







































































































School Optimization Algorithms Toulouse 2024

HIGH DIMENSIONAL

RANDOM LANDSCAPES

YankennfinroBeosenrser

Exercises are at the
endofthesenotes










































































































WHAT HighD random landscapes arefunctionsofmanyvariablesEEE
5 sa Sm withNss1 which are random with givenPIECED
in thefollowing Gaussian

E WHY Many complex systems are inherently high dimensional

They evolvetrying tooptimize somefunction fitnessenergy
cost Functionencodescomplexinteractionsbetween constituents

often modelled with random variables

What to expect fromthis
optimization processes in high D

timeer
glution

typically lie withhigh
probability

How Characterize landscapes structure2 itsdynamicalexploration
UsingtoolsofStatphysics Nsa of disordered systems
randommatrixtheorysaddlepoint2 largeN limits largedeviations
replicatricks KacRicecounting formulas

Ira
timeerglution

scenario1 smooth landscape Scenario2 rugged landscape










































































































HIGH D RANDOM LANDSCAPES

F PART I QUADRATIC HIGHD LANDSCAPES

WHY anexamplefrom highD inference

Aneasyinferenceproblem Fromdenoisingtolandscapes Questions2Strategy

HowRandom MatrixTheory
Fromlandscapes backto random matrices Basic RMTfacts

WHATGroundstatelandscapedynamics
Recoveringthesignal A landscapeofsaddles DMFT 2beyond

FTPARTIT RUGGED HIGHD LANDSCAPES

WHYanotherexamplefrom highD inference

Ahard inferenceproblem noisytensors Landscapeproblem2complexity

HOWKacRiceformalism

Averagesvstypicalvaluesandreplicas KacRiceformula1st
computingthecomplexity 3steps Theannealedcomplexity

WHATGroundstatelandscapedynamics

Recoveringthesignal A landscapeofminima DMFT Andbeyond










































































































PART I

Quadratic high D landscapes





























































































II WHY AN INFERENCE EXAMPLE
HIt An easy inferenceproblem noisy matrices

Inference problem measure a signal corrupted by
noise Combining measurements can recover
information on signal

figureadapted from theweb

Denoisingofmatrices spiked matrices JOHNSTONE 2001

Ft r I size NxN r O

J Tsignal noise
N 71

signalstrength
randomness










































































































THE SIGNAL 8 vectorof norm 11842 14 F Va Vi
Unknown Quenched fixed Independentof I

HEE NOISE 5 matrix with random symmetricGij Jji
entries NxN Gaussian statistics

Lij7 0 STI 9 41 t 8ij

Probability to observe one instance of 5

BCI dI A e oiE Esse

IA
e

Iffy
i d2ii

iIjd3ij Am 1 µ
NIH

GAUSSIAN ORTHOGONAL ENSEMBLE rotationally
invariant ensemble 8 rotation BOII
Matrix I in new basis Jr 858T
Rotationally invariant means I has same prob
as 5 850 I wJr
Notice same eigenvalues eigenvectors In OI The

erector of 5 has same distribution as any
othervectorobtainedfromit with rotation uniformly
distributedvector on sphere










































































































t From denoising to landscapes

Estimator guess of F 5as afs.fiayx5M5

this is maximum likelihoodestimator of thesignal E

Maximum likelihood

Tu observation
M r t I J unknownsignal

J iid gaussianS

Bayes formula

Pfs Iii Pfs Hints 1 pots e
oi Mii ESisi

Phosterior prtio.eu ioPTin

zLfslmlogPMI5 Nqfg Mijrasig.IT j tllM
log likelihood

The maximum likelihood estimator is the vector
that maximizes the log likelihood










































































































If we know HELEN we can assume 115HEN
and thus the estimator is minimizing

i ij f sis Mis the 5114 2 MijSiSj

Egs argmax 5 itsHELEN

Sas is also the ground state of theenergy landscape

ELI Az SiMiSj I FdiSig RN Y

defined on S rn E HEHEmy
Trandom Tdeterministic
isotropic biased

towards 5

Finding the estimator solving optimization problem

for random landscape EE53










































































































Define the OVERLAP WITH SIGNAL

F

Ingests g is't 5

gist fins9.151
Sutra

F 0 random fully connected interactions
between Si pure spherical f 2 model
Isotopic statistics

SEES 7 0 by entropy

or a expect Sas to
SEED EE T Nz 5

for rolsee below

a o the points in the vicinityof it are favored
energetically Is

competition leads to transitions in Hr signal to
noise ratio when Nta










































































































HighD geometry typical valuesofoverlaps

let it be fixed Vector HELEN Assume 5 uniformly
taken on sphere Then typical value of 0

With overwhelming probability two vectors are

orthogonal when N ox

Indeed
Basis independent Choosebasis inwhich

I RN O o o e

so h I ysiE E asisi oISHII Isnt

SurfacegCND dimensional sphereofradius12 ink

18hr11 zI R

Rescale 8 51 rn

N III da ai N TdoneL doi si Iaai

IS fatal
t

fdrok e
108 ettOniDt01N SIPEE.o.siO o

e 112Gg te
Nsoo










































































































Notice

Coulddothis for all componentsbyrotational invariance all
of a re statistically equivalent IIof aN 7 1 soi a11N
s riff 11N

Indeedselling one ally and usinghtt

as is So E an
Since ft e

a

a N t Jdaf.la
rf lSnlr

exponential cancel










































































































t Questions strategy

1 Three questions

1 RECOVERY QUESTION CIO EQUILIBRIUM

for which values of Ho is 5 informative

of signal 8 i.e close to it in

configuration space

For N so GEEas 0 magnetization

2 LANDSCAPE QUESTION METASTABLESTATES

are there many local minima stationary points
at higherenergy Howfar from Ias
How far from it
In following many O e

03 ALGORITHMIC QUESTION DYNAMICS

founding Eas with local optimization algorithms
gradient descent Langevin d5d THE t VEY'Ctl is

easy timescales ZtypnONd gradient on

hard timescales zyp ofenj.fr
thesphere










































































































Q2andQ3 related optimization hardwhen manymetastable
States localminima in whichsystemgets stuck

gradient glassinessEES descent

ik w
Midas

ground
seat
BE Egs

1 The strategy

study the typical distribution ofstationary points
I ThEE53 0 as a function of
i energy density EFsD EL JIN

ii stability local curvature minimasaddles
curvature eigenvaluesofHessian PIECE n

index k 5T E negative evalues Diets
minimaall evaluespositive K O

iii geometry overlap withsignal gits C E IN

Q1 Properties of global minimum
9293 Propertiesof local minima










































































































Notice here typical means happening with

probability P 1 when N soo

rare means happening with IP 0

1kWeshall fee

Quadratic landscape Ets Can answer all the

questions when Nts

Using Random matrix theory Describe what

happens typically f with large probability
when N large
More complicated landscapes PART II

