Nonconvex optimization landscapes

François Malgouyres¹

¹Institut de Mathématiques de Toulouse, Université Paul Sabatier

Octobre 2024

Plan

Outline

Introduction

Classification et régression

Classification et régression

Il existe un couple de variables aléatoires (X, Y)

- On connaît \mathscr{X} et \mathscr{Y} tels que $\mathbb{P}(X \in \mathscr{X}) = \mathbb{P}(Y \in \mathscr{Y}) = 1$
- On sait que l'on va observer x d'une réalisation (x, y) de (X, Y)
- On veut construire une fonction $g: \mathscr{X} \longrightarrow \mathscr{Y}$ prédisant y

Plus précisément, pour une fonction coût $L: \mathscr{Y} \times \mathscr{Y} \longrightarrow \mathbb{R}$, on veut trouver

 $g^* \in \operatorname{argmin} R(g)$

On appelle $R(g) = \mathbb{E}(L(g(X), Y))$ le risque de g.

Car: La personnes utilisant g observe le coût

$$R_{test}(g) \simeq \frac{1}{n'} \sum_{i=1}^{n'} L(g(x'_i), y'_i)$$

pour un échantillon i.i.d $(x'_i, y'_i)_{i=1..n'}$ suivant la loi (X, Y), **indépendant de** l'échantillon d'apprentissage. La loi des grands nombres conduit à considérer R.

F. Malgouyres

Classification et régression : les principes

- On observe $(x_i, y_i)_{i=1..n}$ un échantillon i.i.d. de même loi que (X, Y)
- On considère une famille F de fonctions g_w paramétrés par des paramètres w d'un espace Euclidien.
 - Pour nous : elle est basée sur les réseaux de neurones
- On voudrait résoudre

$$\mathbf{w}^* \in \operatorname{argmin}_{\mathbf{w}} R(g_{\mathbf{w}}).$$

• La minimisation du risque empirique consiste à résoudre

$$\widehat{\mathbf{w}} \in \operatorname{argmin}_{\mathbf{w}} \widehat{R}(g_{\mathbf{w}})$$

où

$$\widehat{R}(g_{\mathbf{w}}) = \frac{1}{n} \sum_{i=1}^{n} L(g_{\mathbf{w}}(x_i), y_i)$$

Ci-dessous, pour simplifier, on note $R(\mathbf{w})$ au lieu de $R(g_{\mathbf{w}})$ (idem $\hat{R}(\mathbf{w})$).

Outline

Introduction

Classification et régression

Le contrôle du risque

- Les réseaux de neurones
- L'optimisation des réseaux de neurones: Premières propriétés
 - Les réseaux comme une fonction des paramètres
 - La Rétropropagation et ses défauts
 - Le paysage de la fonction objectif
 - Introduction
 - Paysage pour les réseaux larges
- Géométrie locale des réseaux ReLU fully-connected
- Le paysage pour les réseaux linéaires
 - Introduction
 - Paysage pour les réseaux linéaires
 - Paysage pour les réseaux linéaires (cas à 1 couche cachée)

Le contrôle du risque

Pour toute fonction g, on appelle risque en population et risque empirique de g:

et

$$R(g) = \mathbb{E}(L(g(X), Y))$$
 et

$$\widehat{R}(g) = \frac{1}{n} \sum_{i=1}^{n} L(g(x_i), y_i)$$

- $R^* = \inf_g R(g)$ le risque optimal
- Pour $\varepsilon > 0$, on fixe \mathbf{w}^* et $\widehat{\mathbf{w}}$ tels que :

$$R(g_{\mathbf{W}^*}) \le \inf_{\mathbf{W}} R(g_{\mathbf{W}}) + \varepsilon$$

• Pour **w** retourné par un algorithme On **décompose**

$$\begin{array}{rcl} 0 \leq & R(g_{\mathbf{w}}) & - & R^{*} \\ & = & R(g_{\mathbf{w}}) & - & \widehat{R}(g_{\mathbf{w}}) \\ & + & \widehat{R}(g_{\mathbf{w}}) & - & \widehat{R}(g_{\widehat{\mathbf{w}}}) \\ & + & \widehat{R}(g_{\widehat{\mathbf{w}}}) & - & \widehat{R}(g_{\mathbf{w}^{*}}) \\ & + & \widehat{R}(g_{\mathbf{w}^{*}}) & - & R(g_{\mathbf{w}^{*}}) \\ & + & R(g_{\mathbf{w}^{*}}) & - & R^{*} \end{array}$$

(l'excès de risque) (erreur de généralisation) (erreur d'optimisation) $\leq \varepsilon$ (erreur de généralisation) (erreur d'approximation)

 $\widehat{R}(g_{\widehat{\mathbf{w}}}) \le \inf \widehat{R}(g_{\mathbf{w}}) + \varepsilon$

Puis on majore indépendamment chaque terme.

Le contrôle du risque

- Erreur d'optimisation : $|\widehat{R}(g_w) \widehat{R}(g_{\widehat{w}})|$
 - Est-ce-que l'optimisation a réussi : Optimisation non-convexe, paysage de la fonction objectif...
 - En deep-learning : Elle est petite pour les "gros" réseaux.
- Erreur de généralisation : $|R(g_w) \hat{R}(g_w)|$
 - Quelles conditions sur le réseau et l'échantillon pour avoir la convergence uniforme

$$\sup_{\mathbf{w}} |\widehat{R}(g_{\mathbf{w}}) - R(g_{\mathbf{w}})|$$
 soit petit?

- ► En théorie : Dimension de Vapnik-Chervonenkis ~ nombre de paramètres
- ► En pratique : Reste faible même pour les "gros" réseaux

~ régularisation implicite.

- Erreur d'approximation : $|R(g_{\mathbf{w}^*}) R(g_b)|$, où $R(g_b) \simeq \inf_g R(g)$
 - ► Il suffit que $||g_{\mathbf{w}^*} g_b||$ soit petit (le choix de la norme compte).
 - Quelles fonctions peut-on approximer avec notre classe de fonctions? ("Expressive power", "Expressivité",...)
 - En deep-learning : Elle est petite pour les "gros" réseaux.

