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Schedule of the mini-course

1 Part 1: Motivation and Mathematical Background (concentration, resolvent-based approach to
eigenspectral analysis, high-dimensional linearization, etc.)

2 Part 2: Four Ways to Characterize Sample Covariance Matrices and Some More Random Matrix Models
(Wigner semicircle law, generalized sample covariance model, and separable covariance model)
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Outline

1 Introduction and Motivation
Sample covariance matrix
RMT for ML: high-dimensional linear regression under gradient flow
RMT for ML: understanding and scaling large and deep neural networks

2 Mathematical Background
Concentration: from random scalars to random vectors, LLN, and CLT
A unified spectral analysis approach via the resolvent
Linearization of high-dimensional (random) nonlinear function
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Motivation: understanding large-dimensional machine learning

Big Model
of size N

Big Data
x1, . . . , xn ∈ Rp

▶ Big Data era: exploit large n, p, N
▶ counterintuitive phenomena different from classical

asymptotics statistics
▶ complete change of understanding of many methods

in statistics and machine learning (ML)
▶ Random Matrix Theory (RMT) provides the tools!
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Sample covariance matrix in the large n, p regime

▶ Problem: estimate covariance C ∈ Rp×p from n data samples x1, . . . , xn with xi ∼ N (0, C),

▶ Maximum likelihood sample covariance matrix with entry-wise convergence

Ĉ =
1
n

n

∑
i=1

xix
T
i ∈ Rp×p, [Ĉ]ij → [C]ij

almost surely as n→ ∞: optimal for n≫ p (or, for p “small”).

▶ In the regime n ∼ p, conventional wisdom breaks down: for C = Ip with n < p, Ĉ has at least p− n zero
eigenvalues:

∥Ĉ−C∥ ̸→ 0, n, p→ ∞ ⇒ eigenvalue mismatch and not consistent!

▶ due to loss of matrix norm “equivalence”: ∥A∥max ≤ ∥A∥ ≤ p∥A∥max for A ∈ Rp×p and
∥A∥max ≡ maxij |Aij|.
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When is one in the random matrix regime? Almost always!

What about n = 100p? For C = Ip, as n, p→ ∞ with p/n→ c ∈ (0, ∞): MP law

µ(dx) = (1− c−1)+δ(x) +
1

2πcx

√
(x− E−)+(E+ − x)+dx

where E− = (1−
√

c)2, E+ = (1 +
√

c)2 and (x)+ ≡ max(x, 0). Close match!
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Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

▶ eigenvalues span on [E− = (1−
√

c)2, E+ = (1+
√

c)2].
▶ for n = 100p, on a range of ±2

√
c = ±0.2 around the population eigenvalue 1.
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Noisy linear model

Consider a given set of data {(xi, yi)}n
i=1 of size n, composed of the (random) input data xi ∈ Rp and its

corresponding output target yi ∈ R, drawn from the following noisy linear model.

Definition (Noisy linear model)

We say a data-target pair (x, y) ∈ Rp ×R follows a noisy linear model if it satisfies

y = βT
∗ x + ϵ (1)

for some deterministic (ground-truth) vector β∗ ∈ Rp, and random variable ϵ ∈ R independent of x ∈ Rp,
with E[ϵ] = 0 and Var[ϵ] = σ2.

▶ aim to find a regressor β ∈ Rp that best describes the linear relation yi ≈ βTxi, by minimizing the
ridge-regularized mean squared error (MSE)

L(β) =
1
n

n

∑
i=1

(yi − βTxi)
2 + γ∥β∥2 =

1
n
∥XTβ− y∥2 + γ∥β∥2 (2)

for y = [y1, . . . , yn]T ∈ Rn, X = [x1, . . . , xn] ∈ Rp×n, and some regularization penalty γ ≥ 0
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Out-of-sample prediction risk

▶ unique solution given by

βγ =
(

XXT + nγIp

)−1
Xy = X

(
XTX + nγIn

)−1
y, γ > 0 (3)

▶ in the γ = 0 setting, the minimum ℓ2 norm least squares solution

β0 =
(

XXT
)+

Xy = X
(

XTX
)+

y, (4)

where (A)+ denotes the Moore–Penrose pseudoinverse, also “ridgeless” least squares solution.
▶ statistical quality of β, as a function of dimensions n, p, noise level σ2, and the regularization γ

▶ evaluating the out-of-sample prediction risk (or simply, risk)

RX(β) = E[(βTx̂− βT
∗ x̂)2 | X] = (E[β | X]− β∗)

TC(E[β | X]− β∗)︸ ︷︷ ︸
≡BX(β)

+ tr (Cov[β | X]C)︸ ︷︷ ︸
≡VX(β)

(5)

for an independent test data point. We denote E[xixT
i ] = C, and BX(β), VX(β) the bias as well as

variance of the solution β.
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Objects of interest

BX(βγ) = (E[β | X]− β∗)
TC(E[β | X]− β∗)

VX(βγ) = tr (Cov[β | X]C) .
(6)

▶ Denote Q(−γ) ≡ (Ĉ + γIp)
−1 the resolvent of the SCM Ĉ = 1

n XXT. Write

BX(βγ) = βT
∗
(
Ip −Q(−γ)Ĉ

)
C
(
Ip −Q(−γ)Ĉ

)
β∗, VX(βγ) =

σ2

n
tr
(
Q(−γ)ĈQ(−γ)C

)
. (7)

▶ For γ > 0, one has Ip −Q(−γ)Ĉ = Ip −Q(−γ)(Ĉ + γIp − γIp) = γQ(−γ), so that

BX(βγ) = γ2βT
∗Q2(−γ)β∗ = −γ2 ∂βT

∗Q(−γ)β∗
∂γ

(8)

VX(βγ) = σ2
(

1
n

tr Q(−γ)− γ

n
tr Q2(−γ)

)
= σ2

(
1
n

tr Q(−γ) +
γ

n
∂ tr Q(−γ)

∂γ

)
(9)

where we used the fact that C = Ip and ∂Q(−γ)/∂γ = −Q2(−γ).
▶ suffice to evaluate quadratic and trace forms of the random resolvent matrix Q(−γ).
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Numerical results
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Figure: Out-of-sample risk RX(βγ) = BX(βγ) + VX(βγ) of the ridge regression solution βγ as a function of the dimension
ratio n/p, for fixed p = 512, ∥β∗∥ = 1, and different regularization penalty γ = 10−2 and γ = 10−5, Gaussian x ∼ N (0, Ip)

and ε ∼ N (0, σ2 = 0.1).
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Linear model trained with gradient descent

▶ Consider again minimizing the following loss function to obtain the linear model parameter β:

L(β) =
1

2n

n

∑
i=1

(yi − βTxi)
2 +

γ

2
∥β∥2 =

1
2n
∥XTβ− y∥2 +

γ

2
∥β∥2 (10)

▶ but this time using gradient descent with infinitely small step size (i.e., gradient flow)

dβ(t)
dt

= − ∂L(β)

∂β
⇒ β(t) = e−(Ĉ+γIp)tβ(0) +

(
Ip − e−(Ĉ+γIp)t

)
βRR, (11)

where we recall Ĉ = 1
n XXT the SCM and denote βRR =

(
Ĉ + γIp

)−1 1
n Xy is the ridge regression solution

(that corresponds to β(t) as t→ ∞)
▶ understand the interplay between training dynamics and generalization performance
▶ slightly more involved eigenspectral functional of Ĉ

▶ as well shall see below, writes as (complex counter) integration of the resolvent Q(z) = (Ĉ− zIp)
−1

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024 14 / 82



Some numerical results
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Figure: Training and test misclassification rates of a linear network as a function of the gradient descent training time t, for
p = 256, n = 512, γ = 0, α = 10−2, σ2 = 0.1 and µ = [−1p/2, 1p/2]/

√
p. Empirical results averaged over 50 runs.
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Scaling of sum of independent random variables: LLN and CLT

▶ Strong law of large numbers (LLN): for a sequence of i.i.d. random variables x1, . . . , xn with the same
expectation E[xi] = µ < ∞, we have

1
n

n

∑
i=1

xi → µ, (12)

almost surely as n→ ∞.
▶ Central limit theorem (CLT): for a sequence of i.i.d. random variables x1, . . . , xn with the same

expectation E[xi] = µ and variance Var[xi] = σ2 < ∞, we have

√
n

(
1
n

n

∑
i=1

(xi − µ)

)
→ N (0, σ2), (13)

in distribution as n→ ∞.

Consequences of LLN and CLT

For i.i.d. random variables x1, . . . , xn of zero mean and unit variance, e.g., xi ∼ N (0, 1), we have, for n large,
the following scaling laws for the sum 1

n ∑n
i=1 xi:

▶ 1
n ∑n

i=1 xi ≃ 0 by LLN; and

▶ 1√
n ∑n

i=1 xi = O(1) with high probability by CLT.
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We have known this a bit in the context of DNN

▶ DNNs involve linear (i.e., weights) and nonlinear (i.e.,
activation) transformation

▶ Xavier initialization [GB10]: for sigmoid-type activation,
randomly initialize a weight matrix W ∈ RN×N having N
neurons as

[W]ij ∼ N (0, N−1). (14)

torch.nn.init.xavier_normal_

▶ He initialization [He+15]: for ReLU-type activation,
randomly initialize a weight matrix W ∈ RN×N having N
neurons as

[W]ij ∼ N (0, 2N−1). (15)

torch.nn.init.kaiming_normal_

▶ derivation based on forward propagation
▶ similar considerations for CNN, RNN, ResNet, etc.

Figure: Numerical results in [He+15] for
moderately deep NN.
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Let us say more on the appropriate scaling of large and deep NNs

Setup and Notations:
▶ supervised training of an L-layer multi-layer perceptrons (MLP) with full batch gradient flow
▶ input data x1, . . . , xn ∈ Rp, denote pre-activation vectors h(ℓ)

i ∈ RN at layer ℓ ∈ {1, . . . , L} as

h(1)
i =

1
Na1
√

p
W(1)xi, h(ℓ)

i =
1

Naℓ
W(ℓ)σℓ

(
h(ℓ−1)

i

)
i ∈ {1, . . . , n} (16)

▶ scalar output fθ(xi) =
1

γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
for trainable parameters θ = {W(1), . . . , w(L)}.

▶ for a training set {(xi, yi)}n
i=1, train the above DNN on the loss function L(θ) = 1

n ∑n
i=1 L(fθ(xi), yi), with

full-batch gradient flow

dθ

dt
= −η

∂L(θ)
∂θ

= η
1
n

n

∑
i=1

∆i
∂fθ(xi)

∂θ
, ∆i ≡ −

∂L(fθ(xi), yi)

∂fθ(xi)
, (17)

learning rate η = η0γ2N−c and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

▶ initialization scaling scheme: w(L)
i ∼ N (0, N−bL ), W(ℓ)

ij ∼ N (0, N−bℓ ) and W(1)
ij ∼ N (0, N−b1 )

1This part is majorly borrowed from the Lecture Notes on Infinite-Width Limits of Neural Networks, by Cengiz Pehlevan and Blake
Bordelon, Princeton Machine Learning Theory Summer School, 2023.
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Appropriate scaling of large and deep NNs

Settings:

▶ scaling of NN model: h(1)
i = 1

Na1
√

p W(1)xi, h(ℓ)
i = 1

Naℓ W(ℓ)σℓ

(
h(ℓ−1)

i

)
, fθ(xi) =

1
γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
▶ initialization scaling: w(L)

i ∼ N (0, N−bL ), W(ℓ)
ij ∼ N (0, N−bℓ ), and W(1)

ij ∼ N (0, N−b1 )

▶ trained under full-batch gradient flow: dθ
dt = −η

∂L(θ)
∂θ = η 1

n ∑n
i=1 ∆i

∂fθ(xi)
∂θ of learning rate η = η0γ2N−c

and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

Objective: for large p, N, achieve appropriate scaling on (a, b, c, d) so that
1 pre-activations h(ℓ) have Θ(1) entries:

− computing the 1st and 2nd moments of h(1): E[h(1)
i ] = 0, E[h(1)

i (h(1)
j )T]kq = δkqN−(2a1+b1) · 1

p xT
i xj; then of h(ℓ)

− we get 2a1 + b1 = 1 and similarly 2aℓ + bℓ = 1, ℓ ∈ {1, . . . , L}

2 network prediction evolve in Θ(1) time:

− define feature/conjugate kernel as the Gram matrix at layer ℓ as Φ(ℓ) ∈ Rn×n, Φ(ℓ)
ij = 1

N σ(h(ℓ)
i )Tσ(h(ℓ)

j )

− under the condition of Θ(1) pre-activation, it can be shown that in the N → ∞ limit that the pre-activations are
Gaussian process of zero mean, and covariance given by the (expected) conjugate kernel

− for ∂tfθ(·) = Θ(1), we get 2a1 + c = 0 and 2aℓ + c = 1, ℓ ∈ {2, . . . , L}
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Appropriate scaling of large and deep NNs

