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Figure 9: 1D comparison for the recovery of 4 positive spikes in the case of Gaussian sampling.
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Figure 10: 2D comparison for the recovery of 3 signed spikes in the case of Fourier sampling.

27

Outline

2



THE METHOD 

SPARSISTENCY 

NUMERICS 

Outline

3



Super-resolution of point sources
Goal: Recover a sum of Diracs/spikes Observe:  y = ∫ ϕ(x)dμ(x) + noise

 μ =
s

∑
j=1

ajδxj

4

  
, 

for 

yk =
s

∑
j=1

aj exp(i2πkxj) + noise

|k | ≤ fc

y(x) =
s

∑
j=1

aj exp( −∥x − xj∥2/σ) + noise

Examples: 
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Lasso
Discretise on grid : 
{xj : j = 1,…, N}

Φμ = ∫ ϕ(x)μ(dx) ≈
N

∑
j=1

ϕ(xj)βj =: Xβ

Sparse regularisation:  min
β∈ℝN

∥β∥1 +
1
2λ

∥Xβ − y∥2
2
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Lasso
Discretise on grid : 
{xj : j = 1,…, N}

Φμ = ∫ ϕ(x)μ(dx) ≈
N

∑
j=1

ϕ(xj)βj =: Xβ

Sparse regularisation:  min
β∈ℝN

∥β∥1 +
1
2λ

∥Xβ − y∥2
2

✗

This is relatively simple to solve with wide choice of algorithms.✓
Algorithms become slow when grid is too fine (high coherence in columns of )

Quantisation effects [Duval & Peyre ’17]

X

Ref: Duval & Peyré. "Sparse spikes super-resolution on thin grids I" Inverse Problems (2017)
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Lasso
Discretise on grid : 
{xj : j = 1,…, N}

Φμ = ∫ ϕ(x)μ(dx) ≈
N

∑
j=1

ϕ(xj)βj =: Xβ

Sparse regularisation:  min
β∈ℝN

∥β∥1 +
1
2λ

∥Xβ − y∥2
2

✗

This is relatively simple to solve with wide choice of algorithms.✓

Off-the-grid approaches such as Prony methods and Beurling Lasso (direct formulation in the space of measures) resolve 
the issue of quantisation effects, but Lasso is still widely used due to its simplicity.

Algorithms become slow when grid is too fine (high coherence in columns of )

Quantisation effects [Duval & Peyre ’17]

X

Ref: Duval & Peyré. "Sparse spikes super-resolution on thin grids I" Inverse Problems (2017)
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Continuous Basis Pursuit [Ekanadham et al ’11]

Ground truth is off-the-grid:     where μ =
s

∑
j=1

ajδxj+tj | tj | ≤ h/2

Taylor expand: y = ∑
j

ajϕ(xj + tj) ≈ ∑
j

ajϕ(xj) + ajtjϕ′￼(xj) + 𝒪(h2)

Ref: Ekanadham, Tranchina & Simoncelli. Recovery of sparse translation-invariant signals with continuous basis pursuit. IEEE transactions on signal processing (2011)
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Continuous Basis Pursuit [Ekanadham et al ’11]

Ground truth is off-the-grid:     where μ =
s

∑
j=1

ajδxj+tj | tj | ≤ h/2

Taylor expand: y = ∑
j

ajϕ(xj + tj) ≈ ∑
j

ajϕ(xj) + ajtjϕ′￼(xj) + 𝒪(h2)

min
a∈ℝN

+,b∈ℝN

1
2

∥y − ΦXa − Φ′￼Xb∥2 + λ∥a∥1 s.t. |bj | ≤
h
2

aj ΦX = [ϕ(xj)]N
j=1 and Φ′￼X = [ϕ′￼(xj)]N

j=1

Ref: Ekanadham, Tranchina & Simoncelli. Recovery of sparse translation-invariant signals with continuous basis pursuit. IEEE transactions on signal processing (2011)
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Continuous Basis Pursuit [Ekanadham et al ’11]