Outline

Introduction

- Classification et régression
- Le contrôle du risque
- Les réseaux de neurones
- L'optimisation des réseaux de neurones: Premières propriétés
 - Les réseaux comme une fonction des paramètres
 - La Rétropropagation et ses défauts
- Le paysage de la fonction objectif
 - Introduction
 - Paysage pour les réseaux larges
- Géométrie locale des réseaux ReLU fully-connected
- Le paysage pour les réseaux linéaires
 - Introduction
 - Paysage pour les réseaux linéaires
 - Paysage pour les réseaux linéaires (cas à 1 couche cachée)

Les réseaux de neurones

- *H* couches (on dit aussi *H* 1 couches cachées)
- les tailles $n_0, n_1, \dots, n_H \in \mathbb{N}$ des différentes couches
- On note f_h(x): le résultat obtenu en calculant le contenu de la couche h pour l'entrée x ∈ ℝ^{n₀}
- On note W_h ∈ ℝ<sup>n_h×n_{h-1} : la matrice contenant les poids sur les arcs entre la couche h − 1 et la couche h
 </sup>
- On note $b_h \in \mathbb{R}^{n_h}$: le biais ajouté à la couche h
- On note σ_h : la fonction d'activation appliquée à chaque couche
 - ► Typiquement, elle applique la même fonction à chaque entrée d'un vecteur

La prédiction/l'inférence : la fonction $f_H : \mathbb{R}^{n_0} \longrightarrow \mathbb{R}^{n_H}$

$$\begin{cases} f_0(x) = x \\ f_h(x) = \sigma_h (W_h f_{h-1}(x) + b_h) \quad , \forall h = 1, \cdots, H \end{cases}$$

Le plus souvent: $\sigma(t) = \max(0, t)$ (ReLU) et

$$f_H(x) = W_H\left(\cdots\left(\sigma W_2\sigma(W_1x+b_1)+b_2\right)\cdots\right)+b_H$$

Les réseaux de neurones

- Fully-connected layer : La matrice est "pleine"
- Fully connected linear network: On a σ(t) = t, ∀t ∈ ℝ, sans biais b_h = 0, pour tout h = 1..H.
- Fonctions d'activation :
 - ► Une zoologie abondante : tanh, heavyside, identité, sigmoïde, etc
 - Des non-locales : group-sort, max_pooling
 - ► La plus utilisée est "Rectified Linear Unit" (ReLU) : $\sigma(t) = \max(0, t)$
 - Souvent, celle associée à la dernière couche est l'identité ou softmax (pour la classification).
- L'architecture du réseau: La donnée des hyperparamètres.

Ex : Un réseau ReLU fully-connected de largeur 100 et de profondeur 10.

- Une zoologie d'architectures abondante :
 - Res-Net
 - ► En vision : U-Net (segmentation), YOLO (detection), transformer...
 - Pour les séries temporelles et modèles de langages : RNN, LSTM, GRU, SSM, transformer...
 - ► etc

Les réseaux de neurones

Proposition : Propriétés de f_H, cas ReLU

Pour tout réseau de neurones, avec la fonction d'activation ReLU et l'identité sur la dernière couche

- La fonction f_H est continue
- La fonction f_H est affine par morceaux
- Il existe une partition compatible ayant moins de $2^{n_1+\dots+n_{H-1}}$ morceaux dont les morceaux sont des polyèdres ayant au plus $n_1 + \dots + n_{H-1}$ faces.

 Réciproque dans : Arora, Raman, et al. "Understanding Deep Neural Networks with Rectified Linear Units." ICLR, 2018: Toute fonction continue, affine sur un nombre fini de polyhèdres (dont l'union est Rⁿ) peut être représenté par un réseau de neurone ReLU.

Plan

Le paysage pour les réseaux linéaires

Outline

L'optimisation des réseaux de neurones: Premières propriétés Les réseaux comme une fonction des paramètres

L'optimisation : Premières propriétés

- On dispose d'un échantillon (x_i, y_i)_{i=1..n}.
- On dispose d'un réseau de profondeur H, d'architecture fixée,
 - de paramètre

$$\theta = (W_H, \ldots, W_1, b_H, \ldots, b_1) \in \Theta$$

les fonctions d'activation sont notées o_h

La prédiction est la fonction

 $f_{\theta}(x) = \sigma_H \Big(W_H \cdots \sigma_2 \big(W_2 \sigma_1 \big(W_1 x + b_1 \big) + b_2 \big) \cdots + b_H \Big)$

- Les réseaux ReLU:
 - $\sigma_h = ReLU$, pour $h = 1, \dots, H-1$
 - Cas de la régression : $\sigma_H = Id$
 - Cas de la classification : σ_H est softmax.
- On considère une fonction coût définie par

$$\begin{array}{rcl} E: \Theta & \longrightarrow & \mathbb{R} \\ \theta & \longmapsto & E(\theta) = \sum_{i=1}^{n} L(f_{\theta}(x_i), y_i) \end{array}$$

pour une fonction coût $L: \mathscr{Y} \times \mathscr{Y} \longrightarrow \mathbb{R}$.

L'optimisation : Premières propriétés

Proposition: Non-coercivité dans le cas ReLU

Pour tout réseau ReLU, pour tout échantillon d'apprentissage, la fonction *E* n'est pas coercive.

Preuve utilisant l'homogénéité:

On considère θ avec des biais nuls et, pour tout $\lambda > 0$, on définit θ^{λ} par

$$W_1^{\lambda} = \lambda^{H-1} W_1$$
 et $W_h^{\lambda} = \lambda^{-1} W_h, \forall h = 2, \dots, H$

et des biais nuls.

Comme pour tout $\lambda > 0$, $\sigma(\lambda t) = \lambda \sigma(t)$, on a pour tout x et tout $\lambda > 0$,

$$f_{\theta^{\lambda}}(x) = \sigma_{H}(\lambda^{-1} W_{H} \cdots \sigma_{2}(\lambda^{-1} W_{2} \sigma_{1}(\lambda^{H-1} W_{1} x)) \cdots)$$

= $f_{\theta}(x)$

Donc $E(\theta) = E(\theta^{\lambda})$, pour tout $\lambda > 0$. Donc *E* n'est pas coercive.

L'optimisation : Premières propriétés

Proposition: Non-convexité

Pour la loss quadratique $L(y', y) = (y' - y)^2$, le réseaux ReLU fully connnected d'architecture (1, 1, 1) et l'échantillon constitué de l'exemple (x, y) = (1, 0), le risque empirique est non convexe.

Preuve: On a pour tout $(w_1, w_2) \in \mathbb{R}^2$ avec $w_1 \ge 0$, et pour $(b_1, b_2) = (0, 0)$

$$E(w_1, w_2, b_1, b_2) = (w_2 \sigma(w_1 x + b_1) + b_2 - y)^2 = (w_1 w_2)^2.$$

Cette fonction n'est pas convexe car:

- En $(w_1, w_2) = (0, 1), \quad E(0, 1, 0, 0) = 0$
- En $(w_1, w_2) = (1, 0), \quad E(1, 0, 0, 0) = 0$
- En $(w_1, w_2) = (0.5, 0.5) = 0.5 \times (1, 0) + 0.5 \times (0, 1),$

 $E(0.5, 0.5, 0, 0) = 0.25^2 > 0 = 0.5 \times E(1, 0, 0, 0) + 0.5 \times E(0, 1, 0, 0).$

Outline

L'optimisation des réseaux de neurones: Premières propriétés

- La Rétropropagation et ses défauts

La Rétropropagation

On suppose:

• La fonction coût est de la forme :

$$\theta \longmapsto E(\theta) = \sum_{i=1}^{n} L(f_{\theta}(x_i), y_i)$$

où L est C^1 .

