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Large-scale NMF
Online NMF
I Large number of samples N >> F .
I Update W as samples vn become available.
I Vectors hn act as latent variables, minimize :

C(W) =
N∑

n=1
min
hn≥0

D(vn|Whn)

I Solved with online MM (Lefèvre et al., 2011; Mairal, 2015; Zhao et al., 2017)

Stochastic NMF
I Large F and N.
I Online NMF with stochastic subsampling :

min
hn≥0

D(vn[I]|W[I, :]hn)

where I is a random set of indices (Mensch et al., 2018).
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Selecting hyperparameters K and β with matrix completion

≈

I Matrix completion of held out data using a range of values of β (or K ).
I Select β (or K ) that best reconstructs held out coefficients vfn with [WH]fn.

41/67



Selecting β with matrix completion
I Remove some coefficients of V randomly.
I Pick a candidate value of β and solve :

min
W,H≥0

D(V|WH) =
∑

(f ,n)∈O

dβ([V]fn|[WH]fn)

where O is the set of remaining (“observed”) coefficients.
I Optimization can be handled using a mask γfn ∈ {0, 1} :∑

(f ,n)∈O

dβ([V]fn|[WH]fn) =
∑
fn
γfn dβ([V]fn|[WH]fn) =

∑
fn

dβ(γfn[V]fn|γfn[WH]fn)

I Assess β using a given reconstruction error on held out data :

L(β) =
∑

(f ,n)∈O

`(vfn|[WH]fn)

I Repeat for other values of β and pick β̂ with minimum L(β).
42/67



Selecting β with matrix completion
(Févotte and Dobigeon, 2015)

Moffett Field hyperspectral data

reproduced from (Dobigeon, 2007)
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Selecting β with matrix completion
(Févotte and Dobigeon, 2015)

Experimental setting :
I Two unfolded hyperspectral cubes, F ∼ 150, N = 50× 50

I Aviris instrument over Moffett Field (CA), lake, soil & vegetation.
I Hyspex/Madonna instrument over Villelongue (FR), forested area.

I K = 3 (∼ ground truth)
I β ∈ [−1, 3]
I Evaluation using the average spectral angle mapper (aSAM) :

L(β) = aSAM(V, V̂) = 1
N

N∑
n=1

acos
(
〈vn, v̂n〉
‖vn‖‖v̂n‖

)
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Selecting β with matrix completion
(Févotte and Dobigeon, 2015)
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Estimated value β̂ ≈ 1.5 for these datasets (compromise between Poisson and
additive Gaussian noise).
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Outline
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Regularized NMF

I Induce prior information or desired structure on H (or W) using penalty terms :

C(W,H) = D(V|WH) + αS(H)

I MM algorithms are easily adapted to that setting :

D(V|WH) +αS(H) ≤ G(H|H̃,W) +αS(H)

I Only the minimization step is changed.
I May however become intractable ; sometimes S(H) needs to be majorized itself.
I Similar to adjusting the proximal operator in proximal gradient descent.
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Sparse NMF
Goal : promote zeros in H (or W)

min
W,H≥0

C(W,H) = D(V|WH) + αS(H)

I Exemple : `1 norm

S(H) = ‖H‖1 =
∑

kn
hkn

I Exemple : log-sparsity

S(H) =
∑

kn
log(hkn + ε)

I Or terms that induce a group structure, e.g., cancel some rows of H.
I Vast literature ! Seminal paper by Hoyer (2004).
Ill-posed problem
I S(·) can be made arbitrary small :

C(WΛ−1,ΛH) = D(V|WH) + S(ΛH)
I Need to control ‖W‖ to avoid degenerate solutions ‖W‖ → ∞, ‖H‖ → 0.
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Sparse NMF

Remedy 1 : penalized optimization

min
W,H≥0

C(W,H) = D(V|WH) + αS(H) + δ‖W‖

I Gentle optimization problem.
I Need to tune an extra parameter δ.