Ate CommentQ1 and 03 depend on theestimatorand on the
algorithmchosenHerewe discuss maximum likelihood
with sphericalprior and Langevin dynamics and derive

a recoveryandalgorithmicthreshold forthem
Information theoretic threshold minimal Hr above which it is
information theoretically possible todetect the signal can be
smaller then the recovery threshold predicted

by ML










































































































III HOW RANDOM MATRIX THEORY

F From landscapes back to random matrices

Consider a fixed realization ofA of landscape Ets
KOSTERLITZTHOULESSJONES 1976

Implement spherical constraint

Eis ftp.Mijsisj 1 E.SE N

stationary points 551
1
satisfy

2 452 4 MiSj t tisie O ti 1 M

gfs ELSEIN 0

The first equation is evalue equation for it M5 1 5

If UI 1a are evectors evalues ofMn for a I N then

52 VNtix are stationary points of EE 2N ofthem
notice symmetry bc quadratic function










































































































Properties

i Energy Multiply first equation by six some use
second one

S.gs MijSj 1 N I 2qjs 2eIs
The 5A have energydensity energy density

C D 1

ii stability minima saddles

Hessian TYE I Mij t

At stationary point 5 172 51 49 1 I

The eigenvalues of IT are tee In The

eigenvalues of17 5D are 111ft thy
positive if a 1 positiveif a 2

One zero eigenvalue duetospherical constraint
G 1 positiveand N a negative stationary points 52
are saddles of index knEsa N a

Ground state L N Global minimum Ko










































































































For each realizationof randomness I EES has
2N stationary points their energy distribution

is related to eigenvalue distributionof
Mn

Statisticalproperties when Not determinedby Random
Matrix Theory RMT

Notation
gradients Hessians on sphere

N
DEES zest gradient in IR

Lagrange multiplier 1 subtracts theradial component
IE153.5 Texts DEEs E 5 5

N T radial component
Choose basisvectors suchthat
Ea IS 2 1 N I a spanning tangentplane615

5µg

EET
In this basis

Dex fries.IT
gYaiidn'In

onthe
Sphere

similarly Hession on the sphere PIECE is the
CND x Nt Matrix DELI I I projected on615T

J SiJSj










































































































T Some facts in Random MatrixTheory RMT

The results belowhold true for rank 1 perturbed
GOE matrices of the type

Fl I I I t r Tout Ew FI rn HuiIl 1

I Got matrix both a Wigner matrix real symmetric
iid entries 2 rotationally invariant J aw Tr 050T

Normalized so that spectrum in bounded interval
when the

I deterministic rank one matrix with 1 evalue
equal to r andCND Zeroeigenvalues Independentof8
Perturbation toGOE Spike

Someresults havesomedegreeofuniversality can
begeneralized to other matrix ensembles or perturbations
of higher rank finite inN

Eigensystem Aqua'sau In this section averages
are wet distributionof

Mn s SdinPhi
Assume He a In and Allah 1










































































































AreThe eigenvalue distribution density 2 outliers

N finite Unix YESH ha 1
Typical scenario when it increases

n In inthIItEiinms7

J Tregionswhere I Ientedge
regions evalues outlier

whereevalues accumulate

isolated D Tati1a 11N

valid E g Ix IpSfx Iii's

Density Outliers

Thedensity Where evalues accumulate distribution
described by continuousdensity Sma

IP 1aECTHD fix DX

have01N endues around 1 separated byOHM
inbulk or Offna at edges










































































































Facts a Density fun isself averaging

finna fix focal fine fHD
randomfunction deterministic

14331

A

fitness

b Canbeobtained fromStieltjes transform

g H fd E te
u

resolvent

This function is singularwhen 2 ta poles
Define it awayfrom real dtis e.g ZEE E E iq
then analytically continue

Iffhsgrith g HI alsoselfaveraging










































































































E When N so poles accumulate into branchout
The discontinuity at the cut is related

gold

gold life Im g H int

Isolated eigenvalues Isolatedpolesof Gritz contributing to
orderHN

They also concentrate tyinghis his

Questions Kak fold typical valueof Nis when N soo

Fg typical fluctuations at A large Anita

D8 atypical fluctuations largedeviations

Books
POKERS BOUCHAUD Afirstcourse in randommatrix theory 2021
MEHTA RandomMatrices2004










































































































Typical values the density goal
Canbestudied with REPLICA METHOD EXERCISE 1

One finds that

1 Thefinite rank perturbation R does not affect the
density of IT that is thesame as the one ofJ

fffhoofnHirJ fof4reo1 IiYatppe9arrsankgor1I
turbation

2 WhenJ is Gaussian Ed It Sij then

The Stiltjes transform satisfies a self consistent

equation jgzczy zgo.cz 1 0 Z 4spectrum

3 This is solvedby gsdH izzz.FI chbrgigeh8

Continuation to real axis 2 I

gsdxt A signf.gl 4T hotEzo 2b

Choiseofbranch guarantees fiffogsdxtofgsch.tv










































































































By inversion formula

f HI fsc ill zt4 HyeEzo2b

edge
bulk

25 to Zo X

I Universality of fax it is the limiting density her
a large class of matricesofthe Wignertype
symmetric withiidentriesnot necessarily Gaussian

finite second moment

ERDOS UniversalityofWignerrandommatrices a survey
ofresults 2010

BENAYCH GEORGES 2KNOWLES Lecturesonthelocal
semicircle law forWignermatrices 201g

Also spectrum of Laplacian of randomgraphs
adjacency matrix Burgers equation

F I can have larger rank notscaling withN
finite rank










































































































Typical values the isolated evaluelsherectors

The 11N Contributions to g a can be studied
in a large N expansion EXERCISE 2

One finds that
T.EEEII

A For Fro There are no isolated eigenvalues

fifth he 26 minimal eigenvalue

k 5 In 25 manmae eigenvalue

almost surely

2 When N soo a transition in maximal eudlue when
F re 0 notice smaller than radius 20

fin In 26 KE 0
almost surely

Et r r re 5

For rare same behavior as for F 0 largest
evalue slicks to boundary For r re the

largest eigenvalue is isolated










































































































h
Zo b z I

KOSTERLITZ THOULESS JONES 1976
PECHE 2006

3 The eigenvector when r re acquires macroscopic

projection on W F rN

Then fighting
0 if Kk

1 r re

asTv

µ whileall other eigenvectors
I Such that Cuawt O HN

This canbe seen as a Localization transition

For Ko consistent with rotational invariance










































































































eigenvectors of I like random vectors on sphere
statistically and Tv is independent of 5
As in calculationabove

N N 1
Ck.w5KJIduii8flluaH1J a.w 0

Use this in Exercise 2 two arbitraryvectors on sphere
are typically orthogonal when Nta

UT is DELOCALIZED in basis Ia Overlap is of same
orderof magnitude forall d no special direction