Settings:

▶ scaling of NN model: h(1)
i = 1

Na1
√

p W(1)xi, h(ℓ)
i = 1

Naℓ W(ℓ)σℓ

(
h(ℓ−1)

i

)
, fθ(xi) =

1
γNaL

(
w(L)

)T
σℓ

(
h(ℓ−1)

i

)
▶ initialization scaling: w(L)

i ∼ N (0, N−bL ), W(ℓ)
ij ∼ N (0, N−bℓ ), and W(1)

ij ∼ N (0, N−b1 )

▶ trained under full-batch gradient flow: dθ
dt = −η

∂L(θ)
∂θ = η 1

n ∑n
i=1 ∆i

∂fθ(xi)
∂θ of learning rate η = η0γ2N−c

and feature learning parameter γ = γ0Nd for η0 = Θ(1) and γ0 = Θ(1)

Objective: for large p, N, achieve appropriate scaling on (a, b, c, d) so that
3 features evolve in Θ(1) time:

− by ∂th
(ℓ)
i = Θ(1) we have 2a1 + c− d + 1/2 = 0, recall that 2a1 + c = 0, this is d = 1/2, similarly

2aℓ + c− d− 1/2 = 0 so that d = 1/2
− in fact, any d < 1/2 leads to kernel behavior, and d = 0 the NTK parameterization

▶ if further demand raw learning rate η = Θ(1), then parameterization is unique:

d = 1/2, c = 1, aℓ = 0, bℓ = 1, a1 = −1/2, b1 = 1 (18)

▶ this is equivalent to the muP parameterization in [YH21]
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What is good about this appropriate scaling

▶ well, things (e.g., DNN pre-activation, evolution of prediction and feature/pre-activation with respect to
time) do not scale with the network width N

▶ BTW, in the case of ResNet, a scaling scheme of a similar type can be obtained by considering the
infinitely deep L→ ∞ limit [Bor+23]

▶ idea of maximal update parameterization (muP) for hyperparameter transfer in large models (G. Yang)
▶ in muP, “narrow” and wide neural networks share the same set of optimal hyperparameters, e.g.,

optimal learning rate (and decay), cross-entropy temperature, initialization scale, regularization, etc.
▶ one can tune the large model by just tuning a tiny version of it and copying over the hyperparameters

2Blake Bordelon et al. “Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit”. In: The Twelfth
International Conference on Learning Representations. Oct. 2023

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024 22 / 82



Some experiments on muP and µTransfer

Show some simulations!
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Some experiments on muP and µTransfer

Figure: Comparison µTransfer, which transfers tuned hyperparameters from a small proxy model, with directly tuning the
large target model, on IWSLT14 De-En, a machine translation dataset.
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Take-away of this section

▶ sample covariance matrix Ĉ have different behavior in the large n, p regime
▶ loss of matrix norm “equivalence” for large matrices ∥A∥max ≤ ∥A∥ ≤ p∥A∥max for A ∈ Rp×p and
∥A∥max ≡ maxij |Aij|

▶ evaluation of linear regression model trained with gradient descent involves eigenspectral functionals of
SCM, RMT provides an analytic answer

▶ further allows better understanding and scaling of large and deep neural networks
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Summary: analyze and optimize large-scale ML models

Definition (High-dimensional Equivalent)

For a random matrix X ∈ Rp×n and a (possibly) nonlinear model of interest f (X) of X for some
f : Rp×n → Rp×n, we are interested in the behavior of the scalar observation g(f (X)) of the random model
f (X), via the observation map g : Rp×n → R.
We say that X̄f (which may be deterministic or random) is an High-dimensional Equivalent for the random
model f (X) with respect to the observation map g if we have, with probability at least 1− δ(p, n) that∣∣∣∣∣g(f (X))− g(Xf )

g(f (X))

∣∣∣∣∣ ≤ ε(n, p), (19)

for some non-negative functions ε(n, p) and δ(n, p) that decrease to zero as n, p→ ∞.

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024 27 / 82



Summary: analyze and optimize large-scale ML models

Analyze and Optimize Large-scale ML model f (X, Θ)

Objective: Evaluation of f (X, Θ) via Performance Metric g(·)

Technical Challenge 1
High-dimensionality in X, Θ

Technical Challenge 2
Analysis of Eigen-functional

Technical Challenge 3
Non-linearity in ML model

Key Idea 1
Concentration of g(f (X, Θ)) ≃ E[g(f (X, Θ))]

Key Idea 2
Leave-one-out + complex analysis

Key Idea 3
High-dimensional linearization of f (X, Θ)
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Characterization of scalar random variables: from moments to tails

Definition (Moments and moment generating function, MGF)

For a scalar random variable x defined on some probability space (Ω,F , P), we denote
▶ E[x] the expectation of x;
▶ Var[x] = E[(x−E[x])2] the variance of x;
▶ for p > 0, E[xp] the pth moment of x, and E[|x|p] the pth absolute moment;
▶ for λ ∈ R, Mx(λ) = E[eλx] = ∑∞

p=0
λp

p! E[xp] the moment generating function (MGF) of x.

Lemma (Moments versus tails)

For a scalar random variable x and fixed p > 0, we have
1 E[|x|p] =

∫ ∞
0 ptp−1P (|x| ≥ t) dt

2 P (|x| ≥ t) ≤ exp(−λt)M|x|(λ), for t > 0 and MGF M|x|(λ) of |x|
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Sub-gaussian distribution

Definition (Sub-gaussian and sub-exponential distributions)

For a standard Gaussian random variable x ∼ N (0, 1), its law given by µ(dt) = 1√
2π

exp(−t2/2), so that

P(x ≥ X) = µ([X, ∞)) = 1√
2π

∫ ∞
X exp(−t2/2) dt ≤ exp(−X2/2).

▶ We say y is a sub-gaussian random variable if it has a tail that decays as fast as standard Gaussian random
variables, that is

P (|y| ≥ t) ≤ exp(−t2/σ2
N ), (20)

for some σN > 0 (known as the sub-gaussian norm of y) for all t > 0.
▶ We can define a sub-exponential random variable z similarly via P(|z| ≥ t) ≤ exp(−t/σN ).

▶ for a sub-gaussian random variable x of mean µ = E[x] and sub-gaussian norm σN that

P (|x− µ| ≥ tσN ) ≤ exp(−t2), (21)

for all t > 0, in which the sub-gaussian norm σN of x acts as a scale parameter (that is similar, in spirit, to
the variance parameter of Gaussian distribution).
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A collection of scalar random variables: from LLN to CLT

For a collection of independent and identically distributed (i.i.d.) random variables x1, . . . , xn of mean µ and
variance σ2, we have, by independence, that

E

[
1
n

n

∑
i=1

xi

]
= µ, Var

[
1
n

n

∑
i=1

xi

]
=

1
n2

n

∑
i=1

Var[xi] =
σ2

n
. (22)

▶ for µ, σ2 do not scale with n, the (random) sample mean strongly concentrates around its expectation µ.

Theorem (Weak and strong law of large numbers, LLN)

For a sequence of i.i.d. random variables x1, . . . , xn with finite expectation E[xi] = µ < ∞, we have that the sample mean

1
n

n

∑
i=1

xi → µ, (23)

in probability/almost surely as n→ ∞, known as the weak law/strong of large numbers (LLN).
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A collection of scalar random variables: from LLN to CLT

Theorem (Central limit theorem, CLT)

For a sequence of i.i.d. random variables x1, . . . , xn with E[xi] = µ and Var[xi] = σ2, we have, for every t ∈ R that

P

(
1

σ
√

n

n

∑
i=1

(xi − µ) ≥ t

)
→ 1√

2π

∫ ∞

t
e−x2/2 dx (24)

as n→ ∞. That is, as n→ ∞, the random variable 1
σ
√

n ∑n
i=1(xi − µ)→ N (0, 1) in distribution.

Remark (Unified form of LLN and CLT)

The results of LLN and CLT can be compactly written as 1
n ∑n

i=1 xi ≃ µ︸︷︷︸
O(1)

+N (0, 1) · σ/
√

n︸ ︷︷ ︸
O(n−1/2)

, as n→ ∞, for µ, σ

both of order O(1).

(i) In the first order (of magnitude O(1)), it has an asymptotically deterministic behavior around the
expectation µ; and

(ii) in the second order (of magnitude O(n−1/2)), it strongly concentrates around this deterministic quantity
with a universal Gaussian fluctuation, regardless of the distribution of the component of xi.
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Concentration of random vectors in high dimensions?

▶ “concentration” for a random vector x ∈ Rn?

Observation (Random vectors do not “concentrate” around their means)

For two independent random vectors x, y ∈ Rn, having i.i.d. entries with zero mean and unit variance (that is,
µ = 0 and σ = 1), we have that

E[∥x− 0∥2
2] = E[xTx] = tr(E[xxT]) = n, (25)

and further by independence that

E[∥x− y∥2
2] = E[xTx + yTy] = 2n. (26)

▶ the origin 0 (and mean of x) is always, in expectation, at the midpoint of two independent draws of
random vectors in Rn

▶ any random vector x ∈ Rn with n large is not close to its mean
▶ x does not itself “concentrate” around any n-dimensional deterministic vector in any traditional sense.
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Numerical illustration

x

y

Figure: Visualization of “non-concentration” behavior of large-dimensional random vectors x, y ∈ Rn.
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Concentration of random vectors and their linear scalar observations

▶ In spite of this, from the LLN and CLT one expects that some types of “observations” of x ∈ Rn (e.g.,
averages over all the entries of x, to retrieve the sample mean), must concentrate in some sense for n large

▶ we “interpret” the sample mean as a linear scalar observation of a vector x ∈ Rn.

Remark (Sample mean as a linear scalar observation)

Let x ∈ Rn be a random vector having i.i.d. entries, then the sample mean of the entries of x can be rewritten
as the following linear scalar observation f : Rn → R of x defined as

f (x) = 1T
n x/n =

1
n

n

∑
i=1

xi, or f (·) = 1T
n (·)/n. (27)

▶ LLN and CLT are nothing but asymptotic characterization of the concentration behavior of the linear
scalar observation f (x) of the random vector x ∈ Rn

▶ we can say things non-asymptotically as well, under two different assumptions on the tail of x.
(i) are only assumed to have finite variance σ2 (but nothing on its tail behavior or higher-order moments); and

(ii) have sub-gaussian tails with sub-gaussian norm σN .
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Asymptotic and non-asymptotic concentration of random vectors

Table: Different types of characterizations of the linear scalar observation f (x) = xT1n/n for x ∈ Rn, having i.i.d. entries
with mean E[xi] = µ and variance σ2 or sub-gaussian norm σN .

First-order behavior Second-order behavior

Asymptotic
f (x)→ µ

via Law of Large Numbers

√
n

σ (f (x)− µ)→ N (0, 1) in law

Central Limit Theorem

Non-asymptotic
under finite variance E[f (x)] = µ

P
(
|f (x)− µ| ≥ tσ/

√
n
)
≤ t−2

via Chebyshev’s inequality

Non-asymptotic
under sub-gaussianity E[f (x)] = µ

P
(
|f (x)− µ| ≥ tσN /

√
n
)
≤ exp(−Ct2)

via sub-gaussian tail bound
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Concentration of scalar observation of large random vectors

Remark (Concentration of scalar observation of large random vectors)

A random vector x ∈ Rn, when “observed” via the linear scalar observation f (x) = 1T
n x/n:

f (x) ≃ µ︸︷︷︸
O(1)

+ X/
√

n︸ ︷︷ ︸
O(n−1/2)

, (28)

for n large, with some random X of order O(1) that:

(i-i) has a tail that decays (at least) as t−2, for finite n and x having entries of bounded variance;

(i-ii) has a sub-gaussian tail (at least) as exp(−t2), for finite n and x having sub-gaussian entries;

(ii) has a precise Gaussian tail independent of the law of (the entries of) x, but in the limit of n→ ∞ via CLT.
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Lipschitz, quadratic concentration, and beyond

The concentration properties extend beyond the specific linear observation, f (x) = 1T
n x/n, to many types of

(possibly) nonlinear observations.

Definition (Scalar observation maps)

For random vector x ∈ Rn, we say f (x) ∈ R is a scalar observation of x with observation map f : Rn → R.

Table: Different types of scalar observations f (x) of random vector x ∈ Rn, having independent entries.

Scalar observation Characterization

Linear sample mean f (x) = 1T
n x/n,

and f (x) = aTx for a ∈ Rn Table in last slide

Lipschitz f (x) for a Lipschitz map f : Rn → R Lipschitz concentration

Quadratic form f (x) = xTAx for some A ∈ Rn×n Hanson–Wright inequality

Nonlinear quadratic form f (x) = σ(xTY)Aσ(YTx)
for entry-wise σ : R→ R, A ∈ Rn×n and Y ∈ Rp×n

Nonlinear quadratic concentration,
of direct use in NN

Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024 39 / 82



Lipschitz concentration

Theorem (Concentration of Lipschitz map of Gaussian random vectors, [Ver18, Theorem 5.2.2])

For a standard Gaussian random vector x ∼ N (0, In) and a Lipschitz function f : Rn → R that satisfies
|f (y1)− f (y2)| ≤ Kf ∥y1 − y2∥2 for any y1, y2 ∈ Rn, we have, for all t > 0 that

P (|f (x)−E[f (x)]| ≥ t) ≤ exp(−Ct2/K2
f ), (29)

for some universal constant C > 0, with Kf > 0 known as the Lipschitz constant of f .