Ground truth is off-the-grid:     where μ =
s

∑
j=1

ajδxj+tj | tj | ≤ h/2

Taylor expand: y = ∑
j

ajϕ(xj + tj) ≈ ∑
j

ajϕ(xj) + ajtjϕ′￼(xj) + 𝒪(h2)

min
a∈ℝN

+,b∈ℝN

1
2

∥y − ΦXa − Φ′￼Xb∥2 + λ∥a∥1 s.t. |bj | ≤
h
2

aj ΦX = [ϕ(xj)]N
j=1 and Φ′￼X = [ϕ′￼(xj)]N

j=1

min
r,l∈ℝN

+

λ∥r∥1 + λ∥l∥1 +
1
2

y − (ΦX + h
2 Φ′￼X ΦX − h

2 Φ′￼X) (r
l)

2
Works only for non-negative signals 

Unstable when the grid is too fine [Duval & Peyre ’17] 

a ≥ 0

✓ Convex formulation ✗ Restrictions

Ref: Ekanadham, Tranchina & Simoncelli. Recovery of sparse translation-invariant signals with continuous basis pursuit. IEEE transactions on signal processing (2011)
Ref: Duval & Peyré. "Sparse spikes super-resolution on thin grids II" Inverse Problems (2017)
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Super-resolved Lasso

min
a,b∈ℝN

1
2

∥y − ΦXa − τΦ′￼Xb∥2 + λ
N

∑
j=1

a2
j + b2

j

- Performance depends on appropriately 
weighting .


- Define normalised derivative 
 and let 

Φ′￼X

ψ(x) := ϕ′￼(x)/∥ϕ′￼(x)∥ ΨX = [ψ(xj)]N
j=1

Unconstrained optimisation problem
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Super-resolved Lasso

min
a,b∈ℝN

1
2

∥y − ΦXa − τΦ′￼Xb∥2 + λ
N

∑
j=1

a2
j + b2

j

- Performance depends on appropriately 
weighting .


- Define normalised derivative 
 and let 

Φ′￼X

ψ(x) := ϕ′￼(x)/∥ϕ′￼(x)∥ ΨX = [ψ(xj)]N
j=1

min
a,b∈ℝN

1
2

∥y − ΦXa−τΨXb∥2 + λ
N

∑
j=1

a2
j + b2

j

Solution interpretation

Parameter  controls how far we move 
inside the grid.


Solution  where 

τ ∈ [0,1]

μ =
N

∑
j=1

ajδxj+tj tj =
τbj

aj∥ϕ′￼(xj)∥

Unconstrained optimisation problem
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Super-resolved Lasso

min
a,b∈ℝN

1
2

∥y − ΦXa − τΦ′￼Xb∥2 + λ
N

∑
j=1

a2
j + b2

j

- Performance depends on appropriately 
weighting .


- Define normalised derivative 
 and let 

Φ′￼X

ψ(x) := ϕ′￼(x)/∥ϕ′￼(x)∥ ΨX = [ψ(xj)]N
j=1

min
a,b∈ℝN

1
2

∥y − ΦXa−τΨXb∥2 + λ
N

∑
j=1

a2
j + b2

j

Solution interpretation

Parameter  controls how far we move 
inside the grid.


Solution  where 

τ ∈ [0,1]

μ =
N

∑
j=1

ajδxj+tj tj =
τbj

aj∥ϕ′￼(xj)∥

Can handle arbitrarily signed signals (including complex signs)!