Terminology fromquantum problems whereTiaandto
eigenvectorsof 18caloperators QM is linear
CONNECTED NOTIONS QUANTUMCHAOSFREEPROBABILITY

when r 0 isotropy broken
y
direction W For r ra

ut localized in basis
r

n w Measureof localization in a
basisTix IPR of HERFINDAHL

R INDEX
µ

Ipa E ai G a'at2 1

non zero in localizedphase










































































































IPR EICH In o re re

It OH 0117 rare

It is also an instanceof CONDENSATION SUMovermany
elements dominatedby011 terms see EXERCISE 3

Generalizations

The above is true if J is extracted from a
rotationally invariant ensemble not necessarily Gaussian

with density foal supported in lab Then one can
show that almostsurely

fin In
b KE 11go b

got Z r re 11g b

eifqfw.ii.li
0 if Kk PECHE2006

I r K BENAYCHGEORGES 2
Whist NADAKUDITI 2011

One can recover the GOE expressionsfrom these
general ones










































































































Important thing I is independent free of I
CAPITAINE DONATI MARTIN 2016

can be generalized to perturbations k
with rank n 71 n transitions potentially n
isolated eigenvaluesOne re for eachofthem

FiniteN fluctuations small deviations

Above results describe N soo limit when things
are selfaveraging concentrate

At finiteN fluctuations Things are distributed

Fluctuations of smallest eigenvalue

TheTransitionat Fre becomes a crossover
Critical regime W N r r r R t N 3W

If k r s N
3 subcritical BENAROUSBaikPECHE2005

PECHE2006
Ig frrepNH supercritical

BLOEMENTAL VIRAG2013

see example in figure below










































































































ScalingN'BOfcriticalwindowBBP2005 for complex Wishart
butconjectured tobegeneral

Subcritical regime no

14372
Am I 26 N 36Stw Stw VariablewithTracyWidom

distributionPew f 1

This means
TRACYWiDOM1994

Iffy p Pew FORRESTER 1993
5

Thegapbetween eigenvalues at edge is OCN
3

in subcritical regime
Balk LEE 2017

Supercriticalregime

An Dise t N Gauss Sgauss random V

withGaussiandishb

Kiis Pf f Buss












































































































t Critical regime r ret N w

1 26 t N Kw Xwrandomvariable with distributionpw

suchthat Pw
w
gauss BLOEMENTAL VIRAG2013

Pw tracywiden

crossover in
distribution of
Am fromTracy
Widom to

gaussian here0

denotes rk

PIMENTASTARIOLO2023

I The Tracy Widem distribution appears in a
huge variety of contexts universality

KPZ KardarParisi Zhang universality class










































































































t At re also a transition on thescalingof the
fluctuations of largest evalue notjuston its
typical value BBP transition

BALK BENAROUSPECHE2005

In summary

Ssd Salt

f M so
zo f zo DX I 20 to zo DX

T
z fyifyAn _25 edge feinman Itr outlier

z u w 1 1 12 localized
fimbria'm 0 isotopy

O Ar A
1 40Subcritical supercritical

y C 7
l

1N 2JtN 05th c'cossover Xm Tiso N 1 E Gaussk
aseupffuingabetweedgnelouy.us yappedsystem

N213
I l

l
l

11N










































































































FiniteN fluctuations large deviations

Joint evalue erector projection distribution

Ek e
MEKAS

IIIOff 1a Hp Hr

VanderMonde

xqE.is a

where flash H 2Hasa

5 ai Ii

F o spectrum I decoupling of evalues erectors proj

The eigenvalues alone distributed as

Rfques er3 II d
qq.i.my I Hi

rilZyfo gME 92 IIeGti

The eigenvectors have statistics of random
unit vectors setting ga VE then










































































































rotational invariancePn gals Cm 8 EE92 1 evectorsofJ and Ir
are equally probable

For r o coupling of evalues 2 erector projection

This coupling can poll some eigenvector the
extremal towards w when r re

From Kasab can get the joint large
deviation probability of IniSn maximal eigenvaluevalor

BHnSn n e
F S BIROU GUIONNET 2019

T probabilityof011 deviations
fromtypical asyptolic Ns value

FC so 5

5 P 1 0 2










































































































I WHAT GS LANDSCAPE DYNAMICS

Back to the inference problem

hT Q1 Recovering the signal

Q1 when is 5as informative ie gas o

A sharp transition when Nts informative for r ra

I r

9S

f
Continuous

IMPOSSIBLE transition

PHASE
I r

n ke o

RECOVERYTHRESHOLD

here even if I amable tofind
5as I wouldget no info on it
because Sas is uncorrelatedto it










































































































Comments

The transition inthegroundstatecouldbe foundalso
from thermodynamics studying the p i limit of

2is e
Be

gasd e
Bees BELIEse n

Thermodynamically thezero temperature transition
at t.ro o is a transition between a spinglass
phase at rare and a ferromagnetic phase at r re

At T 0 phenomenology of condensation EXERCISE 3

KOSTERUTZTHOULESSJONES 1976
CUGUANDOLO LECTURENOTES CARGESE2020

Critical threshold for maximum likelihood is also
detection threshold when it has gaussian or
rademacher prior below rc no estimator distinguishes
between pure noise Goe and spiked matrices
PERRYWEIN BANDEIRAMOITRA 2018










































































































t Q2 A landscape of saddles

I Stationary points aboveground state
Nm E stationarypoints with Eris E

is a self averaging random variable suchthat

hittin NfE mI e

GOE density

H All stationary points except as are saddles with

negative directions of curvature most have
index KuOCN No trapping localminimal

saddles

70YEH

index ku011 2 C

edge
t saddreesindex Kuan
bulk

All these saddleshave gntsatfsa.io o Canstudy
scaledoverlap EN'El Shi BuyBOUCHAUDPOTTERS2018

Nd Expect optimization not to be hard zfe










































































































EH 013 Dynamics DMFT 2 beyond

consider simplest algorithm gradient descent

Langevin with The

dSj g Ij SjCt Htgift tvEyiH
need to fencore to stay on sphere Gaussianwhite
at eachtime noise

zu spiltng't'tD SiStet
a

Mimicks coupling to
degrees offreedo i
equilibrated at T

when Tto no noise expectconvergence to 1 0
equilibrium state theground State Eas truth when
E so how to take Nsoo Relevant timescales