Remark (Concentration of Lipschitz observation of large random vectors)

The Lipschitz scalar observations f (x) of the random vector x ∈ Rn behave as

f (x) ≃ E[f (x)]︸ ︷︷ ︸
O(1)

+ Kf︸︷︷︸
O(n−1/2)

, (30)

for n large, where Kf is the Lipschitz constant of f that is, in general, of order O(n−1/2) for E[f (x)] = O(1), for example
for f (x) = xT1n/n.

3Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 2018Z. Liao (EIC, HUST) RMT4ML October 17 and 18, 2024 40 / 82



Concentration of quadratic forms

▶ intuitively expect that non-Lipschitz observation f (x) still concentrates in some way, but “less so”

Theorem (Hanson–Wright inequality for quadratic forms, [Ver18, Theorem 6.2.1])

For a random vector x ∈ Rn having independent, zero-mean, unit-variance, sub-gaussian entries with sub-gaussian
norm bounded by σN , and deterministic matrix A ∈ Rn×n, we have, for every t > 0, that

P
(∣∣∣xTAx− tr A

∣∣∣ ≥ t
)
≤ exp

(
− C

σ2
N

min

(
t2

σ2
N ∥A∥

2
F

,
t
∥A∥2

))
, (31)

for some universal constant C > 0.

▶ depending on the interplay between the “range” t and the deterministic matrix A, the random quadratic
form xTAx swings between a sub-gaussian (exp(−t2)) and a sub-exponential (exp(−t)) tail

Remark (Concentration of Euclidean norm of large random vectors)

It follows that the squared Euclidean norm ∥x∥2
2, as a (non-Lipschitz) quadratic observation of x ∈ Rn, behaves as

1
n
∥x∥2

2 ≃ 1 + O(n−1/2), n≫ 1. (32)
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Concentration of nonlinear quadratic forms

▶ nonlinear quadratic forms 1
n f (xTY)Af (YTx) for Gaussian x ∈ Rp and deterministic A ∈ Rn×n, Y ∈ Rp×n

Theorem (Concentration of nonlinear quadratic forms, [LLC18, Lemma 1])

For a standard Gaussian random vector x ∼ N (0, Ip) and deterministic A ∈ Rn×n, Y ∈ Rp×n such that
∥A∥2 ≤ 1, ∥Y∥2 = 1, we have, for Lipschitz function f : R→ R with Lipschitz constant Kf and any t > 0 that

P

(∣∣∣∣ 1n f (xTY)Af (YTx)− 1
n

tr AKf (Y)
∣∣∣∣ ≥ t√

n

)
≤ exp

(
− C

K2
f

min

(
t2

(|f (0)|+ Kf
√

p/n)2
,
√

nt

))
, (33)

with Kf (Y) = Ex[f (YTx)f (xTY)] ∈ Rn×n, for some universal constant C > 0.

▶ a nonlinear extension of the Hanson–Wright inequality (consider, e.g., Y = In with p = n)
Remark (Concentration of nonlinear quadratic form observation of large random vectors):

1
n

f (xTY)Af (YTx) ≃ 1
n

tr AKf (Y) + O(n−1/2), (34)

for n large, with max{f (0), Kf , p/n} = O(1), and similar first and second order behavior as above.
4Cosme Louart, Zhenyu Liao, and Romain Couillet. “A random matrix approach to neural networks”. In: Annals of Applied Probability 28.2

(2018), pp. 1190–1248
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Take-away of this section

▶ high-dimensional random vectors are not “concentrating”, but orthogonal
▶ scalar observation f (x) of large random vector x does concentrate: linear, Lipschitz, quadratic form, and

nonlinear quadratic forms, etc.
▶ same holds for random matrices, leads to Deterministic Equivalent for random matrices with respect to

observation g(·)

Definition (High-dimensional Deterministic Equivalent)

We say that Q̄ ∈ Rp×p is an (ε1, ε2, δ)-Deterministic Equivalent for the symmetric random matrix Q ∈ Rp×p

if, for a deterministic matrix A ∈ Rp×p and vectors a, b ∈ Rp of unit norms (spectral and Euclidean,
respectively), we have, with probability at least 1− δ(p) that∣∣∣∣1p tr A(Q− Q̄)

∣∣∣∣ ≤ ε1(p),
∣∣∣aT(Q− Q̄)b

∣∣∣ ≤ ε2(p), (35)

for some non-negative functions ε1(p), ε2(p) and δ(p) that decrease to zero as p→ ∞. To denote this relation,
we use the notation

Q ε1,ε2,δ←→ Q̄, or simply Q↔ Q̄. (36)
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A quick recap on linear algebra: matrices

Definition (Matrix inner product and Frobenius norm)

Given matrices X, Y ∈ Rm×n,
▶ tr(XTY) = ∑n

i=1[X
TY]ii = ∑n

i=1 ∑m
j=1 XjiYji is the matrix inner product between X and Y, where tr(A) is

the trace of A; and
▶ ∥X∥2

F = tr(XTX) = ∑n
i=1[X

TX]ii = ∑n
i=1 ∑m

j=1 X2
ji denotes the (squared) Frobenius norm of X, which is also

the sum of the squared entries of X.

Definition (Matrix norm)

For X ∈ Rp×n, the following “entry-wise” extension of the p-norms of vectors.

1 matrix Frobenius norm ∥X∥F =
√

∑i,j X2
ij = ∥vec(X)∥2 that extends the vector ℓ2 Euclidean norm; and

2 matrix maximum norm ∥X∥max = maxi,j |Xij| = ∥vec(X)∥∞ that extends the vector ℓ∞ norm.

and also matrix norm induced by vectors: ∥X∥p ≡ sup∥v∥p=1 ∥Xv∥p.

▶ taking p = 2 is the spectral norm: ∥X∥2 =
√

λmax(XXT) = σmax(X), with λmax(XXT) and σmax(X) the
maximum eigenvalue and singular of XXT and X, respectively.
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A quick recap on linear algebra: matrices

Remark (Matrix norm “equivalence”)

For a matrix A ∈ Rm×n, one has the following
1 ∥A∥2 ≤ ∥A∥F ≤

√
rank(A) · ∥A∥2 ≤

√
max(m, n) · ∥A∥2, so that the control of the spectral norm via the

Frobenius norm can be particularly loose for matrices of large rank; and
2 ∥A∥max ≤ ∥A∥2 ≤

√
mn · ∥A∥max, with ∥A∥max ≡ maxi,j |Aij| the max norm of A, so that the max and spectral

norm can be significantly different for matrices of large size.

▶ matrix norm “equivalence” holds only up to dimensional factors (e.g., rank and size)
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A quick recap on linear algebra: eigenspectral decomposition

Definition (Eigen-decomposition of symmetric matrices)

A symmetric real matrix X ∈ Rn×n admits the following eigen-decomposition

X = UXΛXUT
X =

n

∑
i=1

λi(X)uiu
T
i , (37)

for diagonal ΛX = diag{λi(X)}n
i=1 containing λ1(X), . . . , λn(X) the real eigenvalues of X, and orthonormal

UX = [u1, . . . , un] ∈ Rn×n containing the corresponding eigenvectors. In particular,

Xui = λi(X)ui. (38)

▶ interested in a single eigenvalue of a symmetric real matrix, X ∈ Rn×n, one may either resort to the
eigenvalue-eigenvector equation in (38) or the determinant equation det(X− λIn) = 0

▶ classical RMT is interested in the joint behavior of all eigenvalues λ1(X), . . . , λn(X), e.g., the (empirical)
eigenvalue distribution of X
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Empirical spectral distribution of matrices

Definition (Empirical Spectral Distribution, ESD)

For a real symmetric matrix X ∈ Rn×n, the empirical spectral distribution (ESD) or empirical spectral measure µX of
X is defined as the normalized counting measure of the eigenvalues λ1(X), . . . , λn(X) of X,

µX ≡
1
n

n

∑
i=1

δλi(X), (39)

where δx represents the Dirac measure at x. Since
∫

µX(dx) = 1, the spectral measure µX of a matrix X ∈ Rn×n

(which may be random or not) is a probability measure.

▶
∫

tµX(dt) = 1
n ∑n

i=1 λi(X) is the first moment of µX, and gives the average of all eigenvalues of X; and

▶
∫

t2µX(dt) = 1
n ∑n

i=1 λ2
i (X) is the second moment of µX, so that

∫
t2µX(dt)−

(∫
tµX(dt)

)2 gives the
variance of the eigenvalues of X.
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A unified spectral analysis approach via the resolvent

▶ Note: here everything hold deterministically, not necessarily random yet
▶ combined with Deterministic Equivalent and concentration, gives the whole picture

Definition (Resolvent)

For a symmetric matrix X ∈ Rp×p, the resolvent QX(z) of X is defined, for z ∈ C not an eigenvalue of X, as

QX(z) ≡
(
X− zIp

)−1 . (40)

Proposition (Properties of resolvent)

For QX(z) the resolvent of a symmetric matrix X ∈ Rp×p with ESD µX with supported on supp(µX), then

(i) QX(z) is complex analytic on its domain of definition C \ supp(µX);

(ii) it is bounded in the sense that ∥QX(z)∥2 ≤ 1/ dist(z, supp(µX));

(iii) x 7→ QX(x) for x ∈ R \ supp(µX) is an increasing matrix-valued function with respect to symmetric
matrix partial ordering (i.e., A ⪰ B whenever zT(A− B)z ≥ 0 for all z).
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A unified spectral analysis approach via the resolvent

▶ for real z, the resolvent QX(z) is nothing but a regularized inverse of X
▶ when interested in the eigenvalues and eigenvectors of X ∈ Rp×p, consider the eigenvalue and

eigenvector equation
Xv = λv⇔ (X− λIp)v = 0, λ ∈ R, v ∈ Rp, (41)

for an eigenvalue-eigenvector pair (λ, v) of X with v ̸= 0
▶ again a linear system, but solving for a pair of eigenvalue and eigenvector (λ, v) for which the

inverse/resolvent (X− λIp)−1 does not exist
▶ while seemingly less convenient at first sight, turns out to be very efficient in providing a unified assess

to general spectral functionals of X, by taking z to be complex and exploiting tools from complex analysis

Theorem (Cauchy’s integral formula)

For Γ ⊂ C a positively (i.e., counterclockwise) oriented simple closed curve and a complex function f (z) analytic in a
region containing Γ and its inside, then

(i) if z0 ∈ C is enclosed by Γ, f (z0) = − 1
2πı
∮

Γ
f (z)
z0−z dz;

(ii) if not, 1
2πı
∮

Γ
f (z)
z0−z dz = 0.
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A resolvent approach to spectral analysis

(X− λIp)v = 0⇒ QX(z) = (X− zIn)
−1 (42)

▶ let X = UΛUT be the spectral decomposition of X, with Λ = {λi(X)}
p
i=1 eigenvalues and

U = [u1, . . . , up] ∈ Rp×p the associated eigenvectors, then

Q(z) = U(Λ− zIp)
−1UT =

p

∑
i=1

uiuT
i

λi(X)− z
. (43)

▶ thus, same eigenspace as X, but maps the eigenvalues λi(X) of X to 1/(λi(X)− z).
Applying Cauchy’s integral formula to the resolvent matrix QX(z) allows one to (somewhat magically!)
assess the eigenvalue and eigenvector behavior of X:
▶ characterize the eigenvalues of X, one needs to determine a z ∈ R such that QX(z) does not exist.
▶ can be done by directly calling the Cauchy’s integral formula, which allows to determine the value of a

(sufficiently nice) function f at a point of interest z0 ∈ R, by integrating its “inverse”
gf (z) = f (z)/(z0 − z) on the complex plane.

▶ this “inverse” gf (z) is akin to the resolvent and does not, by design, exist at the point of interest z0.
▶ in the following example, we compare the two approaches of
(i) directly solving the determinantal equation; and

(ii) use resolvent + Cauchy’s integral formula.
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A resolvent approach to spectral analysis: an example

Consider the following two-by-two real symmetric random matrix

X =

[
x1 x2
x2 x3

]
∈ R2×2, (44)

for (say independent) random variables x1, x2, x3. For λ1(X) and λ2(X) the two (random) eigenvalues of X
with associated (random) eigenvectors u1(X), u2(X) ∈ R2, we are interested in

fX = E [f (λ1(X)) + f (λ2(X))] , gi,X = aTE[ui(X)ui(X)
T]b, i ∈ {1, 2}, (45)

for some function f : R→ R and deterministic a, b ∈ R2.