- On suppose que, pour tout $h \in \{1, ..., H\}$, σ_h est C^1
 - On peut régulariser σ_h
 - Il existe un cadre formel pour faire du calcul différentiel et de l'optimisation avec des activations comme ReLU
- Sous ces hypothèses: E est différentiable.
- Les frameworks de deep learning utilisent la différentiation automatique.
- Ci-dessous, on ne considère qu'un unique exemple (x, y):
 - On somme si besoin plusieurs gradients $\nabla L(f_{\theta}(x_i), y_i)$

La Rétropropagation

- \mathbf{W}_h la matrice pour passer de la couche h-1 à h,
- $f_{\theta}^{h}(x)$, le contenu de la couche *h*,

•
$$d_{\theta}^{h}(x) = \sigma'_{h}(\mathbf{W}_{h}f_{\theta}^{h-1}(x) + \mathbf{b}_{h}).$$

Proposition: Gradient pour un réseau fully-connected

On a pour h = 1..H, $i = 1..n_h$, $j = 1..n_{h-1}$

$$\frac{\partial E}{\partial (\mathbf{W}_h)_{i,j}}(\theta) = \left[f_{\theta}^{h-1}(x) \right]_j \left[d_{\theta}^h(x) \right]_i \Delta_i^h(x)$$
$$\frac{\partial E}{\partial (\mathbf{b}_h)_i}(\theta) = \left[d_{\theta}^h(x) \right]_i \Delta_i^h(x)$$

où $\Delta^h(x) \in \mathbb{R}^{n_h}$ est défini par

$$\Delta^{h}(x) = \begin{cases} \nabla_{y_{1}} \mathcal{L}(f_{\theta}(x), y) &, \text{ si } h = h \\ \mathbf{W}_{h+1}^{T}. \text{diag} \left(d_{\theta}^{h+1}(x) \right) . \Delta^{h+1}(x) &, \text{ sinon} \end{cases}$$

Rq: \mathbf{W}_{h+1}^{T} remonte d'un niveau dans le réseau: **Rétropropagation**.

F. Malgouyres

Rétropropagation: Problèmes connus

- "Vanishing/Exploding gradient" :
 - ► Si \mathbf{W}_{h+1}^{T} .diag $\left(d_{\theta}^{h+1}(x)\right)$ est systématiquement une contraction \implies "Vanishing gradient"
 - ► Si \mathbf{W}_{h+1}^{T} .diag $\left(d_{\theta}^{h+1}(x)\right)$ augmente systématiquement la norme \implies "Exploding gradient"

Rétropropagation: Problèmes connus

Dans certaines régions de l'espace, la fonction objectif est très irrégulière : Pour une fonction d'activation homogène¹ (notamment ReLU): Pour $\lambda > 0, \lambda \sim 0$

$$\mathbf{W}_{1}^{\lambda} = \lambda^{H-1} \mathbf{W}_{1} \quad \text{et} \quad \mathbf{W}_{h}^{\lambda} = \lambda^{-1} \mathbf{W}_{h}, \forall h = 2..H$$
$$\mathbf{b}_{1}^{\lambda} = \lambda^{H-1} \mathbf{b}_{1} \quad \text{et} \quad \mathbf{b}_{h}^{\lambda} = \lambda^{H-h} \mathbf{b}_{h}, \forall h = 2..H$$

On a, pour tout x, $f_{\theta^{\lambda}}(x) = f_{\theta}(x)$, pour h > 1

$$\begin{aligned} \frac{\partial E}{\partial \mathbf{W}_{h,i,j}}(\theta^{\lambda}) &= \left[f_{\theta^{\lambda}}^{h-1}(x) \right]_{i} \left[d_{\theta^{\lambda}}^{h}(x) \right]_{i} (\Delta_{\lambda}^{h})_{i}(x) \\ &= \lambda^{H-(h-1)} \left[f_{\theta}^{h-1}(x) \right]_{i} \left[d_{\theta}^{h}(x) \right]_{i} \lambda^{-(H-h)} \Delta_{i}^{h}(x) \\ &= \lambda \frac{\partial E}{\partial \mathbf{W}_{h,i,j}}(\theta) \end{aligned}$$

mais $\frac{\partial E}{\partial \mathbf{b}_{h,i}}(\theta^{\lambda}) = \lambda^{-(H-h)} \frac{\partial E}{\partial \mathbf{b}_{h,i}}(\theta)$ et $\frac{\partial E}{\partial \mathbf{W}_{1,i,j}}(\theta^{\lambda}) = \lambda^{-(H-1)} \frac{\partial E}{\partial \mathbf{W}_{1,i,j}}(\theta)$. Les petits b_h^{λ} ont de forts gradients et seront multipliés par des forts W_h^{λ} .

¹Attention à la non-différentiabilité en 0

F. Malgouyres

Pour gagner en profondeur, faciliter l'apprentissage

Couches ResNet

$$f_h(x) = \sigma \Big(W_h \, \sigma \big(W_{h-1} f_{h-2}(x) + b_{h-1} \big) + b_h + f_{h-2}(x) \Big)$$

- Batch normalisation : On centre (au mieux) les données après chaque couche, à l'aide d'un opérateur diagonal.
- Contraindre les matrices W_h à être orthogonales ou presque. Bonus: Gain de robustesse.
- Augmenter la largeur. Pb: Complexité = largeur².

Plan

Le paysage pour les réseaux linéaires

Outline

Le paysage de la fonction objectif

- Introduction

Paysage de la fonction objectif : Introduction

Rappel, pour tout² w:

2 €	$R(f_{\mathbf{w}})$	-	R^*	(l'excès de risque)
=	$R(f_{\mathbf{w}})$	-	$\widehat{R}(f_{w})$	(erreur de généralisation)
+	$\widehat{R}(f_{\mathbf{w}})$	-	$\widehat{R}(f_{\widehat{\mathbf{w}}})$	(erreur d'optimisation)
+	$\widehat{R}(f_{\widehat{\mathbf{w}}})$	-	$\widehat{R}(f_{\mathbf{w}^*})$	$\leq \varepsilon$
+	$\widehat{R}(f_{\mathbf{w}^*})$	-	$R(f_{\mathbf{w}^*})$	(erreur de généralisation)
+	$R(f_{\mathbf{W}^*})$	_	R^*	(erreur d'approximation)

On utilise un algorithme d'optimisation pour trouver un w, on veut que

 $\widehat{R}(f_{\mathbf{w}}) - \inf_{\mathbf{w}} \widehat{R}(f_{\mathbf{w}})$

soit le plus faible possible.