Flex Large time and largeN limit how

1 Mean field dynamics take Noo before then t soo
Fully connected modelswith randomness can bedescribed

by DMFT Dynamical Mean Field Theory










































































































why to Dynamics
becomes self averaging when

N o
properties of trajectories for

different realizations of Ees become

deterministic converge to average value
can replace average over E with N i

eg energydensity ftp.etsfft hiE.ssElsftI

A These properties are one and two point
functions in time forwhichhaveclosedegs

DMFT equations

EH time dependent energy
Cltit fy.EESICHSitt a correlationfunction

Rctit't t.ESiegfeo responsefunction

Used in manycontexts CUGHANDOLO 2023
Annualreviewofcondensedmatterphysics










































































































2 Beyondmeanfield dynamicsfor N large butfinite

DIFFCULT PROBLEM

Often fluctuations matter no self averagingness
Quantities are distributed

Averages 2 typical values are different

This model for re is a rare case

in which dynamics can be studied in both

regimes usingRandom Matrix Theory

F 0 In the eigenbasis sa E tix
dds.fm YatTHD saCH

couples all different x
makes the equations non linear

7 0 dynamics should converge to sis t.ru

Study convergenceby excess energy

Beth Eff Eas
4 HE

I I tEE e
Hn ta't f Et

for random initial conditions salt ok1 k










































































































t Shorttimes largetimes dynamicalcrossovers

DE.CH g e 8 gµ In In e gap

Natural time where probe finiteN energyscales

where discretenessof spectrum matters

Zdync 1 91

t K Zdync dynamics looks as if
such that N soo DMFT like

to 6dync finiteN dynamics

The fluctuations of thegap g dre ofthe same
order as those of maximal eigenvalue Recall
RMT detour

OCNas Sgb
critical regime rera

Tracy Widom
4gal

critical regime µµqµ

No Supercritical regime rare

q
systemis SAPPED

Olmo is more preciselyvlogN DASCOLI REFINE114BIRON 2022










































































































i The mean field dynamics N soo

Onefinds in this timeregime

TnCt
3 rere

fiMooLIENHD
z o Eas r 2k

Slow algebraic decay to the energy densityofthe
groundstate Eas o when rerc and to thesame energy
which is no longer thegroundstale when r ra

1 Dynamics is always outof equilibrium in this regime
It is in fact glassy

Cltit felt E modifiedFDT Aging dynamics

slowerandslower
separationof timescales in t t f as system becomes

aging weakergodicitybreaking older i.e astime

CUGUANDOLO 2DEAN Igg5
proceeds

BENAROUSDEMBOGUIONNET2001 math










































































































2 Landscape interpretation in these timescales

probe landscape at extensiveenergiesaboveEas DENCHnow

Regionof landscape dominated by saddles with
density described by fsd 2e

dem initial

zone

n
If typically

h

Whyslowingdown no trapping by local minima
thereare not but slow decay due to decreasing
numberof negative directions of saddles decreasing index

DHFT N soo dynamics probesthe bulk on f 2E

FileThe finiteN dynamics Not

1 The subcritical regime rare dynamics as for Ko
Crossover time Zayn uN

deft One t ta N Gagne

213
f µ

213 213N Vnmp to N Zdync










































































































For taxi the system explores extensive energies aboveEas
Dynamics is selfaveraging captured bymean field DMM

Fortson systemexplore intensiveenergiesaboveEas
Dynamics notself averaging not capturedbymean field

Consider thy
DESystem explores intensive energies on topofEgs
Sensitive to statisticsof extreme values andgaps gµ
E Dynamics not self averaging DENCH dominated by
realization wheregap atypically small

7 The distributionof g is known PERRETSCHEHR2015

p N3gal n b N g N giv 0 smallgaps

plansg no e
434438 Nusg largegaps

SINEAD N fftN Y go
O

ar
p

X s

scaling function
FYODOROVPERRETSCHEHR 2015 Known

BARBIERPIMENTACOGLIANDOLOSTARIOLO 2021










































































































1kThe supercritical regime in this case system is

gapped for Tss Zayn06gN the system is
able to reach thevicinity of Sasand to relax to it
exponentially as in ferromagnetic systems

deft n one t ta
logy

Gagne

e 240ft
r24 GgN Zdync
I
gap

11 The criticalregime lr r.luOCH 3
openproblem

BENCH
t
Idg p gµ g e

29 t

In and In strongly correlated distribution pg unknown

Fromnunneries plym g PIMENTASTARIOLO2023

giving g net EE
Vineeth e

201
tanab

N LaTN
3 tssNIB










































































































PART II

Rugged high D landscapes










































































































II 1 WHY A HIGH D INFERENCE EXAMPLE

I A hard inferenceproblem noisy tensors

Beyond matrices Tensors MONTANARIRICHARD2014

Minizis ip in Vip t Jie ip p 2

Tie p symmetric iid gaussian 537 ip7 py.ly
2

Energy landscape

EE5 EE Tie nipSie Sip r N f JP

Again fully connected random interactions

Seis's r N 5 P

SEE ELITE EN f9 JP
Sutri

Here nospectrum Also landscape at reo muchdifferent










































































































It Landscape problem 2 complexity

samequestions as above same approach study
stationary points

Eats EE
Mine ipSie Sip t I SENZ

J
i p

Miiz ipSE Sip t si

2e EE 5 N 0

As before multiply first equationby si some
use secondequation

I ftp.geyj.si pEfyII pELsJ

However firstequation non linearhowmanysolutions
Introduce therandomvariable

IV FEg Stationary points 5 with Eristee and

q.isI 5nIq










































































































I Quadratic landscape PE
Nate is 01N when Nss1

Self averaging ftp.NEf fimznsNnCED fsd2E

FIE landscape forp 2
Nuteg is Ole Niceg n e

E k 9

NnCeig not self averaging
but Enceg is

finnEnce9 EM SEE g 7 E e.g

Ecoleg fief flogNnG9D COMPLEXITY

F Averages vs typical values and replicas

Means that typically whenNsoo withprobability 1

NCE typ n e 9 most probable valueofN

But mostprobable value is different from the

average value sweep x e
E kill










































































































Average vs typical values example

Assume Xm is a random variable scaling as XNve
means that 4n logµ has a limiting distribution
when N o

Assume that when Not distributionofYu takes
largedeviation form py.ly ue N8l8ltdM

fly

I s
ytyp y

Then typical valueof X is

Xn typ e Y where yt such that flybe O flyby
On the otherhand

X dyPy y e Jdy e
ly LHD

totally
eNCy fly

andy suchthat fYy 1 Saddlepoint approximation

since y ytgP g y 0 y is exponentially rare

but controls the average average dominated by
rare realizations of random variable










































































































Message to characterize what happens typically with
large probability when NDI need

QUENCHED ESEg feign slogM 9DCALCULATION

But this is hard requires ticks like replicas

logN tiny 5 w th
w w momentofN

analyticcontinuation

In the following we perform instead

ANNEALED

Approximation Eat 9 time logLINE g 7

It holds safeg 3 Safe g SN INDtyp

For the quenched calculation of the complexity in
this model ROSBENAROUS1311304 CAMMAROTA 2018










































































































III HOW KAC RICE FORMALISM
II Kac Rice formula s

KacRice formula formula foraverage or higher
moments of numberof solutionsof random
equations

Countingformulas example

f
guy random function in EabY
Howmany solutionsof sixty

I b k

My dx Sfx Fly dxy gyy SH SH

SabarIg'lxHs y SH 15111 Jacobian

In higherdimension IE Ic Rd HE't J eRd

MI't DE IIoffice'tyi det fL I










































































































Ae KaeRice formula stationary pointsof landscapes
Countsolutions of TIE 1510 EES'tNE J F Ng
Then