(i) Directly solve for the eigenvalues from the determinantal equation as

0 = det(X− λI2)⇔ λ(X) =
1
2

(
x1 + x3 ±

√
(x1 + x3)2 − 4(x1x3 − x2

2)

)
, (46)

and the associated eigenvectors from Xui(X) = λi(X)ui(X), i ∈ {1, 2}. Then compute
fX = E [f (λ1(X)) + f (λ2(X))], gi,X = aTE[ui(X)ui(X)T]b

▶ needs to re-compute of the expectation for a different choice of function f and the eigen-pair
(λ1(X), u1(X)) or (λ2(X), u2(X)) of interest.
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(ii) The resolvent approach:

fX = E [f (λ1(X)) + f (λ2(X))]

= E

[
− 1

2πı

∮
Γ

(
f (z)

λ1(X)− z
+

f (z)
λ2(X)− z

)
dz
]

= − 1
2πı

∮
Γ

E [f (z) tr QX(z)dz] = − 1
2πı

∮
Γ

f (z) tr (E[QX(z)]) dz,

for Γ a positively-oriented contour that circles around both (random) eigenvalues of X.
▶ a much more unified approach to the quantity fX for different choices of f
▶ compute the expected resolvent once (which is much simpler in the case of large random matrices)
▶ then perform contour integration with the function f of interest.
▶ similarly, for gi,X, it follows that

gi,X = aTE[ui(X)ui(X)
T]b = − 1

2πı

∮
Γi

aTE[QX(z)]b dz (47)

for some contour Γi that circles around only λi(X), i ∈ {1, 2}
▶ given the expected resolvent E[Q(z)], it suffices to choose the specific contour Γi to get the different

expressions of g1,X and g2,X
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Resolvent as the core object

Objects of interest Functionals of resolvent QX(z)

ESD µX of X Stieltjes transform mµX (z) =
1
p tr QX(z)

Linear spectral statistics (LSS):
f (X) ≡ 1

p ∑i f (λi(X))
Integration of trace of QX(z): − 1

2πı
∮

Γ f (z) 1
p tr QX(z) dz

(via Cauchy’s integral)

Projections of eigenvectors
vTu(X) and vTU(X) onto
some given vector v ∈ Rp

Bilinear form vTQX(z)v of QX

General matrix functional
F(X) = ∑i f (λi(X))vT

1 ui(X)ui(X)Tv2
involving both eigenvalues and eigenvectors

Integration of bilinear form of QX(z):
− 1

2πı
∮

Γ f (z)vT
1 QX(z)v2 dz
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Using the resolvent to access eigenvalue distribution

Definition (Resolvent)

For a symmetric matrix X ∈ Rp×p, the resolvent QX(z) of X is defined, for z ∈ C not an eigenvalue of X, as

QX(z) ≡
(
X− zIp

)−1 . (48)

▶ let X = UΛUT be the spectral decomposition of X, with Λ = {λi(X)}
p
i=1 eigenvalues and

U = [u1, . . . , up] ∈ Rp×p the associated eigenvectors, then

Q(z) = U(Λ− zIp)
−1UT =

p

∑
i=1

uiuT
i

λi(X)− z
. (49)

▶ thus, same eigenspace as X, but maps the eigenvalues λi(X) of X to 1/(λi(X)− z).
▶ eigenvalue of QX(z), and the resolvent matrix itself, must explode as z approaches any eigenvalue of X.
▶ take the trace tr QX(z) of QX(z) as the quantity to “locate” the eigenvalues of the matrix X of interest
▶ for µX ≡ 1

p ∑
p
i=1 δλi(X) the ESD of X,

1
p

tr Q(z) =
1
p

p

∑
i=1

1
λi(X)− z

=
∫

µX(dt)
t− z

≡ mµX (z) . (50)
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The Stieltjes transform

Definition (Stieltjes transform)

For a real probability measure µ with support supp(µ), the Stieltjes transform mµ(z) is defined, for all
z ∈ C \ supp(µ), as

mµ(z) ≡
∫

µ(dt)
t− z

. (51)

Proposition (Properties of Stieltjes transform, [HLN07])

For mµ the Stieltjes transform of a probability measure µ, it holds that

(i) mµ is complex analytic on its domain of definition C \ supp(µ);

(ii) it is bounded |mµ(z)| ≤ 1/ dist(z, supp(µ));

(iii) it is an increasing function on all connected components of its restriction to R \ supp(µ) (since
m′µ(x) =

∫
(t− x)−2µ(dt) > 0) with limx→±∞ mµ(x) = 0 if supp(µ) is bounded; and

(iv) mµ(z) > 0 for z < inf supp(µ), mµ(z) < 0 for z > sup supp(µ) and ℑ[z] · ℑ[mµ(z)] > 0 if z ∈ C \R; and

BTW, for any u ∈ Rp and matrix A ∈ Rp×p so that tr(A) = 1, uTQX(z)u, tr(AQX(z)) are STs.
5Walid Hachem, Philippe Loubaton, and Jamal Najim. “Deterministic equivalents for certain functionals of large random matrices”. In:

The Annals of Applied Probability 17.3 (2007), pp. 875–930
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The inverse Stieltjes transform

Definition (Inverse Stieltjes transform)

For a, b continuity points of the probability measure µ, we have

µ([a, b]) =
1
π

lim
y↓0

∫ b

a
ℑ
[
mµ(x + ıy)

]
dx. (52)

Besides, if µ admits a density f at x (i.e., µ(x) is differentiable in a neighborhood of x and
limϵ→0(2ϵ)−1µ([x− ϵ, x + ϵ]) = f (x)),

f (x) =
1
π

lim
y↓0
ℑ
[
mµ(x + ıy)

]
. (53)
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Use the resolvent for eigenvalue functionals

Definition (Linear Spectral Statistic, LSS)

For a symmetric matrix X ∈ Rp×p, the linear spectral statistics (LSS) fX of X is defined as the averaged statistics
of the eigenvalues λ1(X), . . . , λp(X) of X via some function f : R→ R, that is

f (X) =
1
p

p

∑
i=1

f (λi(X)). (54)

In particular, we have =
∫

f (t)µX(dt), for µX the ESD of X.

LSS via contour integration: For λ1(X), . . . , λp(X) eigenvalues of a symmetric matrix X ∈ Rp×p, some
function f : R→ R that is complex analytic in a compact neighborhood of the support supp(µX) (of the ESD
µX of X), then

f (X) =
∫

f (t)µX(dt) = −
∫ 1

2πı

∮
Γ

f (z) dz
t− z

µX(dt) = − 1
2πı

∮
Γ

f (z)mµX (z) dz, (55)

for any contour Γ that encloses supp(µX), i.e., all the eigenvalues λi(X).
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LSS to retrieve the inverse Stieltjes transform formula

Remark (LSS to retrieve the inverse Stieltjes transform formula):

1
p ∑

λi(X)∈[a,b]
δλi(X) = −

1
2πı

∮
Γ

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz

= − 1
2πı

∫ b+εx−ıεy

a−εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz− 1
2πı

∫ a−εx+ıεy

b+εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz

− 1
2πı

∫ a−εx−ıεy

a−εx+ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz− 1
2πı

∫ b+εx+ıεy

b+εx−ıεy

1ℜ[z]∈[a−ε,b+ε](z)mµX (z) dz.

▶ Since ℜ[m(x + ıy)] = ℜ[m(x− ıy)],ℑ[m(x + ıy)] = −ℑ[m(x− ıy)];

▶ we have
∫ b+εx

a−εx
mµX (x− ıεy) dx +

∫ a−εx
b+εx

mµX (x + ıεy)dx = −2ı
∫ b+εx

a−εx
ℑ[mµX (x + ıεy)] dx;

▶ and consequently µ([a, b]) = 1
p ∑λi(X)∈[a,b] λi(X) = 1

π limεy↓0
∫ b

a ℑ[mµX (x + ıεy)] dx.
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Support of µX

Figure: Illustration of a rectangular contour Γ and support of µX on the complex plane.
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Spectral functionals via resolvent

Definition (Matrix spectral functionals)

For a symmetric matrix X ∈ Rp×p, we say F : Rp×p → Rp×p is a matrix spectral functional of X,

F(X) = ∑
i∈I⊆{1,...,p}

f (λi(X))uiu
T
i , X =

p

∑
i=1

λi(X)uiu
T
i . (56)

Spectral functional via contour integration: For X ∈ Rp×p, resolvent QX(z) = (X− zIp)−1, z ∈ C, and
f : R→ R analytic in a neighborhood of the contour ΓI that circles around the eigenvalues λi(X) of X with
their indices in the set I ⊆ {1, . . . , p},

F(X) = − 1
2πı

∮
ΓI

f (z)QX(z) dz. (57)

Example: access to the i-th eigenvector ui of X through

uiu
T
i = − 1

2πı

∮
Γλi(X)

QX(z) dz, (58)

for Γλi(X) a contour circling around λi(X) only, so eigenvector projection (vTui)
2 = − 1

2πı
∮

Γλi(X)
vTQX(z)v dz.
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Example: training linear model with gradient descent

Note that

βT
∗ β(t) = βT

∗ e−tĈβ(0) + βT
∗

(
Ip − e−tĈ

)
βRR

= βT
∗ e−tĈβ(0) + βT

∗

(
Ip − e−tĈ

)
Ĉ−1 1

n
Xy

= − 1
2πı

∮
Γ

(
exp(−tz) · βT

∗Q(z)β(0) +
1− exp(−zt)

z
· 1

n
βT
∗Q(z)Xy

)
dz,

for Γ a positively oriented contour that circles around all eigenvalues of Ĉ, and resolvent

Q(z) = (Ĉ− zIp)
−1 =

(
1
n

XXT − zIp

)−1
. (59)
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Take-away messages of this section

▶ “basic” probability: concentration of scalar observations of large random vectors: simple and involved,
linear and nonlinear objects

▶ boils down to expectation computation/evaluation
▶ same holds for scalar observations of large random matrices
▶ linear algebra: matrix norm “equivalence” but up to dimensional factors
▶ resolvent (i.e., regularized inverse) naturally appears in eigenvalue/eigenvector assessment
▶ a unified resolvent-based to eigenspectral analysis of (not necessarily random) matrices: Cauchy’s

integral formula, Stieltjes transform (and its inverse), Linear Spectral Statistic, and generic matrix spectral
functionals, etc.
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Two different scaling regimes

Example (Nonlinear objects in two scaling regimes)

Let x ∈ Rn be a random vector so that
√

nx has i.i.d. standard Gaussian entries with zero mean and unit
variance, and y ∈ Rn be a deterministic vector of unit norm ∥y∥ = 1; and consider the following two families
of nonlinear objects of interest with a nonlinear function f acting on different regimes:

(i) LLN regime: here we are interested in f (∥x∥2) and f (xTy); and

(ii) CLT regime: here we are interested in f (
√

n(∥x∥2 − 1)) and f (
√

n · xTy).

▶ the (strong) law of large numbers (LLN) implies that

∥x∥2 → E[xTx] = 1 and xTy→ E[xTy] = 0

almost surely as n→ ∞; and
▶ the central limit theorem (CLT) implies that

√
n(∥x∥2 − 1)→ N (0, 2) and

√
n · xTy→ N (0, 1)

in law as n→ ∞
▶ leads to the more compact form, for n large,

∥x∥2 ≃ 1 +N (0, 2)/
√

n and xTy ≃ 0 +N (0, 1)/
√

n. (60)
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Illustration of the two scaling regime

−3 0 3
0

1

2

3

ξLLN ≡ xTy

N (0, n−1)

(a) LLN regime

−3 0 3
0

1

2

3

ξCLT ≡
√

nxTy

N (0, 1)

(b) CLT regime

Figure: Illustrations of random variables in LLN (left) and CLT (right) regime, with n = 500.
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Two different scaling regimes and their corresponding linearization

Table: Comparison between two different high-dimensional linearization approaches.

Scaling regime LLN type CLT type

Object of interest
f (ξ) for

(almost) deterministic
ξ = τ + o(1)

f (ξ) for
random ξ,

e.g., ξ ∼ N (0, 1)

Linearization technique Taylor expansion Orthogonal polynomial

Smoothness of f Locally smooth f Possibly non-smooth f
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Linearization via Taylor expansion in the LLN regime

Theorem (Taylor’s theorem for deterministic single-variable functions)

Let f : R→ R be a function that is at least k times continuously differentiable in a neighborhood of a given point τ ∈ R.
Then, there exists a function hk : R→ R such that

f (x) = f (τ) + f ′(x− τ) +
f ′′(τ)

2
(x− τ)2 + . . . +

f (k)(τ)
k!

(x− τ)k + hk(x)(x− τ)k, (61)

with limx→τ hk(x) = 0 so that hk(x)(x− τ)k = o(|x− τ|k) as x→ τ.