Idéalement, on voudrait que cette quantité soit nulle ou au moins on voudrait la borner supérieurement.

²Pour alléger les notations, on oublie **b**.

Paysage de la fonction objectif : Introduction On suppose que $\mathbf{w} \longrightarrow \widehat{R}(f_{\mathbf{w}})$ est C^2 partout. On a

$$\widehat{R}(f_{\mathbf{w}}) = \widehat{R}(f_{\mathbf{w}^*}) + \langle \nabla_{\mathbf{w}} \widehat{R}(f_{\mathbf{w}^*}), \mathbf{w} - \mathbf{w}^* \rangle + \frac{1}{2} \langle \nabla_{\mathbf{w}}^2 \widehat{R}(f_{\mathbf{w}^*}) (\mathbf{w} - \mathbf{w}^*), \mathbf{w} - \mathbf{w}^* \rangle + o(\|\mathbf{w} - \mathbf{w}^*\|^2)$$

On distingue:

- w* est un minimiseur global:
 - $\forall \mathbf{W}, \qquad \widehat{R}(f_{\mathbf{W}^*}) \leq \widehat{R}(f_{\mathbf{W}})$
 - $\widehat{R}(f_{\mathbf{W}^*}) = \min_{\mathbf{W}} \widehat{R}(f_{\mathbf{W}})$
- w* est un minimiseur local:
 - Il existe un voisinage ouvert \mathcal{O} de w^{*} tel que

$$\forall \mathbf{w} \in \mathcal{O}, \qquad \widehat{R}(f_{\mathbf{W}^*}) \leq \widehat{R}(f_{\mathbf{W}})$$

• w* est un point critique du second ordre:

On a

$$\nabla \widehat{R}(f_{\mathbf{w}^*}) = 0$$
 et $\nabla^2 \widehat{R}(f_{\mathbf{w}^*}) \ge 0$

• w* est un point critique du premier ordre:

On a

$$\nabla \widehat{R}(f_{\mathbf{W}^*}) = 0$$

F. Malgouyres

Paysage de la fonction objectif : Introduction

- **w*** est un point selle si c'est un point critique qui n'est ni un minimiseur local, ni un maximiseur local
 - Un point selle w* est strict : si ce n'est pas un point critique du second ordre (i.e., le Hessian a une v.p. négative).
 - Un point selle w* est non-strict: si c'est un point critique du second ordre (i.e. le Hessian est semi-defini positif et a une v.p. égale à 0. Typiquement, un terme d'ordre supérieur en fait un point selle.).

(a) Point selle strict

(b) Point selle non-strict

Paysage de la fonction objectif : Introduction

Optimisation non convexe avec les mains

Pour des fonctions non-convexes, on sait montrer que

- dans un cadre assez vaste, l'algorithme du gradient (ou gradient stochastique) converge vers un point critique du premier ordre
- dans un cadre plus restreint, l'algorithme du gradient converge vers un point critique du second ordre
- Pour le gradient stochastic, **sans vitesse de convergence**, que les itérés convergent vers un minimiseur local.
- S. Gadat, F. Panloup, S. Saadane. "Stochastic heavy ball." Electronic Journal of Statistics 12.1 (2018): 461-529.
- J. Lee, M. Simchowitz, M. Jordan, B. Recht." Gradient Descent Converges to Minimizers." COLT 2016.

Outline

Le paysage de la fonction objectif

- Paysage pour les réseaux larges

Paysage pour les réseaux larges

Différents énoncés décrits dans

- Gori, Tesi, "On the problem of local minima in backpropagation", IEEE PAMI, 1992
- Yu, Chen, "On the local minima free condition of backpropagation learning", IEEE Trans. Neural Networks, 1995
- Nguyen, Hein, "The loss surface of deep and wide neural networks", ICML, 2017

•

On considère:

- un problème de régression
- un réseau fully-connected de paramètre $\theta = (\mathbf{W}_1, \dots, \mathbf{W}_H, \mathbf{b}_1, \dots, \mathbf{b}_H)$
- des observations (xⁱ, yⁱ)_{i=1..n}:

$$E(\theta) = \widehat{R}(f_{\theta}) = \sum_{i=1}^{n} L(f_{\theta}(x^{i}) - y^{i})$$

Paysage pour les réseaux larges

Théoreme (Le Paysage pour les réseaux larges)

On suppose que σ est C^1 et que, pour tout $t \in \mathbb{R}$, $\sigma'(t) \neq 0$. On suppose que le coût L est C^1 , à valeur dans \mathbb{R}^+ et tel que L(0) = 0. On suppose aussi que $\nabla L(y) = 0$ si et seulement si y = 0. On note $X = [x^1 \cdots x^n] \in \mathbb{R}^{n_0 \times n}$ et $A = \begin{pmatrix} X \\ \mathbb{1}_n^T \end{pmatrix}$. On considère un point critique du premier ordre $\theta = (\mathbf{W}_1, \dots, \mathbf{W}_H, \mathbf{b}_1, \dots, \mathbf{b}_H)$ de E. On suppose que rang (A) = n et que, pour tout $h \in \{1, \dots, H\}$, rang $(\mathbf{W}_h) = n_h$. Alors, on a

$$\widehat{R}(f_{\theta})=0$$

et θ est un minimiseur global.

Les hypothèses fortes sont celles sur le rang. Elles impliquent notamment

 $n \le n_0 + 1$ et $n_H \le n_{H-1} \le \cdots \le n_0$

Nb: Ci-dessus l'indice 0 est arbitraire car on pourrait supposer que les x_i sont le résultat des premières couches d'un réseau.

Plan

Le paysage pour les réseaux linéaires

Géométrie locale des réseaux ReLU fully-connected

En collaboration avec

Joachim Bona-Pellissier Postdoc Malga, Genova, Italie

François Bachoc Mcf, IUF, ANITI, IMT, UPS

L'objet étudié

- Étant donné un réseau ReLU
- $X \in \mathbb{R}^{n_0 \times n}$ (resp $Y \in \mathbb{R}^{n_L \times n}$) contiennent *n* exemples d'entrées (resp sorties) dans \mathbb{R}^{n_0} (resp dans \mathbb{R}^{n_L})
- On note $f_{\theta}(X) \in \mathbb{R}^{n_L \times n}$ la prédiction de X par le réseau de paramètre $\theta \in \mathbb{R}^p$
- Pour apprendre, on résoud (par exemple)

 $\operatorname{argmin}_{\theta} \| f_{\theta}(X) - Y \|_{F}^{2}$

- On étudie les ensembles
 - l'image $\{f_{\theta}(X) \mid \theta \text{ varies}\}$
 - ► la pre-image $\{\theta' \mid f_{\theta'}(X) = f_{\theta}(X)\}$