Remedy 2 : constrained optimization

min
W,H≥0

C(W,H) = D(V|WH) + αS(H) subject to ∀k, ‖wk‖ = 1

I Harder optimization problem.
I More natural in a dictionary learning perspective.
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Sparse NMF with unit `1-norm dictionary constraint
Optimization problem

min
W,H≥0

C(W,H) = D(V|WH) + αS(H) subject to ∀k, ‖wk‖1 = 1

1) Lagragian method (Leplat, Gillis, and Idier, 2021)
Search for saddle points of

L(W,H,ν) = D(V|WH) + αS(H) +
∑

k
νk(‖wk‖1 − 1)

I ν ∈ RK is the vector of Lagrangian multipliers. S(H) = ‖H‖1.
I MM-based block-coordinate algorithm that updates W,H given ν.
I Only applies to β ≤ 1 or β ∈ { 54 ,

4
3 ,

3
2 , 2}.

I Update of ν given W, H requires a Newton-Raphson procedure.
I Conceptually well-grounded but limited scope.
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Sparse NMF with fixed-norm dictionary constraint
2) Heuristic method (Eggert and Körner, 2004; Le Roux et al., 2015)
Unconstrained optimization using reparametrization :

W←WΛ−1 with λk = ‖wk‖1

I Minimize C(W,H) = D(V|WΛ−1H) + αS(H).
I Heuristic multiplicative algorithm using gradient splitting.
I No convergence guarantees (not even monotonicity of the objective function).

3) Block-descent MM method (Marmin, Goulart, and Févotte, 2023b)
Unconstrained optimization of

C(W,H) = D(V|WH) + αS(ΛH)

I Shown equivalent to the original problem (after renormalization of the solution).
I Convergent multiplicative MM algorithm for all β ∈ R ,
I S(H) = `1 or log-sparsity ,
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Smooth NMF
Impose temporal or spatial regularization, e.g.,

S(H) =
∑

kn
d(hkn|hk(n−1))

I Least squares penalization (Virtanen, 2007; Essid and Févotte, 2013)
I Gamma Markov chains (Smaragdis et al., 2014; Filstroff et al., 2021)

≈

correlated data

dynamical model
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Smooth NMF
Impose temporal or spatial regularization, e.g.,

S(H) =
∑

kn
d(hkn|hk(n−1))

I Least squares penalization (Virtanen, 2007; Essid and Févotte, 2013)
I Gamma Markov chains (Smaragdis et al., 2014; Filstroff et al., 2021)

Baseline (unpenalized IS−NMF)

Regularized (λ = 1)

Regularized (λ = 10)

3300 3400 3500 3600 3700 3800

Regularized (λ = 100)

One row of H with increasing smoothness (Févotte, 2011)
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Other common regularizers

I Orthogonal NMF : HHT = I.
Essentially nonnegative clustering (Ding et al., 2006).

I Projective NMF : H = WTV.
Essentially nonnegative PCA (Yang and Oja, 2010).

I Symmetric NMF : H = WT .
Popular in graph clustering (Kuang et al., 2012; Huang et al., 2013).

I Separable NMF : W is a subset of columns of V.
Very active research topic ! (Donoho and Stodden, 2004; Gillis and Vavasis, 2014;
Arora et al., 2016).

I Archetypal NMF : W belongs to the column-range of V.
A relaxation of separable NMF (Ding et al., 2010; Chen et al., 2014).

I Minimum-volume NMF : penalize the aperture of W.
Very active research topic ! (Miao and Qi, 2007; Chan et al., 2009) (Leplat, Gillis,
and Ang, 2020)
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Automatic relevance determination in NMF
(Tan and Févotte, 2013)

I Another way to select K , inspired by Bayesian PCA (Bishop, 1999).
I Tie each column wk and row hk with a common scale parameter φk .
I Probabilistic setting with priors p(wk |φk) and p(hk |φk).

+ ... +

φK

≈

V w1

h1

wK

hK

φ1

I Estimate W and H together with the scale parameters φ.
I Some scale parameters converge to 0 and the components are pruned.
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Automatic relevance determination in NMF
(Tan and Févotte, 2013)

Statistical model
I Observation model : V ∼

∏
fn Tweedie(vfn|[WH]fn, σ2, β)

I half-normal or exponential priors : wk ∼ p(wk |φk) and hk ∼ p(hk |φk)
I inverse-Gamma prior : φk ∼ IG(φk |a, b)
Maximum a posteriori estimation
I Boils down to minimizing (using closed-form solution of φk)