What makes the Taylor expansion approach work for random nonlinear functions f (x)?
▶ Smoothness. nonlinear f should be smooth, at least in the neighborhood of the point τ of interest, so that

the derivatives f ′(τ), f ′′(τ), . . . make sense.
▶ Concentration. variable of interest x is sufficiently close to (or, concentrates around, when being random)

the point τ so that the higher orders terms are neglectable
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Linearization via Taylor expansion in the LLN regime

Proposition (Taylor expansion of high-dimensional random functions in the LLN regime)

For random variable ξ = ∥x∥2 with
√

nx ∈ Rn having i.i.d. standard Gaussian entries, in the LLN regime, it follows
from LLN and CLT that ∥x∥2 − 1 = O(n−1/2) with high probability for n large, so that one can apply Taylor theorem to
write

f (∥x∥2) = f (1) + f ′(1) (∥x∥2 − 1)︸ ︷︷ ︸
O(n−1/2)

+
1
2

f ′′(1) (∥x∥2 − 1)2︸ ︷︷ ︸
O(n−1)

+O(n−3/2), (62)

with high probability. Similarly,

f (xTy) = f (0) + f ′(0) xTy︸︷︷︸
O(n−1/2)

+
1
2

f ′′(0) (xTy)2︸ ︷︷ ︸
O(n−1)

+O(n−3/2), (63)

again as a consequence of
√

n · xTy d−→ N (0, 1) in distribution as n→ ∞, where the orders O(n−ℓ) hold with high
probability for n large.
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A functional analysis perspective of expectation of nonlinear random function

▶ Consider the following functional analysis perspective of the expectation E[f (ξ)]
▶ For a random variable ξ following some law µ, the expectation E[f (ξ)] of the nonlinear transformation

f (ξ) can be expresses as

Eξ∼µ[f (ξ)] =
∫

f (t)µ(dt). (64)

▶ In the case of Euclidean space, the canonical vectors e1, . . . , en form an orthonormal basis of Rn; and thus
any vector x living in the Euclidean space Rn can be decomposed as

x =
n

∑
i=1

(xTei)ei =
n

∑
i=1

xiei, (65)

with the inner product xTei = xi the ith coordinate of x.
▶ A similar result holds more generally, e.g., or a function f living in some (infinite dimensional) function

space, can be decomposed into the sum of “orthonormal” basis functions, weighted by the projection
(i.e., inner product) of f onto these basis functions
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Orthogonal Polynomials

Definition (Orthogonal polynomials and orthogonal polynomial expansion)

For a probability measure µ, define the inner product

⟨f , g⟩ ≡
∫

f (ξ)g(ξ)µ(dξ) = E[f (ξ)g(ξ)], (66)

for ξ ∼ µ. We say that {Pℓ(ξ), ℓ ≥ 0} is a family of orthogonal polynomials with respect to this inner product,
obtained by the Gram-Schmidt procedure on the monomials {1, ξ, ξ2, . . .}, with P0(ξ) = 1, where Pℓ is a
polynomial function of degree ℓ that satisfies〈

Pℓ1 , Pℓ2

〉
= E[Pℓ1 (ξ)Pℓ2 (ξ)] = δℓ1=ℓ2 . (67)

Then, for any function f ∈ L2(µ), the orthogonal polynomial expansion of f is

f (ξ) ∼
∞

∑
ℓ=0

aℓPℓ(ξ), aℓ =
∫

f (ξ)Pℓ(ξ)µ(dξ) (68)

▶ denote “f ∼ ∑∞
l=0 aℓPℓ” to denote that ∥f −∑L

ℓ=0 aℓPℓ∥µ → 0 as L→ ∞ with ∥f∥2
µ = ⟨f , f ⟩, or equivalently∫ (

f (ξ)−∑L
ℓ=0 aℓPℓ(ξ)

)2
µ(dξ) = E

[(
f (ξ)−∑L

ℓ=0 aℓPℓ(ξ)
)2
]
→ 0.
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Hermite polynomial decomposition

Theorem (Hermite polynomial decomposition)

For ξ ∈ R, the ℓth order normalized Hermite polynomial, denoted Pℓ(ξ), is given by given by

P0(ξ) = 1, and Pℓ(ξ) =
(−1)ℓ√

ℓ!
e

ξ2
2 dn

dξn

(
e−

ξ2
2

)
, for ℓ ≥ 1. (69)

and the family of (normalized) Hermite polynomials
(i) being orthogonal polynomials and (as the name implies) are orthonormal with respect the standard Gaussian

measure:
∫

Pm(ξ)Pn(ξ)µ(dξ) = δnm, for µ(dt) = 1√
2π

e−
t2
2 dt the standard Gaussian measure; and

(ii) form an orthonormal basis of L2(µ), the Hilbert space consist of all square-integrable functions with respect to the
inner product ⟨f , g⟩ ≡

∫
f (ξ)g(ξ)µ(dξ), and that one can formally expand any f ∈ L2(µ) as

f (ξ) ∼ ∑∞
ℓ=0 aℓ,f Pℓ(ξ), aℓ,f =

∫
f (ξ)Pℓ(ξ)µ(dξ) = E[f (ξ)Pℓ(ξ)], (70)

where we use ‘f ∼ ∑∞
ℓ=0 aℓ,f Pℓ’ for standard Gaussian ξ ∼ N (0, 1). The coefficients aℓ,f s are generalized moments

of the standard Gaussian measure µ involving f , and we have

a0,f = Eξ∼N (0,1)[f (ξ)], a1,f = E[ξf (ξ)],
√

2a2,f = E[ξ2f (ξ)]− a0,f , νf = E[f 2(ξ)] = ∑
ℓ=0

a2
ℓ,f . (71)
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Numerical illustration of Hermite polynomials

−3 0 3

−2

0

2

P0 = 1
P1 = x

P2 = (x2 − 1)/
√

2

P3 = (x3 − 3x)/
√

6

−3 0 3

−0.4

−0.2

0

0.2

0.4

P1 · µ
P2 · µ

P1P2 · µ

Figure: Illustration of the first four Hermite polynomials (left) and of the first- and second-order Hermite polynomial (P1

and P2) weighted by the Gaussian mixture µ(dx) = exp(−x2/2)/
√

2π (right).
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Hermite polynomial “expansion” in the CLT regime

Proposition (Hermite polynomial “expansion” in the CLT regime)

For random variable ξCLT =
√

n · (∥x∥2 − 1) with
√

nx ∈ Rn having i.i.d. standard Gaussian entries, in the CLT
regime, it follows from the CLT that ξCLT ∼ N (0, 1) in the n→ ∞ limit, so that one can write

E[f (
√

n · (∥x∥2 − 1))] = Eξ∼N (0,1)[f (ξ)] + o(1) = a0,f + o(1), (72)

as n→ ∞; and similarly
E[f (
√

n · xTy)] = Eξ∼N (0,1)[f (ξ)] + o(1) = a0,f + o(1). (73)

▶ looks not extremely insightful
▶ makes a lot more sense for scalar nonlinear observations of random vectors and random matrices, e.g.,

K = f (XTX/
√

p)/
√

p− diag(·), for random matrix X ∈ Rp×n
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Two different scaling regimes and their linearization

Example (Nonlinear behaviors of tanh in two scaling regimes)

Consider the hyperbolic tangent function f (t) = tanh(t). This nonlinear function is “close” to different
quadratic functions in different regimes of interest. More precisely, we have the following.

(i) In the LLN regime, we have
tanh(ξLLN) ≃ g(ξLLN),

with g(t) = t2/4. This is as a consequence of tanh(x) = g(x) = 0. In particular,
E[tanh(ξLLN)] ≃ E[g(ξLLN)].

(ii) In the CLT regime, we have
E[tanh(ξLLN)] = E[g(ξLLN)]

in expectation, with now g(t) = t2 − 1, i.e., with a different function. This is a consequence of the fact that
their zeroth-order Hermite coefficient a0 = 0.
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Numerical illustration of two high-dimensional linearization technique

−3 0 3

−1

0

1

2

3

ξLLN ≡ xTy

tanh(x)

g(x) = x2/4

(a) LLN regime

−3 0 3

−1

0

1

2

3

ξCLT ≡
√

nxTy

tanh(x)

g(x) = x2 − 1

(b) CLT regime

Figure: Different behavior of nonlinear f (ξLLN) and f (ξCLT) for f (t) = tanh(t) in the LLN and CLT regime, with n = 500. We
have in particular tanh(ξLLN) ≃ g(ξLLN) in the LLN regime and E[tanh(ξCLT)] = E[g(ξCLT)] in the CLT regime with
different g.
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High-dimensional Linear Equivalent

Definition (High-dimensional Linear Equivalent)

For a random vector x ∈ Rn, its nonlinear transformation f (x) ∈ Rn is obtained by applying f : R→ R

entry-wise on x. Consider g(f (x)) a scalar observation of f (x) via observation function g : Rn → R, we say
that the random vector x̃f (defined on an extended probability space if necessary) is an (ε, δ)-Linear
Equivalent to f (x) if, with probability at least 1− δ(n) that∣∣∣g(f (x))− g(x̃f )

∣∣∣ ≤ ε(n), (74)

for some non-negative functions ε(n) and δ(n) that decrease to zero as n→ ∞. This, in the limit of n→ ∞,
leads to

g(f (x))− g(x̃f )→ 0, (75)

in probability or almost surely for the observation function g(·), and we denote

f (x)
g↔ x̃f . (76)

And similarly for a random matrix X ∈ Rp×n.
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Example: Nonlinear random vectors in two scaling regimes

Example (Nonlinear random vectors in two scaling regimes)

Let X ∈ Rp×n be a random matrix so that
√

nX has i.i.d. standard Gaussian entries with zero mean and unit
variance, and y ∈ Rn, α ∈ Rp be deterministic vectors of unit norm such that ∥y∥ = 1 and ∥α∥ = 1; consider
the following two families of scalar observations of nonlinear random vectors with observation function
g : Rp → R and a nonlinear function f acting on different regimes:

(i) LLN regime: g(f (Xy)) = 1√
n αTf (Xy); and

(ii) CLT regime: g(f (
√

n · Xy)) = 1√
n αTf (

√
n · Xy).
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Proposition (Taylor expansion of nonlinear random vector in the LLN regime)

Let X ∈ Rp×n be a random matrix so that
√

nX has i.i.d. standard Gaussian entries with zero mean and unit variance,
and y ∈ Rn, α ∈ Rp be deterministic vectors of unit norm such that ∥y∥ = 1 and ∥α∥ = 1, in the LLN regime, the
following Linear Equivalent holds

f (Xy)
g↔ f (0) · 1p︸ ︷︷ ︸

O∥·∥∞ (1)

+ f ′(0) · Xy︸ ︷︷ ︸
O∥·∥∞ (n−1/2)

, (77)

for the scalar observation function g(·) = αT(·)/
√

n, up to some approximation error ε = O(n−1).

Proposition (Hermite polynomial expansion in the CLT regime.)

Let X ∈ Rp×n be a random matrix so that
√

nX has i.i.d. standard Gaussian entries with zero mean and unit variance,
and y ∈ Rn, α ∈ Rp be deterministic vectors of unit norm such that ∥y∥ = 1 and ∥α∥ = 1, in the CLT regime, if the
nonlinear f : R→ R and g(·) = αT(·)/

√
n are such that g(f (

√
nXy)) strongly concentrates, i.e.,

g(f (
√

nXy)) =
1√
n

αTf (
√

nXy) =
1√
n

E[αTf (
√

nXy)] + ε(n, p), (78)

with high probability for n, p large, so f (
√

nXy)
g↔ a0,f · 1p, for the observation function g(·) = αT(·)/

√
n.
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An additional example in the CLT regime

Example (Hermite polynomial expansion in the CLT regime)

Under the same notations and settings as above but for random observation function

g(·) = 1√
n

yTXT(·), (79)

that is assumed to strongly concentrate around its expectation up to some ε(n, p) for n, p large, then, the
following Linear Equivalent holds

f (
√

nXy)
g↔ a1,f ·

√
nXy, (80)

up to some approximation error ε(n, p).