Analogie avec la régularisation ℓ^1

- Soient $A \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- On écrit la régularisation ℓ^1 sous la forme

$$\operatorname{argmin}_{x} \|Ax - y\|^{2}$$
$$\|x\|_{1} \leq \tau$$

Analogie avec la régularisation ℓ^0

- Soient $A \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- On écrit la régularisation ℓ^1 sous la forme

```
\begin{vmatrix} \operatorname{argmin}_{x} \|Ax - y\|^{2} \\ \|x\|_{0} \le k \end{vmatrix}
```


L'objet étudié

- Étant donné un réseau ReLU
- $X \in \mathbb{R}^{n_0 \times n}$ (resp $Y \in \mathbb{R}^{n_L \times n}$) contiennent *n* exemples d'entrées (resp sorties) dans \mathbb{R}^{n_0}
- On note $f_{\theta}(X) \in \mathbb{R}^{n_L \times n}$ la prédiction de X par le réseau de paramètre $\theta \in \mathbb{R}^p$
- Pour apprendre, on résoud (par exemple)

 $\operatorname{argmin}_{\theta} \| f_{\theta}(X) - Y \|_{F}^{2}$

- On étudie les ensembles
 - l'image $\{f_{\theta}(X) \mid \theta \text{ varies}\}$
 - ► la pre-image $\{\theta' \mid f_{\theta'}(X) = f_{\theta}(X)\}$

L'objet étudié

- On étudie les ensembles
 - l'*image* { $f_{\theta}(X) \mid \theta$ varies};
 - la pre-image $\{\theta' \mid f_{\theta'}(X) = f_{\theta}(X)\}.$

Géométrie locale des réseaux ReLU fully-connected.

On note *E* les arcs du réseaux et *B* les neurones des couches 1 jusqu'à *H*. On note $\theta \in \mathbb{R}^E \times \mathbb{R}^B$ que l'on identifie, si besoin, à $(W_1, \dots, W_H, b^1, \dots, b^H) \in (\mathbb{R}^{n_1 \times n_0} \times \dots \times \mathbb{R}^{n_H \times n_{H-1}}) \times (\mathbb{R}^{n_1} \times \dots \times \mathbb{R}^{n_H}).$ On rappelle

$$\begin{cases} f_0(x) = x \\ f_h(x) = \sigma_h (W_h f_{h-1}(x) + b_h) \quad , \forall h = 1, \cdots, H \end{cases}$$

Pour $n \in \mathbb{N}^*$, on définit la fonction **pattern d'activation**

$$\begin{array}{ccc} a: \mathbb{R}^{n_0 \times n} \times (\mathbb{R}^E \times \mathbb{R}^B) & \longrightarrow & \{0,1\}^{(n_1 + \dots + n_{H-1}) \times n} \\ & (X,\theta) & \longmapsto & a(X,\theta) \end{array}$$

où

$$a(X,\theta)_{i,j} = \begin{cases} 1 & \text{si} [W_h f_{h-1}(x^j) + b_h]_v \ge 0\\ 0 & \text{sinon,} \end{cases}$$

pour *v* le neurone correspondant à *i*, $h \in \{1, ..., H-1\}$ la couche de *v*, et la *j*^{ieme} colonne x^j de *X*.

Pour $X \in \mathbb{R}^{n_0 \times n}$ fixé, elle atteint un nombre fini de valeur que l'on note $\Delta_1^X, \dots, \Delta_{q_X}^X$.

Géométrie locale des réseaux ReLU fully-connected.

On note, pour $X \in \mathbb{R}^{n_0 \times n}$ fixé et pour $j \in \{1, ..., q_X\}$,

$$\widetilde{\mathscr{U}}_{j}^{X} = \operatorname{Int}\left\{\theta \in \mathbb{R}^{E} \times \mathbb{R}^{B} \mid a(X,\theta) = \Delta_{j}^{X}\right\},\$$

et $m_X = \left| \left\{ j \in \{1, \ldots, q\} \mid \widetilde{\mathscr{U}}_j^X \neq \emptyset \right\} \right|.$

Quitte à changer l'ordre, on suppose que les $\widetilde{\mathscr{U}}_1^{\chi}, \dots, \widetilde{\mathscr{U}}_{m_{\chi}}^{\chi}$ sont non-vides.

Lemme (Prédiction polynomiale par morceaux en θ)

Pour tout $n \in \mathbb{N}^*$, $X \in \mathbb{R}^{n_0 \times n}$, les ensembles $\widetilde{\mathcal{U}}_1^X, \dots, \widetilde{\mathcal{U}}_{m_X}^X$ sont non-vides, ouverts et disjoints

Pour tout j = 1,..., m_X, θ → f_θ(X) est une fonction polynomiale de degré inférieur à H sur *Ũ*^X_j.

• Le complémentaire $\left(\cup_{j=1}^{m_{\chi}} \widetilde{\mathcal{U}}_{j}^{\chi}\right)^{c}$ est fermé et de mesure de Lebesgue nulle.

Rq: La fonction $\theta \mapsto f_{\theta}(X)$ est une composition de fonctions continues, elle est continue.

Géométrie locale des réseaux ReLU fully-connected. Pour $n \in \mathbb{N}^*$, $X \in \mathbb{R}^{n_0 \times n}$, et $j \in \{1, ..., m_X\}$, on note

$$r_j^X = \max_{\theta \in \widetilde{\mathscr{U}}_j^X} \operatorname{rk}\left(\mathsf{D}f_{\theta}(X)\right) \quad \text{et} \quad \mathscr{U}_j^X = \{\theta \in \widetilde{\mathscr{U}}_j^X \mid \operatorname{rk}\left(\mathsf{D}f_{\theta}(X)\right) = r_j^X\}.$$

Théoreme (J. Bona-Pellissier, F. Bachoc, F. Malgouyres 2023)

Pour tout réseau ReLU, $n \in \mathbb{N}^*$, $X \in \mathbb{R}^{n_0 \times n}$, par définition

- $\mathscr{U}_1^{\chi}, \ldots, \mathscr{U}_{m_{\chi}}^{\chi}$ sont non-vides et disjoints;
- Pour tout j ∈ {1,...,m_X}, la fonction θ → a(X,θ) est constante sur U^X_j et prend des valeurs distinctes pour j' ≠ j ;

• Pour tout $j \in \{1, ..., m_X\}, \theta \mapsto \operatorname{rk}(\mathbf{D}f_{\theta}(X))$ est constante sur \mathscr{U}_j^n et vaut r_j^X .

De plus,

- Les ensembles $\mathscr{U}_1^{\chi}, \dots, \mathscr{U}_{m_{\chi}}^{\chi}$ sont ouverts;
- $\left(\bigcup_{j=1}^{m_X} \mathcal{U}_j^X\right)^c$ est fermé et de mesure de Lebesgue nulle;
- Pour tout j ∈ {1,...,m_X}, θ ↦ f_θ(X) est une fonction polynomiale de degré inférieur à H sur 𝒱^X_j.