NEqt f.gg detl7IEE5Il8fIELs48fEET NeJ8f5o Ny

Take average KacRice formula

Neal 1,545 9 Hettie He Rage Ne

average conditioned

to theist 0 and joint densityof
El5 NE DTEE evaluated

at NE

BRAYMOORE 1980
LAVAGNAGIARDINAPARISI 1998
FYODOROV2013
BENAROUSAUFFINGER CERNY 2010 math










































































































I I Computing the complexity 3 steps
Thecalculation is donein 3 steps 2Uses 3 mainingredients

1 GAUSSIANITY

ThefunctionsEEE 2 LEIzigLEI are Gaussian toget
distribution need onlyaverages2 covariances

Canbecomputed explicitly TRY seebelowforhints

Doingso one finds

F1 Diets independent of Ets and TREES

Consequences

EB Rae ees l NE Bees IPee Ne

factorization two gaussians known explicitly

ftdetthe 17eu o fldettEEEsTDe

statisticsofHessian at stationarypoint is sameas
atany pointofsame energy










































































































C2 TheHil xN i matrix the conditioned lo E Ne
hasthesamestatistics as matrices

Mts's J pen I resign153 utility
spherical rank 1 perturbation
constraint VectorTo isprojectionof F

on tangentplane 315

whereJ is a GOE Gijk 0 Gif plp F It dij

regsg r p pDg 4194 IIWIE 1

2 ISOTROPY

There is only one special direction in the sphere
that is F All averages 2 Convariances and so
thejoint distribution of Ets thees'T PIECE depend

on 5 only via gits't fee above

Consequences for all 5 such that grits'Iq
Knees E B BG p 4

1
e II

price 4194

PeNE PzCeg e
Hoz et rgP

Z










































































































And fldettie De DIE9E5JNE

Therefore

sNG9D 450 9 fldetTIE De.neta.el0IPelNel

DnfGg pelg1pzfeiq V g

where Valg Jds 8µg soy themeof

swirl
subsphere

Can show that V g e
21092441 941am

Example 2d rotationally invariant function

I fjs.dszffsi.si8fsi.Fsiq jdofdrrffr slrq
IGag flap Ngl84










































































































3 LARGE N AND RANDOM MATRIX THEORY

Dnfe.gl 9 detfI peI resscpui.iiI 7

Call tee m EKITI evaluesof I resglqlwi.int
Then

M
M PEIDmk9 He.pe7 feEiw8Ha y
MSdunk logH pet

7
where Unlitt.IESH ta M N I

Recall facts in RMT Parti

He The leading order contribution when
1 is given by the continuous

part of WH the density

D NfdtSHHEog1A pet taxi

Theaverages becomesaverageover P g'sDg










































































































EM The density fan is selfaveraging and gold does not
depend on r and is the semicircular law fsch with

E pp 1

71
Da e e Sdtfsda logH pet dm

This integral canbedone explicitly

Jdkftp.go.VFEFlog ApEl

Jd Flog rpceTo µ pet

Ggt tI P
E

Ily fdµt GgIpyl

y try logf stage ye vz

It log2 y T2










































































































Computing distributions example

considerthe unconstrainedgradient PECO 3
Then

D r Np Yf
while

Ifs5 I IEtft.fi gpTiaiz ieJjejzip78iua Sjw SinSirsie
xStp 5 Slip

Using that 5TienipJin ip7 P I Sinjn
GET f i p

SinaiSinaj Sia Sinh siex

xSH Shin Slip

Distinguishing the case ke ka pofthem and Kafka p p1 of
them one gets

31,673931532 52 psi fs t plp i sY s J
NOWTHEE5T is theprojections of DEE on the space orthogonal

to 5 i e onthe tangent plane 6151 Choosing Eats a basis

of661 onehas EI 5 0 Thus

Wees'sD EETEa 7 r Np Yf riff










































































































And

7tEC5DaC7tEE5Dp7c 4DECsT.ea Els epts'D

Ep Saps tplpDfs.ae fsfpB pF8ap
To Fo

In the annealed calculation all distributionsdepend
0h5 only via qts III T is the only
special direction on the sphere that breaks isotropy
It is convenient tochoose for each5 thisbasis on the

tangentplane
ZEST

E t E geeky

Eats I F 5J 2 1 N2

only II E n i and E am or e mix

will have a q dependentdistribution

Ees's 7 rNp QED Ei fo ETIN

HEE'D theistpk p52Sap










































































































AtThe annealed complexity

combine all terms

NG9 7 Vixg Dateg Bfg RNe e
EA 9 to

EaCeg f log 2e p 1 1 g4 Pagarg 41g4

Eg fo trgPY If e

Thisgives distribution of stationary points in energy
andgeometry overlapwith it on average

Whatabout stability

MH TheHessian at a stationary point withCEg is
a rank 1 perturbed shifted GOE

Thief re 5 pe I reeecqlwi.IE

Theeigenvalue distribution

t.isofe.gg

HtPE

j
l H

whenreg re
PE

largeenough Zippo










































































































the localminima have all eigenvaluespositive Forbulk
heed

pe zippy z E s Eth 28 Pff
Eth threshold energy Also Tisoe.g 0

Thep 2 limit ofEateg
Theannealed complexity is maximal at g0
We set Ea E Safeg O

Recall that Edie ie p I while in PARTI
N

weset II7241 8 Tobeconsistent FEI
Z

E a E Cog 2e EI I E

Then given that E T

log 2e t E logs 0

Consistently with the fact that for p 2 there
are not exponentially many stationary points
OnecanusetheKacRiceformula toget the resultsof
PARTI exercise










































































































EatThe quenchedcalculation what would change

One needs to compute highermoments smiteg 7
with F 2,34 and w 20

Onecan use KacRice formulas too for higher
moments need to consider w points on sphere
5 with a 1 w The fields EEE thees'TDIE55T
are correlated

arte.gl f.nqidsasfs.aENallgsHEisiiKTIldettie

jointdistributionofW jointexpectation
NDdimvectorsTheta valueconditioned
and w scalars EL51 to urvectorsand

functions

Some consequences of correlations

i No decoupling these for fixed a is independent

of ELEYPIECED but notof ELETPIECED at beta
Consequences need to compute joint distributions
2 theexpectation of Hessians is a problem of
coupled random matrices

Whathelps still Gaussian for and largeN for 2










































































































Ii Distributions depend notonly on gIs'T 5,41

butalso on mutual overlaps Q.EE5T sand
Consequence nolonger 1 special direction but wof them
whathelps still huge dimensionality reduction

From N w variables Sai to wfwz w ones

the fits 53 and gals'T Because fully connected

Iii The conditional distributionof the Hessian at one
point 5 is still that of a perturbed GOE

but finite rank perturbations are more
complicated both additive E multiplicative and not
free in thesenseoffree probability
WHY Multiplicative perturbationsdue to conditioning to