▶ we also have f (
√

nXy)
g↔ a1,f ·

√
nXy + z, and Linear Equivalents are not unique

▶ in some cases we care joint behavior of multiple observation functions, etc.
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An additional example of joint behavior in the CLT regime

Example (Hermite polynomial expansion in the CLT regime: joint behavior)

Consider random vector x ∼ N (0, Ip) having i.i.d. standard Gaussian entries, and nonlinear random vector
f (x) with nonlinear f : R→ R applied entry-wise on x, in the CLT regime. Then, for the joint behavior of the
two scalar observation of f (x),

(g1(f (x)), g2(f (x))) =
(

1
p

xTf (x),
1
p

f (x)Tf (x)
)

, (81)

the following asymptotic equivalent linear model holds

f (x)
(g1,g2)↔ a0,f · 1p + a1,f · x +

√
νf − a2

0,f − a2
1,f · z, (82)

with a0,f , a1,f , νf the Hermite coefficients of f , and standard Gaussian random vector z ∼ N (0, Ip) that is
independent of x.
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Take-away messages of this section

▶ two different scaling regimes: LLN versus CLT
▶ high-dimensional linearizations of nonlinear random functions via Taylor Expansion and Orthogonal

Polynomial
▶ Taylor Expansion can be performed in a close-to-deterministic fashion
▶ Orthogonal Polynomial is more tricky and depends on the form of the observation map

Technical Challenge 1
High-dimensionality

Technical Challenge 2
Analysis of Eigen-functional

Technical Challenge 3
Non-linearity in ML model

Key Idea 1
Concentration of g(f (X, Θ)) ≃ E[g(f (X, Θ))]

Key Idea 2
Leave-one-out + complex analysis

Key Idea 3
High-dimensional linearization of f (X, Θ)

Thank you! Q & A?
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Outline

1 Four Ways to Characterize Sample Covariance Matrices
Traditional analysis of SCM eigenvalues
SCM analysis beyond eigenvalues: a modern RMT approach via Deterministic Equivalents for resolvent
The Gaussian method alternative approach

2 Some More Random Matrix Models
Wigner semicircle law
Generalized sample covariance matrix
Separable covariance model
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Four ways to characterize sample covariance matrices

Definition (Sample Covariance Matrix, SCM)

The SCM Ĉ ∈ Rp×p of data matrix X = [x1, . . . , xn] ∈ Rp×n composed of n independent data samples xi ∈ Rp

of zero mean is given by

Ĉ =
1
n

n

∑
i=1

xix
T
i =

1
n

XXT. (1)

Definition (Classical versus proportional regimes)

For SCM Ĉ ∈ Rp×p from n samples of dimension p, consider the following two regimes.
1 Classical regime with n≫ p, this includes both asymptotic (n→ ∞ with p fixed) and non-asymptotic

characterizations (n≫ p for large but finite n).
2 Proportional regime with n ∼ p, this includes both asymptotic (n, p→ ∞ with p/n→ c ∈ (0, ∞), also

known as thermodynamic limit in the statistical physics literature) and non-asymptotic characterizations
(n ∼ p≫ 1 both large but finite).
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Classical
Regime

Proportional
Regime

Non-asymptotic Characterizations

Asymptotic Characterizations

Law of Large
Numbers

in Theorem 3

Sample Covariance
Concentration
in Theorem 4

Asymptotic Deterministic
Equivalent in Theorem 7

Marc̆enko-Pastur law
in Theorem 5

Non-asymptotic
Deterministic

Equivalent
in Theorem 8

Figure: Taxonomy of four different ways to characterize the sample covariance matrix Ĉ = 1
n XXT.
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Asymptotic behavior of SCM in the classical regime via law of large numbers

Theorem (Asymptotic Law of Large Numbers for SCM)

Let p be fixed, and let X ∈ Rp×n be a random matrix with independent sub-gaussian columns xi ∈ Rp such that
E[xi] = 0 and E[xixT

i ] = Ip. Then one has,
∥Ĉ− Ip∥2 → 0, (2)

almost surely, as n→ ∞.

▶ LLN is “parameterized” to hold only in the classical limit, not the proportional limit
▶ many variants and extensions of the LLN exist, but become vacuous when applied to the proportional

regime n, p→ ∞ and p/n→ c ∈ (0, ∞), see below for an example
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Non-asymptotic behavior of SCM in the classical regime via matrix concentration

Theorem (Non-asymptotic matrix concentration for SCM, [Ver18, Theorem 4.6.1])

Let X ∈ Rp×n be a random matrix with independent sub-gaussian columns xi ∈ Rp such that E[xi] = 0 and
E[xixT

i ] = Ip. Then, one has, with probability at least 1− 2 exp(−t2), for any t ≥ 0, that

∥Ĉ− Ip∥2 ≤ C1 max(δ, δ2), δ = C2(
√

p/n + t/
√

n), (3)

for some constants C1, C2 > 0, independent of n, p.

Proof: combines Bernstein’s concentration inequality with ϵ-net argument, see [Ver18] for details.
▶ can reproduce the LLN asymptotic result by taking n→ ∞ with Borel–Cantelli lemma

(i) Classical regime. Here, n≫ p, say that n ∼ p2. Then with high probability, that ∥Ĉ− Ip∥2 = O(n−1/4)
and conveys a similar intuition to the asymptotic LLN result

(ii) Proportional regime. Here, n, p are both large and n ∼ p. Then, with high probability, that
∥Ĉ− Ip∥2 = O(

√
p/n) = O(1), and qualitatively different LLN with a vacuous ∼ 100% relative error,

e.g., as n, p→ ∞ with p/n→ c ∈ (0, ∞).
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Proportional regime: eigenvalues via traditional RMT and the Marc̆enko-Pastur law

Theorem (Limiting spectral distribution for SCM: Marc̆enko-Pastur law, [MP67])

Let X ∈ Rp×n be a random matrix with i.i.d. sub-gaussian columns xi ∈ Rp such that E[xi] = 0 and E[xixT
i ] = Ip.

Then, as n, p→ ∞ with p/n→ c ∈ (0, ∞), with probability one, the empirical spectral measure (ESD) µ 1
n XXT of 1

n XXT

converges weakly to a probability measure µ given explicitly by

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+ (E+ − x)+ dx, (4)

where E± = (1±
√

c)2 and (x)+ = max(0, x), which is known as the Marc̆enko-Pastur distribution.

▶ provides a more refined characterization of the eigenspectrum of Ĉ (than, e.g., matrix concentration):
(i) Classical regime. Here, n≫ p so that c = p/n→ 0, the Marc̆enko-Pastur law in Equation (4) shrinks to a

Dirac mass, in agreement with ∥Ĉ− Ip∥2 ∼ 0
(ii) Proportional regime. Here, n ∼ p≫ 1, and by the (true but vacuous) matrix concentration result
∥Ĉ− Ip∥2 = O(p/n) = O(1), and, depending on the ratio c = p/n, the eigenvalues of Ĉ can be very
different from one, and takes the form of the Marc̆enko-Pastur law

▶ we have in fact ∥Ĉ− Ip∥2 ≃ c + 2
√

c as n, p→ ∞ with p/n→ c ∈ (0, ∞)
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▶ averaged amount of eigenvalues of Ĉ lying within the interval [1− δ, 1 + δ], for δ≪ 1, as

µ([1− δ, 1 + δ]) =
∫ 1+δ

1−δ

1
2πcx

√(
x− (1−

√
c)2

)+ (
(1 +

√
c)2 − x

)+ dx

=
1

2πc

∫ δ

−δ

(√
4c− c2 + O(ε)

)
dε =

√
4c−1 − 1

π
δ + O(δ2).

▶ for p ≈ 4n there is asymptotically no eigenvalue of Ĉ close to one!
▶ in accordance with the shape of the limiting Marc̆enko-Pastur law with c = 4 above
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Figure: Varying n and c = p/n for fixed p. Histogram of the eigenvalues of Ĉ versus the limiting Marc̆enko-Pastur law in
Theorem 5, for X having standard Gaussian entries with p = 20 and different n = 1 000p, 100p, 10p from left to right.
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Figure: Varying n and p for fixed c = p/n. Histogram of the eigenvalues of Ĉ versus the Marc̆enko-Pastur law, for X having
standard Gaussian entries with n = 100p and different p = 20, 100, 500 from left to right.
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Figure: Taxonomy of four different ways to characterize the sample covariance matrix Ĉ = 1
n XXT.
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A modern RMT approach via deterministic equivalents for resolvent

▶ we have seen the resolvent-based approach as a unified analysis approach to matrix spectral functionals
▶ e.g., interested in the spectral behavior of a random matrix X ∈ Rp×p from n samples, in the proportional

n ∼ p≫ 1 regime, more convenient to work with its resolvent QX(z) = (X− zIn)−1

▶ in particular, scalar observations F : Rp×p → R of X and QX(z) converge/concentrate, and there exists
deterministic Q̄(z) such that

F(Q(z))− F(Q̄(z))→ 0, (5)

as n, p→ ∞.
▶ such Q̄(z) is a Deterministic Equivalent of the random (resolvent) matrix Q.
▶ so, our general recipe:

eigenspectral functional of large random matrix X
↓

more convenient to work with QX(z)
↓

find its Deterministic Equivalent
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Deterministic equivalent for RMT: intuition and a few words on the proof

What is actually happening for Deterministic Equivalent?
▶ while the random matrix Q ∈ Rp×p remains random as the dimension p grows, in fact even “more”

random due to the growing degrees of freedom;
▶ scalar observation F(Q) of Q becomes “more concentrated” as p→ ∞;
▶ the random F(Q), if concentrates, must concentrated around its expectation E[F(Q)];
▶ as p→ ∞, more randomness in Q⇒ Var[F(Q)]→ 0 sufficiently fast (in p)
▶ if the functional F : Rp×p → R is linear, then E[F(Q)] = F(E[Q]).
▶ So, to propose a DE, suffices to evaluate E[Q]:
▶ however, E[Q] may be hardly accessible, due to integration and nonlinear matrix inverse

Q(z) = (X− zIp)−1

▶ find a simple and more accessible deterministic Q̄ with X̄ ≃ E[Q] in some sense for p large, e.g.,
∥Q̄−E[Q]∥2 → 0 as p→ ∞; and

▶ show variance or higher-order moments of F(Q) decay sufficiently fast as p→ ∞.
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Deterministic Equivalent: definition

Definition (Deterministic Equivalent)

We say that Q̄ ∈ Rp×p is an (ε1, ε2, δ)-Deterministic Equivalent for the symmetric random matrix Q ∈ Rp×p if,
for a deterministic matrix A ∈ Rp×p and vectors a, b ∈ Rp of unit norms (spectral and Euclidean,
respectively), we have, with probability at least 1− δ(p) that∣∣∣∣1

p
tr A(Q− Q̄)

∣∣∣∣ ≤ ε1(p),
∣∣∣aT(Q− Q̄)b

∣∣∣ ≤ ε2(p), (6)

for some non-negative functions ε1(p), ε2(p) and δ(p) that decrease to zero as p→ ∞. Denote

Q ε1,ε2,δ←→ Q̄, or simply Q↔ Q̄. (7)

Z. Liao (EIC, HUST) RMT4ML October 18, 2024 16 / 52



An asymptotic Deterministic Equivalent for resolvent

Theorem (An asymptotic Deterministic Equivalent for resolvent, [CL22, Theorem 2.4])

Let X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and denote
Q(z) = ( 1

n XXT − zIp)−1 the resolvent of 1
n XXT for z ∈ C not an eigenvalue of 1

n XXT. Then, as n, p→ ∞ with
p/n→ c ∈ (0, ∞), the deterministic matrix Q̄(z) is a Deterministic Equivalent of the random resolvent matrix Q(z)
with

Q(z)↔ Q̄(z), Q̄(z) = m(z)Ip, (8)

with m(z) the unique valid Stieltjes transform as solution to

czm2(z)− (1− c− z)m(z) + 1 = 0. (9)

▶ The equation of m(z) is quadratic and has two solutions defined via the complex square root
▶ only one satisfies the relation ℑ[z] · ℑ[m(z)] > 0 as a “valid” Stieltjes transform
▶ this leads to the Marc̆enko-Pastur law

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+ (E+ − x)+ dx, (10)

for E± = (1±
√

c)2 and (x)+ = max(0, x).
2Romain Couillet and Zhenyu Liao. Random Matrix Methods for Machine Learning. Cambridge University Press, 2022
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A non-asymptotic Deterministic Equivalent for resolvent

Theorem (A non-asymptotic Deterministic Equivalent for resolvent)

Let X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries with zero mean and unit variance, and denote
Q(z) = ( 1

n XXT− zIp)−1 the resolvent of 1
n XXT for z < 0. Then, there exists universal constants C1, C2 > 0 depending

only on the sub-gaussian norm of the entries of X and |z|, such that for any ε ∈ (0, 1), if n ≥ (C1 + ε)p, one has

∥E[Q(z)]− Q̄(z)∥2 ≤
C2
ε
· n−

1
2 , Q̄(z) = m(z)Ip, (11)

for m(z) the unique positive solution to the Marc̆enko-Pastur equation czm2(z)− (1− c− z)m(z) + 1 = 0, c = p/n.