Géométrie locale des réseaux ReLU fully-connected.

Corollaire

Pour tout réseaux ReLU fully-connected, profond. Pour tout $n \in \mathbb{N}^*$, $X \in \mathbb{R}^{n_0 \times n}$, $j \in \{1, ..., m_X\}$ et $\theta \in \mathcal{U}_i^X$, il existe $\varepsilon_{X,\theta} > 0$ tel que

L'image locale

 $\left\{f_{\theta'}(X) \in \mathbb{R}^{n_L \times n} \mid \|\theta' - \theta\| < \varepsilon_{X,\theta}\right\}$

est une variété régulière de dimension $rk(Df_{\theta}(X))$;

Ia pre-image

$$\left\{\theta' \in \mathbb{R}^{E} \times \mathbb{R}^{B} \mid f_{\theta'}(X) = f_{\theta}(X) \text{ and } \|\theta' - \theta\| < \varepsilon_{X,\theta}\right\}$$

est une variété régulière de dimension $|E| + |B| - \operatorname{rk}(\mathbf{D}f_{\theta}(X))$.

Quelles sont les positions relatives des zones ? Interprétation des expériences

Figure: (Gauche) Représentation schématiques des \mathscr{U}_j^X et (droite) de leurs images $\{f_{\theta}(X) \mid \theta \in \mathscr{U}_i^X\}, j \in \{1, ..., 7\}.$

Quelles sont les positions relatives des zones ? Un exemple

•
$$n_0 = n_1 = n_2 = 1, \ \theta = (a, b, c, d) \in \mathbb{R}^4, \ n = 3, \ X = (0, 1, 2) \in \mathbb{R}^{1 \times 3},$$

 $f_{\theta}(X) = (b\sigma(c) + d, \ b\sigma(a + c) + d, \ b\sigma(2a + c) + d) \in \mathbb{R}^{1 \times 3}.$

• *P* espace vectoriel orthogonal à (1,1,1).

Experience 1: Comportement pendant l'apprentissage

Description de l'expérience

- architecture (784, 30, 30, 30, 10);
- nombre of parametres: 25720;
- Données d'apprentissage MNIST X_{train} de taille 4000;
- Données de test MNIST X_{test} de taille 20000;
- Données aléatoires X_{random} (Bruit Gaussien) de taille 20000.

Experience 2: Comportement quand la largeur varie

Description de l'expérience

- architecture (784, *w*, *w*, *w*, 10), pour plusieurs *w*;
- Données d'apprentissage MNIST X_{train} de taille 4000;
- Données de test MNIST Xtest de taille 10000;
- Données aléatoires X_{random} (Bruit Gaussien) de taille 40000.

Functional dimensions as the width increases

Experience 3: Comportement quand X est bruité

Description de l'expérience

- Architecture (784, 30, 30, 30, 10);
- Bruit Gaussien additif sur X_{train}.
- Même données.

Functional dimensions with noisy inputs.

Experience 4: Comportement quand Y est bruité

Description de l'expérience

- Architecture (784, 30, 30, 30, 10);
- Ajout de données avec Y aléatoire;
- Données d'apprentissage MNIST X_{train} propre de taille 4000.

Dimension locale pour des sortie bruitées.

49/73

Conclusion

- La dimension locale, appelé functional dimensions, varie
- Existence d'une régularisation implicite induite par la géométrie sur MNIST
- La dimension locale est (presque sûrement) induite par le pattern d'activation.
- Il est invariant par les changements d'échelles positifs et les permutations de neurones.
- Il est lié à la distribution des X
- Le lien avec la distribution des Y n'est pas mis en évidence

Bien plus dans l'article: https://arxiv.org/pdf/2402.08269

Plan

Paysage pour les réseaux linéaires (cas à 1 couche cachée)

Outline

Le paysage pour les réseaux linéaires

- Introduction

Paysage de la fonction objectif : Introduction

Rappel, pour tout³ w:

2 €	$R(f_{\mathbf{w}})$	-	R^*	(l'excès de risque)
=	$R(f_{\mathbf{w}})$	-	$\widehat{R}(f_{w})$	(erreur de généralisation)
+	$\widehat{R}(f_{\mathbf{w}})$	-	$\widehat{R}(f_{\widehat{\mathbf{w}}})$	(erreur d'optimisation)
+	$\widehat{R}(f_{\widehat{\mathbf{w}}})$	-	$\widehat{R}(f_{\mathbf{w}^*})$	$\leq \varepsilon$
+	$\widehat{R}(f_{\mathbf{w}^*})$	-	$R(f_{\mathbf{w}^*})$	(erreur de généralisation)
+	$R(f_{\mathbf{W}^*})$	_	R^*	(erreur d'approximation)

On utilise un algorithme d'optimisation pour trouver un w, on veut que

 $\widehat{R}(f_{\mathbf{w}}) - \inf_{\mathbf{w}} \widehat{R}(f_{\mathbf{w}})$

soit le plus faible possible.

Idéalement, on voudrait que cette quantité soit nulle ou au moins on voudrait la borner supérieurement.

³Pour alléger les notations, on oublie **b**.

Paysage de la fonction objectif : Introduction On suppose que $\mathbf{w} \longrightarrow \widehat{R}(f_{\mathbf{w}})$ est C^2 partout. On a

$$\widehat{R}(f_{\mathbf{w}}) = \widehat{R}(f_{\mathbf{w}^*}) + \langle \nabla_{\mathbf{w}} \widehat{R}(f_{\mathbf{w}^*}), \mathbf{w} - \mathbf{w}^* \rangle + \frac{1}{2} \langle \nabla_{\mathbf{w}}^2 \widehat{R}(f_{\mathbf{w}^*}) (\mathbf{w} - \mathbf{w}^*), \mathbf{w} - \mathbf{w}^* \rangle + o(\|\mathbf{w} - \mathbf{w}^*\|^2)$$

On distingue:

- w* est un minimiseur global:
 - $\forall \mathbf{W}, \qquad \widehat{R}(f_{\mathbf{W}^*}) \leq \widehat{R}(f_{\mathbf{W}})$
 - $\widehat{R}(f_{\mathbf{W}^*}) = \min_{\mathbf{W}} \widehat{R}(f_{\mathbf{W}})$
- w* est un minimiseur local:
 - Il existe un voisinage ouvert \mathcal{O} de w^{*} tel que

$$\forall \mathbf{w} \in \mathcal{O}, \qquad \widehat{R}(f_{\mathbf{W}^*}) \leq \widehat{R}(f_{\mathbf{W}})$$

• w* est un point critique du second ordre:

On a

$$\nabla \widehat{R}(f_{\mathbf{w}^*}) = 0$$
 et $\nabla^2 \widehat{R}(f_{\mathbf{w}^*}) \ge 0$

• w* est un point critique du premier ordre:

On a

$$\nabla \widehat{R}(f_{\mathbf{W}^*}) = 0$$

F. Malgouyres

Paysage de la fonction objectif : Introduction

- **w*** est un point selle si c'est un point critique qui n'est ni un minimiseur local, ni un maximiseur local
 - Un point selle w* est strict : si ce n'est pas un point critique du second ordre (i.e., le Hessian a une v.p. négative).
 - Un point selle w* est non-strict: si c'est un point critique du second ordre (i.e. le Hessian est semi-defini positif et a une v.p. égale à 0. Typiquement, un terme d'ordre supérieur en fait un point selle.).