The551 with beta
Consequence calculation of isolated evalues is more
involved whathelps perturbation is stillof finite rank

To see comparisons between quenched 8 annealed see
ROSBENAROUSBIROUCAMMAROTA 2018










































































































III WHAT GS LANDSCAPE DYNAMICS
Back to the inference problem Here summarize
results of quenched calculation

HI Quenched complexity curves E 1 fixed r

th

l
ti
i
t
i
i

ta landscape's evolution with r regionswhere
E Ea 0 for someC in red and qtsas yellow

it

Is an isolated local minimumappears
closetosignal it




































































































t Recovering thesignal

Q1 when is 5as informative ie gas 0

A sharp transition when Nts at some Frest

1 r
2
9as

impossible y
4 9 nonhfus

PHASE i
i r
TIST

RECOVERY THRESHOLD

Differences with respect to f 2 the transition
is discontinuous first order
As for p 2 couldbeobtained with thermodynamic
calculation for B soo

GILLIN SHERRINGTON 2000



t A landscapeof minima

Most stationary points are on informativeof 0

Neglecting isolatedminimum at high overlap

Optimize overg Efeg maximal at g o

e mqxsfeiqttzlogzeleDJ E.IT I e

does not depend on r Also E CEg o Safeg o

f exponential majority
of stationary points is
orthogonal to thesignal
Not informative

Exponentially manylocalminima

Recall Hessian annealed calculation

Thief re 5 pe I reeecqlwi.int

Localminima C Eth TisoCE9 70



regglq01 0 Noisolated evalue Exponentially

many local minima C seth trapping States

for dynamics

geo when r large enough generate isolated evalue

thatcan become negative minima saddletransitions

nsa

t.seon a

spectrumofrank1 saddle

oooo Topological trivialization How strong
should r be to destabilize also minima
at equator Need rn Nd

reef rpfp1 5 I f ur ftp.JP
2

yx pz



Ft Dynamics DMFT And beyond

Easy phase for ruNd with a do p gradient
descent converges to 5as in times 01N9
BEN AROUS GHEISSARI JAGANNATH 2020

Hard phaser0111 dynamics fromrandom initial
conditions stuck in high entropy 9 0 region the
equator Here landscape is as if no

Are The dynamics at Ko short times

Described by DMFT Nsoo before too
Excess energy doesnot delay toZero asfor p 2
but converges to finite value

Moo DnElt THEfeatH Eas I pftd ftp RHisds Eas

when t soo converges to finitevalue

Cim ftp.hfo DNElt Eth Eas 70
t i

Never reach the GS energydensity in these
timescales Outof equilibrium glassy dynamics
dying COGHANDOLO KURCHAN 1993



BOUCHAUDCOGLIANDOLO KURCHANMEZARD 1997 review

landscape interpretation

G E9 0 saddles 9 0

EDMFTstuckhere

i
r 7Egs Eth

gradient descent gets stuck at energies of
the highest energy minima that are
exponentially numerous

CUGHANDOLO KURCHAN 1993

SELLKE 2024 math

AreThe dynamics at Ko long times

For 102 equilibration timescales uO N
Forpz3 expect timescales role system hasto

escapefrom trappingminima crossingenergy
barriers SE OCN ACTIVATED DYNAMICS

This regimeofthe dynamics is openproblem



THE Ih summary

h Theground statebecomes correlated with it

for r rest

Exponentially many localminima forall values
of r Thosecloser to E become saddles when
increases thoseat equator remain minima

Optimization is hard system trapped by
metastableStates Meat field dynamics
studied a lot for r O Dynamics at finiteN
is openproblem



key Tools f 7
TI RMT Stieltjes transform

expansionresolvent in11N
density isolated evalues

If
I

1 Landscapecomplexity quenched
vs annealed replica trick
Kac Riceformalism

1



valentina.ros@universite-paris-saclay.fr High-d random landscapes: Exercises 1 and 2

Spiked GOE: eigenvalues density and outliers

[Ref: Bouchaud, Potters, A First Course in Random Matrix Theory, Cambridge University Press
2020].

Take the N ⇥N matrix M̂ = Ĵ + R̂, where Ĵ is a GOE matrix with hJiji = 0 and hJ2
iji = �2

N (1 + �ij),
while R̂ = r ~w ~wT is a rank-1 perturbation, with ||~w||2 = 1. Call �↵ with ↵ = 1, · · · , N the eigenvalues of
M̂ , and call ~u↵ the corresponding eigenvectors. The resolvent of M̂ is

ĜM̂ (z) =
1

z1̂� M̂
=

NX

↵=1

~u↵~uT
↵

z � �↵

The goal of these two exercises is to derive the self-consistent equations for the Stieltjes transform of M̂ ,
and for its isolated eigenvalue.

Exercise 1. Replica calculation of the Stieltjes transform.

The starting point of the calculation is the Gaussian identity :

✓
1

z1̂� M̂

◆

ij

=
1

Z

Z NY

i=1

d ip
2⇡
 i je

� 1
2

PN
i,j=1  i(z1̂�M̂)ij j , Z =

Z NY

i=1

d ip
2⇡

e�
1
2

PN
i,j=1  i(z1̂�M̂)ij j

We wish to take the average of this expression with respect to the matrix M̂ . However, averaging the
partition function in the denominator makes the calculation potentially difficult; to proceed, we make
use of the replica trick to write

Z�1 = lim
n!0

Zn�1.

We then follow the standard steps of replica calculations, see below.

(i) From randomness to coupled replicas. Using the replica trick, justify why (z1̂ � M̂)�1 =

limn!0 I
(n)
ij where

I(n)ij =

Z nY

a=1

NY

i=1

d a
ip
2⇡
 1
i  

1
j e

� 1
2

Pn
a=1

PN
i,j=1  

a
i (z1̂�Ĵ�r ~w ~wT )ij 

a
j

Take the average of this expression with respect to Jij , and show that

hI(n)ij i =
Z nY

a=1

NY

i=1

d a
ip
2⇡
 1
i  

1
j e

� 1
2

Pn
a=1

PN
i,j=1  

a
i (z�ij�rwiwj) 

a
j e

�2

4N

P
a,b(

PN
i=1  

a
i  

b
i )

2

.

Now one has an expression without randomness, in which the replicated variables  a are coupled
with each others.