▶ this is a deterministic characterization of the expected resolvent
▶ to get DE, it remains to show concentration results for trace and bilinear forms: more or less standard
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Proof via leave-one-out and self-consistent equation

Let xi ∈ Rp denote the ith column of X ∈ Rp×n (so that xi has i.i.d. sub-gaussian entries of zero mean and unit
variance), and let X−i ∈ Rp×(n−1) denote the random matrix X without its ith column xi. Define similarly

Q−i(z) =
(

1
n X−iXT

−i − zIp

)−1
so that

Q(z) =
(

1
n

X−iX
T
−i +

1
n

xix
T
i − zIp

)−1
=

(
Q−1
−i (z) +

1
n

xix
T
i

)−1
. (12)

First note that by definition,

Q̄(z) = m(z)Ip =

(
1

1 + cm(z)
− z

)−1
Ip, (13)

for c = p/n, so that for z < 0,
1

1 + cm(z)
∥Q̄∥2 ≤ 1. (14)

Similarly, one has

∥Q(z)∥2 ≤
1
|z| ,

∥∥∥∥Q(z)
1
n

XXT
∥∥∥∥

2
≤ 1,

∥∥∥∥Q(z)
1√
n

X
∥∥∥∥

2
=

√∥∥∥∥Q(z)
1
n

XXTQ(z)
∥∥∥∥

2
≤ 1√

|z|
. (15)
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A few useful lemmas

Lemma (Resolvent identity)

For invertible matrices A and B, we have A−1 − B−1 = A−1(B−A)B−1.

Lemma (Woodbury)

For A ∈ Rp×p, U, V ∈ Rp×n, such that both A and A + UVT are invertible, we have

(A + UVT)−1 = A−1 −A−1U(In + VTA−1U)−1VTA−1.

In particular, for n = 1, i.e., UVT = uvT for U = u ∈ Rp and V = v ∈ Rp, the above identity specializes to the
following Sherman–Morrison formula,

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
, and (A + uvT)−1u =

A−1u
1 + vTA−1u

.

And the matrix A + uvT ∈ Rp×p is invertible if and only if 1 + vTA−1u ̸= 0.
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A few useful lemmas

Letting A = M− zIp, z ∈ C, and v = τu for τ ∈ R in Woodbury identity leads to the following rank-one
perturbation lemma for the resolvent of M.

Lemma ([SB95, Lemma 2.6])

For A, M ∈ Rp×p symmetric and nonnegative definite, u ∈ Rp, τ > 0 and z < 0,∣∣∣tr A(M + τuuT − zIp)
−1 − tr A(M− zIp)

−1
∣∣∣ ≤ ∥A∥2

|z| .
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Proof

It follows from the resolvent identity that

E[Q− Q̄] = E

[
Q

(
Ip

1 + cm(z)
− 1

n
XXT

)]
Q̄

=
E[Q]

1 + cm(z)
Q̄− 1

n
E[QXXT]Q̄

=
E[Q]

1 + cm(z)
Q̄−

n

∑
i=1

1
n

E[Qxix
T
i ]Q̄

=
E[Q]

1 + cm(z)
Q̄−

n

∑
i=1

E

[
Q−i

1
n xixT

i

1 + 1
n xT

i Q−ixi

]
Q̄,

=
E[Q]

1 + cm(z)
Q̄−

n

∑
i=1

E
[
Q−i

1
n xixT

i

]
Q̄

1 + cm(z)
+

n

∑
i=1

E
[
Q 1

n xixT
i di

]
Q̄

1 + cm(z)

=
E[Q]

1 + cm(z)
Q̄−

n

∑
i=1

E
[
Q−i

1
n xixT

i

]
Q̄

1 + cm(z)
+

E
[
diQxixT

i
]

Q̄
1 + cm(z)

with di = xT
i Q−ixi/n− cm(z) , so that E[Q− Q̄] = (E[Q−Q−i])

Q̄
1+cm(z) +

E[diQxixT
i ]Q̄

1+cm(z) .
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Let
T1 = ∥E[Q−Q−i]∥2, T2 =

∥∥∥E
[
diQxix

T
i

]∥∥∥
2

, (16)

we then have ∥E[Q− Q̄]∥ ≤ T1 + T2.
For the first term T1, it follows from Sherman–Morrison that

0 ⪯ E[Q−i −Q] = E

[
Q−i

1
n xixT

i Q−i

1 + 1
n xT

i Q−ixi

]
⪯ 1

n
E[Q−ixix

T
i Q−i] =

1
n

E
[
Q2
−i

]
(17)

so
T1 = ∥E[Q−Q−i]∥2 = O(n−1). (18)

For T2,

T2 =
∥∥∥E

[
diQxix

T
i

]∥∥∥
2

= sup
∥u∥=1,∥v∥=1

E
[
diu

TQxix
T
i v

]
≤

√
E[d2

i ] · sup
∥u∥=1,∥v∥=1

√
E[(uTQxixT

i v)2]

≤
√

E[d2
i ]︸ ︷︷ ︸

T2,1

· sup
∥u∥=1

4
√

E[(uTQxi)4]︸ ︷︷ ︸
T2,2

· sup
∥v∥=1

4
√

E[(xT
i v)4]︸ ︷︷ ︸

T2,3

.
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For the term T2,2. Note that

E[(uTQxi)
4] = E

[
(uTQ−ixi)

4

(1 + 1
n xT

i Q−ixi)4

]
≤ E[(uTQ−ixi)

4] = E[(xT
i Q−iuuTQ−ixi)

2],

with
∥Q−iuuTQ−i∥2 = uTQ2

−iu ≤ |z|
−2, (19)

for ∥u∥ = 1.
By Hanson–Wright inequality (concentration of quadratic form), there exists C, C′ > 0 such that

E[(uTQ−ixi)
4] = E

[
E[(uTQ−ixi)

4|Q−i]
]
≤ EQ−i

[∫ ∞

0
2t ·P

(
xT

i Q−iuuTQ−ixi ≥ t
)

dt
]

≤ 2C′ ·EQ−i

[∫ ∞

0
t exp

(
−Ct/(uTQ2

−iu)
)

dt
]

= 2C′E

[
(uTQ2

−iu)
2

C2

]
≤ (Cz2)−2.

This allows us to conclude that T2,2 = O(1), and analogously that T2,3 = O(1).
We thus have

∥E[Q]− Q̄∥2 ≤ T1 + T2 ≤ T1 + T2,1 · T2,2 · T2,3 ≤ C1n−1 + C2

√
E[d2

i ], (20)

for some universal constants C1, C2 and recall di ≡ xT
i Q−ixi/n− cm(z) .

Z. Liao (EIC, HUST) RMT4ML October 18, 2024 24 / 52



Now, note that

d2
i =

(
1
n

xT
i Q−ixi − cm(z)

)2

=

(
1
n

xT
i Q−ixi −

1
n

tr E[Q−i] +
1
n

tr E[Q−i]− cm(z)
)2

≤ 2
(

1
n

xT
i Q−ixi −

1
n

tr E[Q−i]

)2
+ 2

(
1
n

tr E[Q−i]− cm(z)
)2

= 2
(

1
n

xT
i Q−ixi −

1
n

tr Q−i +
1
n

tr Q−i −
1
n

tr E[Q−i]

)2
+ 2

(
1
n

tr E[Q−i]− cm(z)
)2

,

so that

1
2

E[d2
i ] ≤ E

(
1
n

xT
i Q−ixi −

1
n

tr Q−i

)2

︸ ︷︷ ︸
D1

+E

(
1
n

tr Q−i −
1
n

tr E[Q−i]

)2

︸ ︷︷ ︸
D2

+

(
1
n

tr E[Q−i]− cm(z)
)2

.

▶ D1 ≤ Cn−2 by the same line of arguments as the term T2,2

▶ D2 that characterizes the concentration property of the resolvent trace tr Q−i, using a martingale
difference argument via Burkholder inequality.
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Lemma
Under the notations and settings above, we have

E

[(
1
n

tr A(Q−EQ)

)2
]
≤ Cn−1 and E

[(
1
n

tr A(Q−EQ)

)4
]
≤ Cn−2, (21)

for any A ∈ Rp×p of unit norm and some constant C > 0, and thus in particular for A = Ip.

Thus,

E[d2
i ] ≤ 2(D1 + D2) + 2

(
1
n

tr E[Q−i]− cm(z)
)2
≤ Cn−1 + 2

(
1
n

tr E[Q−i]− cm(z)
)2

, (22)

for some universal constant C > 0. Putting together and by the trace rank-one update result,

∥E[Q]− Q̄∥2 ≤ C1n−
1
2 + C2

∣∣∣∣ 1
n

tr E[Q]− cm(z)
∣∣∣∣ . (23)

Z. Liao (EIC, HUST) RMT4ML October 18, 2024 26 / 52



Finishing the proof

We “close the loop” by noting that by definition 1
n tr Q̄ =

p
n m(z) = cm(z), so that∣∣∣∣ 1

n
tr E[Q]− cm(z)

∣∣∣∣ ≤ p
n
∥E[Q]− Q̄∥2 ≤

p
n

(
C1n−

1
2 + C2

∣∣∣∣ 1
n

tr E[Q]− cm(z)
∣∣∣∣) , (24)

and therefore for any ϵ > 0 and n > (C2 + ε)p, one has∣∣∣∣ 1
n

tr E[Q]− cm(z)
∣∣∣∣ ≤ C1

ε
· n−

1
2 , (25)

and thus
∥E[Q]− Q̄∥2 ≤

C
ε
· n−

1
2 , (26)

for some universal constant C > 0. This concludes the proof.
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Remark: extension to z = 0

▶ assume above z < 0 so that the bound on the random resolvent ∥QĈ(z)∥2 ≤ 1/|z|
▶ this, however, does not exploit the information in the random sample covariance matrix

Ĉ = 1
n XXT ∈ Rp×n on, e.g., how it concentrates around its population counterpart C = E[Ĉ]

▶ to extend the result above to, say, an inverse SCM of the type Q(z = 0) = ( 1
n XXT)−1 with z = 0, first

needs to ensure the inverse is well-defined for sub-gaussian X and for a specific choice of p, n
▶ can be obtained, e.g., per concentration of SCM 1

n XXT around its expectation.
▶ it follows from standard SCM concentration (Theorem 4) that there exists universal constant C > 0 such

that for n ≥ C(p + ln(1/δ)), one has, with probability at least 1− δ, δ ∈ (0, 1/2] that∥∥∥∥ 1
n

XXT − Ip

∥∥∥∥
2
≤

Ip

2
, (27)

and therefore ∥Q(z)∥2 ≤ 1
1/2−z ≤ 2 for any z ≤ 0

▶ allows for a control of the spectral norm ∥Q(z)∥2 ≤ 2 independent of z ≤ 0 and holds with probability at
least 1− δ

▶ do everything else conditioned on this high-probability event, to get a bound on the conditional
expectation E[Q |E ], with P(E) ≥ 1− δ
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Remark: as extensions to results in the classical regime

(i) In the “easy” classical regime, with n≫ p (and thus p/n→ c = 0), one has that Ĉ ≡ 1
n XXT → E[Ĉ] = Ip

as n→ ∞, so that
(Ĉ− zIp)

−1 ≃ (E[Ĉ]− zIp)
−1 = (1− z)−1Ip = Q̄(z). (28)

(ii) In the “harder” and more general proportional regime, for n ∼ p with p/n→ c ∈ (0, ∞), one has instead

Q̄(z) ≃ E[Q(z)] ≡ E[(Ĉ− zIp)
−1] ̸≃ (E[Ĉ]− zIp)

−1. (29)

In this case, a Deterministic Equivalent Q̄(z) can be very different from (E[Ĉ]− zIp)−1.
▶ this is not surprising, consider the scalar case where E[1/x] ̸= 1/E[x] in general, unless x ≃ C for some

constant C
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Remark: Deterministic Equivalents for Gaussian inverse SCM

▶ consider the sample covariance matrix Ĉ = 1
n XXT for X = C

1
2 Z and positive definite C ∈ Rp×p and

Z ∈ Rp×n having i.i.d. standard Gaussian entries
▶ the inverse Ĉ−1 is known to follow the inverse-Wishart distribution [MKB79] with p degrees of freedom

and scale matrix C−1, such that
E[Ĉ−1] =

n
n− p− 1

C−1 (30)

for n ≥ p + 2.
▶ On the other hand, it follows from our non-asymptotic result above by taking z = 0 that

E[Q(z)]↔ Q̄(z) = m(z)Ip =
n

n− p
Ip (31)

with m(z) = 1
1−c = n

n−p .

▶ note: Deterministic Equivalents are not unique: could replace the “−1” in denominator by any constant
C′ ≪ n, p to propose another equally correct Deterministic Equivalent.

3Kanti Mardia, J. Kent, and J. Bibby. Multivariate Analysis. 1st ed. Probability and Mathematical Statistics. Academic Press, Dec. 1979
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Some thoughts on the “leave-one-out” proof

▶ in essence: propose Q̄(z) ≃ E[Q(z)] (in spectral norm sense), but simple to evaluate (via a quadratic
equation)

▶ leave-one-out analysis of large-scale system: Q(z) ≃ Q−i(z) for n, p large.