C(W,H) = Dβ(V|WH) + λ

K∑
k=1

log (‖wk‖+ ‖hk‖+ b)

I ‖x‖ = 1
2‖x‖

2
2 or ‖x‖1

I λ is a weight parameter that depends on a and σ2

I b acts as a sparsity shape parameter
I Concave term log(x + b) induces group-sparsity at the column & row level.
I Block-descent multiplicative MM algorithm.
I Follow-up study with more general regularizations by (Cohen and Leplat, 2024).
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Automatic relevance determination in NMF
Swimmer data decomposition

(a) Noisy data

(b) `1-ARD decomposition wih K = 32
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

I Variants of the linear mixing model account for “non-linear” effects :

vn ≈Whn + rn

I Often, rn has a parametric form such as linear combination of quadratic
components {wk �wj}kj (Nascimento and Bioucas-Dias, 2009; Fan et al., 2009)

I Nonlinear effects usually affect few pixels only.
I We treat them as non-parametric sparse outliers.

min
W,H,R≥0

Dβ(V|WH + R) + λ‖R‖2,1

where ‖R‖2,1 =
∑N

n=1 ‖rn‖2 induces sparsity at group level.
I A form of robust NMF (Candès et al., 2009)
I Block descent MM-based algorithm.
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

Moffett Field data

reproduced from (Dobigeon, 2007)
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

Unmixing results
spectral endmembers & activation maps outlier energy {‖rn‖}n

(red : β = 1, black : β = 2) (β = 1)

0 1 2

Vegetation

0 1 2

Water

0 1 2

Soil

Outlier term captures specific water/soil interactions.
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

Villelongue/Madonna data (forested area)
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

Unmixing results
spectral endmembers & activation maps outlier energy {‖rn‖}n

(red : β = 1, black : β = 2) (β = 1)

0.4 0.6 0.8 1

Chesnut tree

0.4 0.6 0.8 1

Oak tree

0.4 0.6 0.8 1

Endm. #3

Outlier term seems to capture patterns due to sensor miscalibration.
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Factor analysis in dynamical PET
(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

I 3D functional imaging
I Observe the temporal evolution of the brain activity after injecting a radiotracer

(biomarker of a specific compound).
I vn is the time-activity curve (TAC) in voxel n.
I Neuroimaging : mixed contributions of 4 TAC signatures in each voxel.

Factor analysis SLMM �-SLMM PNMM Conclusion and perspectives

Voxel decomposition in dynamic PET

From compartmental modeling (CM) [HBS16]

CPET = VpCP + (1 � Vp)CT. (1.1)
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PET voxel decomposition [Yaq+12]

Yanna Cruz Cavalcanti — IRIT/INP-ENSEEIHT Factor analysis of dynamic PET images October 31st, 2018 6 / 48

Dynamic positron emission tomography PET voxel decomposition

reproduced from (Cavalcanti, 2018)
64/67



Factor analysis in dynamical PET
(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

Mixing model
I the specific-binding TAC signature varies in space :

vn ≈ [w1 + δn]h1n +
K∑

k=2
wkhkn

≈ [w1 + Dbn]h1n +
K∑

k=2
wkhkn

≈Whn + h1nDbn
I D is fixed and pre-trained using labeled or simulated data.

Estimation

min
W,H,B≥0

Dβ(V|WH + 1 h1 �DB) + λ‖B‖2,1

I Optimized with majorization-minimization.
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Factor analysis in dynamical PET
(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

Unmixing results
I real dynamic PET image of a stroke subject injected with a tracer for

neuroinflammation.
I MRI ground-truth region of the stroke.
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Fig. : Specific-binding activation (h1n) and variability maps (‖bn‖2,1)
in three different planes and for three values of β
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Conclusions

I NMF has become a popular data processing tool over the last 25 years.
I Well suited to unmixing problems in unsupervised settings.
I Exciting non-convex optimization problem with non-Euclidean measures of fit.
I MM is a versatile algorithmic framework for NMF :

I Simple multiplicative algorithms for the β-divergence and beyond.
I Can be adapted to regularized NMF and variants.
I More efficient algorithms exist for the quadratic loss.

Funding acknowledgement : European Research Council, Agence Nationale de la Recherche
France, National Research Foundation Singapore.
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