(a) Point selle strict

(b) Point selle non-strict

Paysage de la fonction objectif : Introduction

Optimisation non convexe avec les mains

Pour des fonctions non-convexes, on sait montrer que

- dans un cadre assez vaste, l'algorithme du gradient (ou gradient stochastique) converge vers un point critique du premier ordre
- dans un cadre plus restreint, l'algorithme du gradient converge vers un point critique du second ordre
- Pour le gradient stochastic, **sans vitesse de convergence**, que les itérés convergent vers un minimiseur local.
- S. Gadat, F. Panloup, S. Saadane. "Stochastic heavy ball." Electronic Journal of Statistics 12.1 (2018): 461-529.
- J. Lee, M. Simchowitz, M. Jordan, B. Recht." Gradient Descent Converges to Minimizers." COLT 2016.

Outline

- - Le paysage pour les réseaux linéaires

 - Paysage pour les réseaux linéaires

Pointeurs bibliographiques

- Baldi, Hornik, "Neural networks and principal component analysis: Learning from examples without local minima", Neural networks, 1989.
- Baldi, Hornik, "Learning in linear neural networks: A survey", IEEE Transactions on neural networks, 1995.
- Kawaguchi, "Deep learning without poor local minima", NeurIPS 2016
- (Notamment dans les groupes de S. Arora à Princeton, de F. Bach à l'ENS)

En collaboration avec

El-Mehdi Achour Postdoc, RWTH, Aachen university, Allemagne

Sébastien Gerchinovitz Chercheur DEEL, IR Saint-Exupéry

On note

•

٠

- $X \in \mathbb{R}^{d_x \times n}$ et $Y \in \mathbb{R}^{d_y \times n}$ les matrices contenant les données.
- $\widehat{R}(\mathbf{W}) = \sum_{i=1}^{m} \|W_H W_{H-1} \cdots W_2 W_1 x_i y_i\|_2^2 = \|W_H \cdots W_1 X Y\|^2$

$$\Sigma_{XX} = \sum_{i=1}^n x_i x_i^T = XX^T \in \mathbb{R}^{d_x \times d_x} \quad , \quad \Sigma_{YY} = \sum_{i=1}^n y_i y_i^T = YY^T \in \mathbb{R}^{d_y \times d_y},$$

$$\Sigma_{XY} = \sum_{i=1}^{n} x_i y_i^T = XY^T \in \mathbb{R}^{d_x \times d_y} \quad , \quad \Sigma_{YX} = \sum_{i=1}^{n} y_i x_i^T = YX^T \in \mathbb{R}^{d_y \times d_x},$$

$$\Sigma^{1/2} = \Sigma_{YX} \Sigma_{XX}^{-1} X \in \mathbb{R}^{d_y \times n},$$

sa SVD

$$\Sigma^{1/2} = U \Delta V^T,$$

avec $U \in \mathbb{R}^{d_y \times d_y}$, $\Delta = \text{diag}((\delta_i)_{i=1..d_y}) \in \mathbb{R}^{d_y \times n}$, $V \in \mathbb{R}^{n \times n}$. • $r_{max} = \min(d_x, n_1, \dots, n_{H-1}, d_y)$

On suppose

• $d_y \le d_x \le n$

- Σ_{XX} est inversible et Σ_{XY} est de rang plein
- les valeurs singulières de $\Sigma^{1/2}$ sont distinctes

Lemme (Inférence et valeurs critiques)

Soit $\mathbf{W} = (W_1, ..., W_H)$ un point critique du premier ordre de \widehat{R} et $r = rk(W_H \cdots W_1)$. Il existe un unique sous-ensemble $\mathscr{S} \subset [\![1, d_y]\!]$ de taille r tel que:

$$W_H \cdots W_1 = U_{\mathscr{S}} U_{\mathscr{S}}^T \Sigma_{YX} \Sigma_{XX}^{-1}.$$

La valeur critique correspondante vaut $\widehat{R}(\mathbf{W}) = \operatorname{tr}(\Sigma_{YY}) - \sum_{i \in \mathscr{S}} \delta_i^2$. On dit que le point critique \mathbf{W} est associé à \mathscr{S} .

Proposition

Pour tout $\mathscr{S} \subset [\![1, d_{\gamma}]\!]$ de taille $r \in [\![0, r_{max}]\!]$, il existe un point critique **W** associé à \mathscr{S} .

- **Pivot** $(i,j) \in [1, H]^2$, avec i > j
- Blocs complémentaires du pivot (*i*,*j*):

Second bloc complémentaire : $W_{i-1} \cdots W_{j+1}$

- Pivot tenu pour W : L'un des blocs complémentaires est de rang rk(W_H...W₁)
- W est point critique tenu: W est un point critique et tous les pivots sont tenus pour W

Proposition (E. Achour et al.)

- Pour H = 2, il n'existe pas de point selle non-strict.
- Pour H ≥ 3, pour tout r < r_{max}, il existe des points critiques associés à [[1, r]] tenus et non-tenus.

Proposition (E. Achour et al.)

On note $\mathscr{S}_{max} = [\![1, r_{max}]\!]$ et $Q_{max} = [\![1, d_y]\!] \setminus \mathscr{S}_{max} = [\![r_{max} + 1, d_y]\!]$. **W** est un **minimiseur global** de \widehat{R} **si et seulement si** il existe des matrices inversibles $D_{H-1} \in \mathbb{R}^{d_{H-1} \times d_{H-1}}, \dots, D_1 \in \mathbb{R}^{d_1 \times d_1}$, et des matrices $A_R \in \mathbb{R}^{(d_y - r_{max}) \times (d_{H-1} - r_{max})}$, $(W_h)_{DR} \in \mathbb{R}^{(d_h - r_{max}) \times (d_{h-1} - r_{max})}$ pour $h \in [\![2, H-1]\!]$, et $M_D \in \mathbb{R}^{(d_1 - r_{max}) \times d_x}$ tels que:

$$\begin{split} W_{H} &= \begin{bmatrix} U_{\mathscr{S}_{max}}, U_{Q_{max}} A_{R} \end{bmatrix} D_{H-1}^{-1} \\ W_{h} &= D_{h} \begin{bmatrix} I_{r_{max}} & 0 \\ 0 & (W_{h})_{DR} \end{bmatrix} D_{h-1}^{-1} \qquad \forall h \in [\![2, H-1]\!] \\ W_{1} &= D_{1} \begin{bmatrix} U_{\mathscr{S}_{max}}^{T} \Sigma_{YX} \Sigma_{XX}^{-1} \\ M_{D} \end{bmatrix} . \end{split}$$

Empiriquement, on trouve:

(a) Initialisation au voisinage d'un point selle strict vs non-strict

(b) Histogramme des epoch d'échappement

Conclusion [E. Achour et al.]