▶ low complexity analysis of large random system: joint behavior of p eigenvalues RMT→ a single
deterministic (quadratic) equation

▶ Side Remark: another (as well) systematic and convenient RMT proof approach: Gaussian method, as
the combination of

(1) Stein’s lemma (Gaussian integration by parts)

(2) Nash–Poincaré inequality (a bound on the variance of smooth scalar observation of multivariate
Gaussian random vector)

(3) interpolation from Gaussian to non-Gaussian, see [CL22, Section 2.2.2] for details.
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Proof of MP law with Gaussian method

Theorem (Stein’s Lemma)

Let x ∼ N (0, 1) and f : R→ R a continuously differentiable function having at most polynomial growth and such that
E[f ′(x)] < ∞. Then,

E[xf (x)] = E[f ′(x)]. (32)

In particular, for x ∼ N (0, C) with C ∈ Rp×p and f : Rp → R a continuously differentiable function with derivatives
having at most polynomial growth with respect to p,

E[[x]if (x)] =
p

∑
j=1

[C]ijE

[
∂f (x)
∂[x]j

]
, (33)

where ∂/∂[x]i indicates differentiation with respect to the i-th entry of x; or, in vector form E[xf (x)] = CE[∇f (x)],
with ∇f (x) the gradient of f (x) with respect to x.
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Proof of MP law with Gaussian method

First observe that Q = 1
z

1
n XXTQ− 1

z Ip, so that E[Qij] =
1
zn ∑n

k=1 E[Xik[XTQ]kj]− 1
z δij, in which

E[Xik[XTQ]kj] = E[xf (x)] for x = Xik and f (x) = [XTQ]kj.
Therefore, from Stein’s lemma and the fact that ∂Q = − 1

n Q∂(XXT)Q,1

E[Xik[X
TQ]kj] = E

[
∂[XTQ]kj

∂Xik

]
= E[ET

ikQ]kj −E

[
1
n

XTQ(EikXT + XET
ik)Q

]
kj

= E[Qij]−E

[
1
n
[XTQ]ki[X

TQ]kj

]
−E

[
1
n
[XTQX]kkQij

]
for Eij the indicator matrix with entry [Eij]lm = δilδjm, so that, summing over k,

1
z

1
n

n

∑
k=1

E[Xik[X
TQ]kj] =

1
z

E[Qij]−
1
z

1
n2 E[Qij tr(QXXT)]− 1

z
1

n2 E[QXXTQ]ij.

1This is the matrix version of d(1/x) = −dx/x2.
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Proof of MP law with Gaussian method

We have

1
z

1
n

n

∑
k=1

E[Xik[X
TQ]kj] =

1
z

E[Qij]−
1
z

1
n2 E[Qij tr(QXXT)]− 1

z
1

n2 E[QXXTQ]ij.

The term in the second line has vanishing operator norm (of order O(n−1)) as n, p→ ∞. Also,
tr(QXXT) = np + zn tr Q. As a result, matrix-wise, we obtain

E[Q] +
1
z

Ip = E[X·k[X
TQ]k·] =

1
z

E[Q]− 1
z

1
n

E[Q(p + z tr Q)] + o∥·∥(1),

where X·k and Xk· is the k-th column and row of X, respectively.
As the random 1

p tr Q→ m(z) as n, p→ ∞, “take it out of the expectation” in the limit and

E[Q](1− p/n− z− p/n · zm(z)) = Ip + o∥·∥(1),

which, taking the trace to identify m(z), concludes the proof.
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Nash–Poincaré inequality and Interpolation trick

Theorem (Nash–Poincaré inequality)

For x ∼ N (0, C) with C ∈ Rp×p and f : Rp → R continuously differentiable with derivatives having at most
polynomial growth with respect to p,

Var[f (x)] ≤
p

∑
i,j=1

[C]ijE

[
∂f (x)
∂[x]i

∂f (x)
∂[x]j

]
= E

[
(∇f (x))TC∇f (x)

]
,

where we denote ∇f (x) the gradient of f (x) with respect to x.

Theorem (Interpolation trick)

For x ∈ R a random variable with zero mean and unit variance, y ∼ N (0, 1), and f a (k + 2)-times differentiable
function with bounded derivatives,

E[f (x)]−E[f (y)] =
k

∑
ℓ=2

κℓ+1
2ℓ!

∫ 1

0
E[f (ℓ+1)x(t)]t(ℓ−1)/2dt + ϵk,

where κℓ is the ℓth cumulant of x, x(t) =
√

tx + (1−
√

t)y, and |ϵk| ≤ CkE[|x|k+2] · supt |f (k+2)(t)| for some
constant Ck only dependent on k.
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Take-away of this section

▶ p-by-p SCM Ĉ from n samples have different behavior in the classical (n≫ p) versus proportional
(n ∼ p) regime

▶ four ways to characterize SCM, asymptotic and non-asymptotic fashion
▶ “old school” results: (1) LLN and (2) matrix concentration in the classical regime, and (3) asymptotic

Marc̆enko-Pastur law on SCM eigenvalues in the proportional regime
▶ modern approach of deterministic equivalent for SCM resolvent, both (4) asymptotic and (5)

non-asymptotic
▶ proof via “leave-one-out” and self-consistent equation
▶ alternative proof via Gaussian method
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Wigner semicircle law

Theorem (Wigner semicircle law)

Let X ∈ Rn×n be symmetric and such that the Xij ∈ R, j ≥ i, are independent zero mean and unit variance random
variables. Then, for Q(z) = (X/

√
n− zIn)−1, as n→ ∞,

Q(z)↔ Q̄(z), Q̄(z) = m(z)In, (34)

with m(z) the unique Stieltjes transform solution to

m2(z) + zm(z) + 1 = 0. (35)

The function m(z) is the Stieltjes transform of the probability measure

µ(dx) =
1

2π

√
(4− x2)+ dx, (36)

known as the Wigner semicircle law.
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Figure: Histogram of the eigenvalues of X/
√

n versus Wigner semicircle law, for standard Gaussian X and n = 1 000.
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Generalized sample covariance matrix

Theorem (General sample covariance matrix)

Let X = C
1
2 Z ∈ Rp×n with nonnegative definite C ∈ Rp×p, Z ∈ Rp×n having independent zero mean and unit

variance entries. Then, as n, p→ ∞ with p/n→ c ∈ (0, ∞), for Q(z) = ( 1
n XXT − zIp)−1 and

Q̃(z) = ( 1
n XTX− zIn)−1,

Q(z)↔ Q̄(z) = −1
z
(
Ip + m̃p(z)C

)−1 , Q̃(z)↔ ¯̃Q(z) = m̃p(z)In,

with m̃p(z) unique solution to

m̃p(z) =
(
−z +

1
n

tr C
(
Ip + m̃p(z)C

)−1
)−1

. (37)

Moreover, if the empirical spectral measure of C converges µC → ν as p→ ∞, then µ 1
n XXT → µ, µ 1

n XTX → µ̃ where
µ, µ̃ admitting Stieltjes transforms m(z) and m̃(z) such that

m(z) =
1
c

m̃(z) +
1− c

cz
, m̃(z) =

(
−z + c

∫ tν(dt)
1 + m̃(z)t

)−1
. (38)
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A few remarks on the generalized MP law

▶ different from the explicit MP law, the generalized MP is in general implicit
▶ we have explicitness in essence due to with C = Ip, the implicit equation boils down to a quadratic

equation that has explicit solution
▶ if C has discrete eigenvalues, e.g., µC = 1

3 (δ1 + δ3 + δ5), then becomes a (possibly higher-order)
polynomial equation, which may admit explicit solution (up to fourth order) using radicals

▶ the uniqueness of (Stieltjes transform) solution is ensured within a certain region on the complex plane,
there may exist solutions m̃(z) with imaginary parts of wrong sign

▶ numerical evaluation of m̃(z): note that the equation

m̃p(z) =
(
−z +

1
n

tr C
(
Ip + m̃p(z)C

)−1
)−1

(39)

naturally defines a fixed-point equation.
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Matlab code

clear i % make sure i stands for the imaginary unit
y = 1e-5;
zs = edges_mu+y*1i;
mu = zeros(length(zs),1);

tilde_m=0;
for j=1:length(zs)

z = zs(j);

tilde_m_tmp=-1;
while abs(tilde_m-tilde_m_tmp)>1e-6

tilde_m_tmp=tilde_m;
tilde_m = 1/( -z + 1/n*sum(eigs_C./(1+tilde_m*eigs_C)) );

end

m = tilde_m/c+(1-c)/(c*z);
mu(j)=imag(m)/pi;

end
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Figure: Histogram of the eigenvalues of 1
n XXT, X = C

1
2 Z ∈ Rp×n, [Z]ij ∼ N (0, 1), n = 3 000; for p = 300 and C having

spectral measure µC = 1
3 (δ1 + δ3 + δ7) (top) and µC = 1

3 (δ1 + δ3 + δ5) (bottle).
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Further comments on generalized SCM

▶ we know a lot more for the generalized SCM model: precise characterization of the support of its
(limiting) eigenspectrum

▶ applications in statistical inference: given Ĉ = 1
n XXT SCM of the population covariance C, infer

eigenspectral functions of C using those of Ĉ and wisely-chosen contour integration, etc.

Example: estimation of population eigenvalues of large multiplicity

Consider the following SCM inference,

νC =
1
p

K

∑
i=1

piδℓi
→

K

∑
i=1

ciδℓi

for ℓ1 > . . . > ℓK > 0, K fixed/small with respect to n, p, and pi/p→ ci > 0 as p→ ∞, i.e., each eigenvalue has
a large multiplicity of order O(p).

▶ native estimator: ℓ̂a =
1
pa

∑
p1+...+pa
i=p1+...+pa−1+1 λi

▶ RMT-improved estimator: ℓ̂a =
n
pa

∑
p1+...+pa
i=p1+...+pa−1+1(λi − ηi), with λi eigenvalues of Ĉ and ηi eigenvalues

of Λ− 1
n

√
λ
√

λ
T

, Λ = diag{λi}
p
i=1 and

√
λ ∈ Rp the vector of

√
λis.

▶ see [CL22, Sections 2.3 and 2.4] for detailed derivations and discussions
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Numerical results
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Figure: Eigenvalue estimation errors with naive and RMT-improved approach, as a function of ∆λ, for ℓ1 = 1, ℓ2 = 1 + ∆λ,
p = 256 and n = 1 024. Results averaged over 30 runs.
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Separable covariance model: motivation

▶ data X = [x1, . . . , xn] arise from a time series, each data vector is weighted by a coefficient
▶ SCM can be generalized to the so-called bi-correlated (or separable covariance) model

1
n

XXT =
1
n

C
1
2 ZC̃ZTC

1
2 (40)

for C ∈ Rp×p and C̃ ∈ Rn×n two nonnegative definite matrices and [Z]ij i.i.d. random variables with zero
mean and unit variance.

▶ in particular, for Z Gaussian and C̃
1
2 Toeplitz (i.e., such that [C̃

1
2 ]ij = α|i−j| for some sequence

α0, . . . , αn−1), the columns of ZC̃
1
2 model a first order auto-regressive process
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Separable covariance model

Theorem (Bi-correlated model, separable covariance model, [PS09])

Let Z ∈ Rp×n be a random matrix with i.i.d. zero mean, unit variance and light tail entries, and C ∈ Rp×p, C̃ ∈ Rn×n

be symmetric nonnegative definite matrices with bounded operator norm. Then, as n, p→ ∞ with p/n→ c ∈ (0, ∞),
letting Q(z) = ( 1

n C
1
2 ZC̃ZTC

1
2 − zIp)−1 and Q̃(z) = ( 1

n C̃
1
2 ZTCZC̃

1
2 − zIn)−1, we have

Q(z)↔ Q̄(z) = −1
z
(
Ip + δ̃p(z)C

)−1 , Q̃(z)↔ ¯̃Q(z) = −1
z
(
In + δp(z)C̃

)−1

with (z, δp(z)), (z, δ̃p(z)) ∈ Z(C \R+) unique solutions to

δp(z) =
1
n

tr CQ̄(z), δ̃p(z) =
1
n

tr C̃ ¯̃Q(z).

In particular, if µC → ν and µC̃ → ν̃, then µ 1
n C

1
2 ZC̃ZTC

1
2

a.s.−→ µ, µ 1
n C̃

1
2 ZTCZC̃

1
2

a.s.−→ µ̃,, where µ, µ̃ are defined by their

Stieltjes transforms m(z) and m̃(z) given by

m(z) = −1
z

∫
ν(dt)

1 + δ̃(z)t
, m̃(z) = −1

z

∫
ν̃(dt)

1 + δ(z)t
, δ(z) = − c

z

∫ tν(dt)
1 + δ̃(z)t

, δ̃(z) = −1
z

∫ tν̃(dt)
1 + δ(z)t

4Debashis Paul and Jack W. Silverstein. “No eigenvalues outside the support of the limiting empirical spectral distribution of a separable
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Take-away messages of this section

Asymptotic Deterministic Equivalent for resolvent results for
▶ symmetric X/

√
n ∈ Rn×n: Wigner semicircle law, quadratic equation (again)

▶ generalized SCM model 1
n C

1
2 ZZTC

1
2 : one self-consistent but integral equation

▶ application to inference of SCM eigenspectral functionals

▶ bi-correlated model or separable covariance model 1
n C

1
2 ZC̃ZTC

1
2 : two coupled self-consistent integral

equations

Thank you! Q & A?
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