(ii) Hubbard–Stratonovich. We would like now to perform the integral over the variables  a
i ; how-

ever, this integral contains quartic terms in the exponent; in order to turn such an integral into a
Gaussian one, we perform a Hubbard-Stratonovich transformation: we introduce the order param-
eters

Qab[ ] =
1

N

NX

i=1

 a
i  

b
i a  b

and write the integral as

Z nY

a=1

NY

i=1

d a
ip
2⇡

· · · ! N
n(n+1)

2

Z Y

ab

dQab

Z nY

a=1

NY

i=1

d a
ip
2⇡

Y

ab

�

 
NQab �

NX

i=1

 a
i  

b
i

!
· · ·

1



valentina.ros@universite-paris-saclay.fr High-d random landscapes: Exercises 1 and 2

Show that using the integral representation of the delta distributions

�

 
NQab �

NX

i=1

 a
i  

b
i

!
=

Z
d�ab
2⇡

ei�ab[NQab�
PN

i=1  
a
i  

b
i ]

and introducing the n⇥ n matrix ⇤ with components ⇤ab = 2�aa�ab + �ab(1� �ab) and the N ⇥N
matrix A with components Aij = z�ij + rwiwj , the average can be cast in the following form:

hI(n)ij i = N
n(n+1)

2

Z Y

ab

dQabd�abe
N�2

4 Trn[Q2]+N
2 Trn[i⇤Q]fN [Q, ~w] (1)

with

fN [Q, ~w] =

Z nY

a=1

NY

i=1

d a
ip
2⇡
 1
i  

1
j e

� 1
2

P
a,b

P
i,j  

a
i [1̂N⌦i⇤+A⌦1̂n]ab

ij
 b

j .

(iii) Gaussian integration. Performing the Gaussian integral, show that

hI(n)ij i = �ij

Z Y

ab

dQabd�abe
N
2 AN [Q,i⇤]

h
(A⌦ 1n + 1N ⌦ i⇤)�1

i11
ij

AN [Q, i⇤] =
�2

2
Trn[Q2] + Trn[i⇤Q]� 1

N
TrnN [log (A⌦ 1n + 1N ⌦ i⇤)]

Hint. Use that
R Qd

i=1
dxip
2⇡

xlxme�
1
2~x·K̂~x = K̂�1

lm | detK|�1 and that log | detK| = Tr logK.

(iv) Saddle point. The integral can now be computed with a saddle point approximation. Show that
the saddle point equations for the matrices Q and i⇤ read

i⇤ = ��2Q, Q =
1

N
TrnN


1

A⌦ 1n + 1N ⌦ i⇤

�

Show that, plugging the first into the second and assuming that the matrices ⇤, Q are diagonal and
replica symmetric, i.e. Qab = �abg and �ab = �ab�, one reduces to a single equation for g which
reads

g =
1

N
TrN


1

(z � �2g)1̂N � r ~w ~wT

�

Using that
h(z1̂� M̂)�1i = lim

n!0
hI(n)ij i =

h�
A⌦ 1n � �2g1N ⌦ 1n

��1
i11
ij

,

justify why g is the Stieljes transform of the matrix M . Show that expanding g = g1+ g1/N + · · · ,
the leading order term satisfies the equation

g�1
1 = z � �2g1.

Exercise 2. The isolated eigenvalue and eigenvector.

(i) Show that if Â is a matrix and ~v, ~u are vectors, then

(Â+ ~u~vT )�1 = Â�1 � A�1~u~vTA�1

1 + ~v ·A�1~u
.

Use this formula (Shermann-Morrison formula) to get an expression for ĜM̂ (z).

(ii) The isolated eigenvalue is a pole of the resolvent operator ĜM̂ (z), which is real and such that
�iso > 2�. Using that �iso does not belong to the spectrum of the unperturbed matrix Ĵ , show that
it solves the equation

r ~w ·GĴ(�iso)~w = 1.

2



valentina.ros@universite-paris-saclay.fr High-d random landscapes: Exercises 1 and 2

(iii) Using that Ĵ and ~w are independent and that typically ~w is delocalized in the eigenbasis of Ĵ , show
that

~w ·GĴ(�iso)~w
N!1�! gsc(�iso)

where gsc(�) is the Stieltijes transform of the GOE matrix Ĵ .

(iv) Using the self-consistent equation satisfied by gsc(�), derive the expression of the inverse function
g�1
sc and determine its domain; use it to show that

�iso =
�2

r
+ r r � �.

(v) The eigenvectors projections ⇠↵ = (~w · ~u↵)2 can be obtained from the resolvent as residues of the
poles:

⇠↵ = lim
�!�↵

(�� �↵)~w ·GM̂ (�)~w

Use this to show that if ↵ = N labels the isolated eigenvalue, then

⇠N = � 1

r2g0sc(�iso)
= 1� �2

r2
.

Hint. Use that if lim�!�0 f(�) = 0 = lim�!�0 g(�), then lim�!�0

f(�)
g(�) = lim�!�0

f 0(�)
g0(�) .

3



valentina.ros@universite-paris-saclay.fr High-d random landscapes: Exercise 3

Condensation transition
[Ref: Kosterlitz, Thouless, Jones, Spherical Model of a Spin-Glass, PRL 36 (1976)].

The matrix denoising problem is formulated in terms of the ground state of the energy lansdcape:

E [s⃗] = −1

2

∑

ij

si(Jij + rvivj)sj , ||s⃗||2 = N = ||v⃗||2, Ĵ ∼ GOE

The behavior of the ground state can be characterized by studying the thermodynamics of the system in
the limit β → ∞, through the partition function:

Zβ =

∫

SN (
√
N)

ds⃗e−βE[s⃗], SN (
√
N) =

{
s⃗ : ||s⃗||2 = N

}

As a function of temperature, this model exhibits a transition at a critical temperature Tc(r), which can
be interpreted as a condensation transition (like in BEC physics).

Exercise 3. Thermodynamics of the model

(i) Call λα (λ1 ≤ λ2 ≤ · · ·λN ) the eigenvalues of M̂ = Ĵ + R̂, and u⃗α the corresponding eigenvectors.
Call sα = s⃗ · u⃗α. Show that the partition function can be written as

Zβ =

∫
dλ

∫ N∏

α=1

dsαe
β
2 [

∑
α λαs2α−λ(

∑
α s2α−N)]

(ii) Show that the thermal expectation value of the mode occupations is

⟨s2γ⟩ =
1

Zβ

∫
dλ

∫ N∏

α=1

dsα s2γ e
− β

2 [−
∑

α λαs2α+λ(
∑

α s2α−N)] =
1

β(λ∗ − λγ)

where λ∗ > λγ for all γ is fixed by the equation

N∑

γ=1

⟨s2γ⟩ = N =
N∑

γ=1

1

β(λ∗ − λγ)

(iii) The matrix M̂ is a spiked GOE. Take r < rc = σ. Justify why for large N the equation for λ∗

becomes:
β = gsc(λ

∗) λ∗ > 2σ

where gsc(λ∗) is the Stieltjies transform of the GOE; show that there is a critical temperature
βc = σ−1 and compute the solution λ∗ for β < βc. Show that at βc, λ∗ attains its maximal possible
value. Show that at low temperature β > βc the equation can be solved assuming condensation of
the fluctuations in the lowest-energy mode:

1

N
⟨s2N ⟩ = 1− 1

βσ

This condensation transition corresponds also to a transition between a paramagnet at high tem-
perature, and a spin-glass at low temperature.