- **Classification** de l'ensemble des points critiques en: minimiseurs globaux; points selles stricts; point selles non-stricts.
- Tout **point critique du second ordre** qui n'est pas un minimiseur global conduit à une solution de la régression linéaire sous **contrainte de rang**.
- Les points selles non-stricts sont associés avec r_{max} valeurs plateau pour le risque empirique
- Paramétrisation des minimiseurs globaux

Outline

Le paysage pour les réseaux linéaires

- Paysage pour les réseaux linéaires (cas à 1 couche cachée)

On simplifie

- Cas H = 2
- On note pour $A \in \mathbb{R}^{n_2 \times n_1}$ et $B \in \mathbb{R}^{n_1 \times n_0}$

$$E(A, B) = \sum_{i=1}^{L} ||y_i - ABx_i||^2$$

• On note pour $D \in \mathbb{R}^{n_2 \times n_0}$

$$F(D) = \sum_{i=1}^{L} \|y_i - Dx_i\|^2$$

$$\begin{split} \boldsymbol{\Sigma}_{XX} &= \sum_{i=1}^{L} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} \in \mathbb{R}^{n_{0} \times n_{0}} \qquad , \qquad \boldsymbol{\Sigma}_{XY} = \sum_{i=1}^{L} \boldsymbol{x}_{i} \boldsymbol{y}_{i}^{T} \in \mathbb{R}^{n_{0} \times n_{2}} \\ \boldsymbol{\Sigma}_{YX} &= \sum_{i=1}^{L} \boldsymbol{y}_{i} \boldsymbol{x}_{i}^{T} \in \mathbb{R}^{n_{2} \times n_{0}} \qquad , \qquad \boldsymbol{\Sigma}_{YY} = \sum_{i=1}^{L} \boldsymbol{y}_{i} \boldsymbol{y}_{i}^{T} \in \mathbb{R}^{n_{2} \times n_{2}} \end{split}$$

Remarques

On a

- Pour tout $C \in \mathbb{R}^{n_1 \times n_1}$ inversible, $AB = (AC)(C^{-1}B) = A'B'$
- **2** Si Σ_{XX} est inversible alors

$$\Sigma_{YX}\Sigma_{XX}^{-1} \in \operatorname{argmin}_D F(D)$$

Soit *M* ∈ ℝ^{n×p} avec *p* ≤ *n* de rang *p*. Pour tout *x* ∈ ℝⁿ, la projection *P_M(x)* de *x* sur l'espace vectoriel généré par les colonnes de *M* vaut

$$P_M(x) = M(M^T M)^{-1} M^T x$$

Lemme 1

Si Σ_{XX} est inversible. Soient $A \in \mathbb{R}^{n_2 \times n_1}$ telle que rang $(A) = n_1$ et $B \in \mathbb{R}^{n_1 \times n_0}$. Alors, (A, B) est un point critique du premier ordre de *E* si et seulement si

$$AB\Sigma_{XX}B^T = \Sigma_{YX}B^T$$
 et $B = (A^T A)^{-1}A^T\Sigma_{YX}\Sigma_{XX}^{-1}$

Lemme 2

Si Σ_{XX} est inversible. Soient $A \in \mathbb{R}^{n_2 \times n_1}$ telle que rang $(A) = n_1$ et $B \in \mathbb{R}^{n_1 \times n_0}$. Les deux assertions suivantes sont équivalentes:

(A, B) est un point critique du premier ordre de E

 $AB = P_A \Sigma_{YX} \Sigma_{XX}^{-1}$

et

$$P_A \Sigma = P_A \Sigma P_A = \Sigma P_A$$

pour

$$\Sigma = \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \in \mathbb{R}^{n_2 \times n_2}$$

F. Malgouyres

Nonconvex optimization landscapes

On diagonalise (Σ est symétrique)

 $\boldsymbol{\Sigma} = \boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^T$

avec $\Lambda \in \mathbb{R}^{n_2 \times n_2}$ diagonale et $U \in \mathbb{R}^{n_2 \times n_2}$ unitaire.

Pour $\mathscr{S} \subset \{1, \dots, n_2\}$, on note $U_{\mathscr{S}}$ la matrice extraite de U en prenant les colonnes d'indice dans \mathscr{S} .

Proposition 1: Paramétrisation des points critiques

Si Σ_{XX} est inversible. Soient $A \in \mathbb{R}^{n_2 \times n_1}$ et $B \in \mathbb{R}^{n_1 \times n_0}$ avec A telle que rang $(A) = n_1$.

On suppose que les valeurs propres de Σ sont distinctes.

Alors, (A, B) est un point critique du premier ordre de *E* si et seulement si il existe $C \in \mathbb{R}^{n_1 \times n_1}$ inversible et $\mathscr{S} \subset \{1, \dots, n_2\}$ de taille n_1 tels que

$$A = U_{\mathscr{S}}C$$
 et $B = C^{-1}U_{\mathscr{S}}^T\Sigma_{YX}\Sigma_{XX}^{-1}$

Paysage pour les réseaux linéaires (cas à 1 couche cachée) Pour simplifier les notations, on suppose les valeurs propres de Σ ordonnées:

$$\lambda_1 > \lambda_2 > \cdots > \lambda_{n_2}$$

Proposition 2: minimiseur global ⇔ minimiseur local

Si Σ_{XX} est inversible. Soient $A \in \mathbb{R}^{n_2 \times n_1}$ et $B \in \mathbb{R}^{n_1 \times n_0}$ avec A telle que rang $(A) = n_1$.

On suppose que les valeurs propres de Σ sont distinctes.

pour tout point critique du premier ordre (A, B) de E et pour S définissant A et B (voir la proposition précédente), on a

$$AB = P_{U_{\mathscr{S}}} \Sigma_{YX} \Sigma_{XX}^{-1}$$

2

0

$$E(A,B) = \operatorname{trace}(\Sigma_{YY}) - \sum_{i \in \mathscr{S}} \lambda_i$$

- Si (A, B) est un minimiseur global alors c'est un point critique du premier ordre associé à S = {1,..., n₁}.
- (A, B) est minimiseur local si et seulement si c'est un minimiseur global.
Merci pour votre attention !