(iv) Consider now r > rc = σ, when the maximal eigenvalue is λN = λiso = σ2

r + r; justify why now
the critical temperature is βc = 1/r, and a solution of the equation for λ∗ (with λ∗ > λγ) exists for
β < βc. Show that for β > βc it must hold

1

N
⟨s2N ⟩ = 1

N
⟨s2iso⟩ = 1− 1

βr

In this regime, the condensation transition coincides with a transition between a paramagnet at
high temperature, and a ferromagnet at low temperature.
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Exercise 1 solution

Stieltjes transform with replica method

i The normalization 2 is an integral over

the variables y Writing

Is'Iia III
a
I ISI

a
I

we canset

nlinor Z
JII d y y

if
Yik MIisYi

finna
f id gig

It
t Mini

JI Ia
label these
variables as µ

lift f II II drift yimy.at
EEE if YikMimi

I
line Iii










































































































Cit Using the integral representationof Sf we

obtain
if tabMdab fyi4b

SI 7 II d
I
daabJI at

e x

Yi y e
t if47ftSii rwiy g

a

x
Aij

e E Exit D
NQab

exchangeorder integration c

S II daabfat.z.ae
EEsFaaaa

g 2

e Fbdat x
II
d YiYi

e
i bXabE474 Aaa 4545

e
EEfgKiaAiYj

Introducing Aab 2AaafastTab 1 Sab and the trace

trio Oaa we can rewrite

Nztrn Q.it

and










































































































NxN

I
I E4

1 it
p4jb where 1

Moreover
again that

iii The integral over the Hia is now
gaussian

Using that for an arbitrary positivedefinite

matrix Kij it holds

N t XiKijXj

JTdxi e term Jem 2x

det Kl

and that cog detKl tr Coglkl

weget

III d YiYj e EE
4ia Aijsabtsijfi.itaD4jb

K 1 if e
tr K

where A In In it

combiningeverything onegets the final expression










































































































iv The saddlepoint equations are obtained taking
thevariationof

AnIQ it
a
daistags abRab LTRlog f In In it

JAI 62Rab ti A ab O it old
8 ab

A
ay

Qb ten ftp.n oia
O

ab

D
it ten it HH AI o1 a

If Q Sig then componentwise

g
tenfz.hr o2g

To computethetrace one can choose a basis ex such
that ee w en t w t 2 2 N Then

g
CN l

zg tfyz.rtg z.gg OHH

g z g
6g

2g t 1 0


























































































Exercise 2 solution

isolated evaluelevector of spiked GOE matrix

i Onehas LA tuVT A I At Uw It A Uv A

Using theformal expansion

t E UUT I 1 A UV t A UWA Uv t

leads to

At Uw A
t
A Uv A t f u VTA t

number

Calling X VTA u and resumming theseries

At aVT A l A uvTA
1 t X

In the case of the rank 1 perturbation with
n

U Tv E at and A z1 3 we get

mH Ni TryIt t r GTHwiwt G.tl
f

1 r aight To

The eigenvaluesof it are polesof 5mA
If Tiso is an outlier it is not a pole ofGIGI
because it does not belong to the spectrumof J
that is the semicircle in Ezo 26










































































































To be a poleof 5mA and notof GIEL Tisomust
be a zero

of the
denominator

of
the second term

inL
1 r to Tiso w 0

iii The fact that it is delocalized in the basisof
eigenstatesof5 which I call Ex implies that
typically EYn 11µ Not

The scalarproduct ut E 4 I can be expanded
in theeigenbasisof 5 and onegets
o Gai wi YEE's.io'THEDpp t.EE ha

TheEastterm is the normaliced traceofthe resolvent
i e theStieltjes transform Therefore

Ms ut Gala ut g ca

iv The functiongs.li has the following behavior on the
red airs

g

Ho
Zo

T to x
115










































































































The function is invertible only if ye fHo Ho

The expression forgsi can be more easily
obtained from the self consistent equation

02gdz Zgsdt 1 0

2 02GHz
Iga

gL y dy tHyso

Theequationfor
1ise reads gseltiso Hr

It admits a solution only for Hr Eff Z
Meaning that r 5

for
r o

In this case Aso
g
IHr of

tr

v Using the decompositionofgin in its
eigenbasisCatia

5m41 EE uIzI
t

Into EEftp

Then obviously if z i ta is an isolated pole

52
7 IE

9,5










































































































We use again the expression Since Tiso

is not a pole of5 the first term will

not contribute to the residue and so

Sm finals rtifgaal.io

Nsa

1 r w.gg felt
Tiso

realism G Tiso rg3
iso 1 rgsch

Eimais
Ig

gschise

Sc

when It 1so 1 rgs.la 0 and thus the
limit

gives 010 one has to compute it by
taking the derivativeof both numerator

2 denominator

fish.is
Ig

Ssd Gsd fifa
g a

Usingthat g Hise Hr one gets Sm
figs is

To make this more explicit
convenient to take the self consistenteg forgsda
andderive it










































































































202g'sdz go.dz gsdz Zg's It O

Go g se Zg'sa Gsc 0
262gse Z

se

At 2 Aise
SN
f Saggy E

Zo g His lise

try
1


















































































































































Exercise3 solution
Thermodynamics and the condensationtransition

c One has

Fp gqe
E's

feed
eBKE.si

Miis EI stay
s

implementspherical
constraint

Performing the change of basis one gets

7341SITds e
EE si PICEsi N

ie The average

shy
fdief.pe gas

EE
RseEst

N

Sdaet FYI I f 1 1

Assuming I 1a Va










































































































The integral over 1 canbe performed with a saddle

point when His 1 optimizing

flat 113 III eogft 1aN

stay o 13 1iEN
Plugging this in and simplifying the exponential
terms in numerator with those in 2p one gets

SSE
A

BCH Ar

with19
solving

ftp m Iss87

Ciii For rare 0 there is no isolated eigenvalue
and thespectrumof it has an eigenvalue density
that tends to the semicircle foodd when N
Thus

t fdxsg.li gscG










































































































Theequationfor19 becomes

gschi B for 79 In 20

Thiscanbesolved
only for BsBc Ho

and in
this case

Ipt0213

Ssdt
Ho

I 216

At B Bc 1 20 that is the boundary value

of the domain where the saddle point can be
taken For B Bc the saddle point

sticks to the boundary
g 2g

This is a freezing transition it signals the

transition to a glass phase

Then the equation for I is solved assuming
condensation in the lowest energy mode

SK 01N










































































































In particular 1 1 8 1 20 t Ssri
P

1 5

2 1 Hop

Iv For r re 5 TaeTiso Ir tr 25 is the

maximal value that a can take Since gscG is

monotonically decreasing the maximal 13

for which a solution to B gsdx can be

found is the13 such that P gschiso

Recalling
that gschise Hr one has Bc Hr

For13 Bc it must hold

I Fgs His.lt Csn7 sEfsni7 1 1
pr










































































































Phase transitions in temperature

Ho PARAMAGNET

ion

transition

1
Condens

SPIN FERROMAGNET

GLASS

I 3
1

Ho

