Unconstrained optimisation problem

In practice, we choose  to be 1 or very close to 1.τ



Group-Lasso
Let  and write .  Then, Γ = [ΦX τΨX] z = (a

b)
Group Lasso: min

z

1
2

∥Γz − y∥2 + λ∥z∥1,2

14



Group-Lasso
Let  and write .  Then, Γ = [ΦX τΨX] z = (a

b)
Group Lasso:

Multivariate setting:  

,  with   and ΨXb =
N

∑
i=1

b⊤
i (G−1/2

xi
∇ϕ(xi)) bi ∈ ℝd Gx = ∇ϕ(x)∇ϕ(x)⊤

• Normalisation to ensure that  is block identity .

• For translation invariant kernels, 


 is constant.

Γ⊤Γ Id+1
⟨ϕ(x), ϕ(z)⟩ = κ(x − y)

Gx = − ∇2κ(0)
Shift  tj =

τ
aj

G− 1
2

xj
bj

tj
aj

 min
a∈ℝN,b∈ℝdN

1
2

∥Γ (a
b) − y∥2 + λ∑

i

a2
i + ∥bi∥2
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Group-Lasso
Let  and write .  Then, Γ = [ΦX τΨX] z = (a

b)
Group Lasso:

Multivariate setting:  

,  with   and ΨXb =
N

∑
i=1

b⊤
i (G−1/2

xi
∇ϕ(xi)) bi ∈ ℝd Gx = ∇ϕ(x)∇ϕ(x)⊤

• Normalisation to ensure that  is block identity .

• For translation invariant kernels, 


 is constant.

Γ⊤Γ Id+1
⟨ϕ(x), ϕ(z)⟩ = κ(x − y)

Gx = − ∇2κ(0)
Shift  tj =

τ
aj

G− 1
2

xj
bj

tj
aj

 min
a∈ℝN,b∈ℝdN

1
2

∥Γ (a
b) − y∥2 + λ∑

i

a2
i + ∥bi∥2

There are a wide range of optimization methods for handling this group Lasso problem.
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L-BFGS solver for SR-Lasso (VarPro)
n

∑
j=1

∥zgi
∥ = min

zgi=viugi

1
2

v2
i +

1
2

∥ugi
∥2

min
u,v

G(u, v) where G(u, v) =
1
2

∥Γ(viugi
)i − y∥2 +

λ
2

∥u∥2 +
λ
2

∥v∥2Smooth formulation:

min
z

1
2

∥Γz − y∥2 + λ∥z∥1,2Group Lasso:
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L-BFGS solver for SR-Lasso (VarPro)
n

∑
j=1

∥zgi
∥ = min

zgi=viugi

1
2

v2
i +

1
2

∥ugi
∥2

min
u,v

G(u, v) where G(u, v) =
1
2

∥Γ(viugi
)i − y∥2 +

λ
2

∥u∥2 +
λ
2

∥v∥2

min
v

f(v) where f(v) = min
u

1
2

∥Γ(viugi
)i − y∥2 +

λ
2

∥u∥2 +
λ
2

∥v∥2

Smooth formulation:

Poon, Clarice, and Gabriel Peyré. "Smooth bilevel programming for sparse regularization." Neurips (2021)

min
z

1
2

∥Γz − y∥2 + λ∥z∥1,2Group Lasso:

“VarPro”:

Ref. Golub and Pereyra. "Differentiation of pseudoinverses, separable nonlinear least square problems and other tales." Academic Press. (1976)
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L-BFGS solver for SR-Lasso (VarPro)
n

∑
j=1

∥zgi
∥ = min

zgi=viugi

1
2

v2
i +

1
2

∥ugi
∥2

min
u,v

G(u, v) where G(u, v) =
1
2

∥Γ(viugi
)i − y∥2 +

λ
2

∥u∥2 +
λ
2

∥v∥2

min
v

f(v) where f(v) = min
u

1
2

∥Γ(viugi
)i − y∥2 +

λ
2

∥u∥2 +
λ
2

∥v∥2

Smooth formulation:

One can prove that all saddle points are strict

 (gradient descent always converge to global min) Apply L-BFGS to this smooth function! 

min
z

1
2

∥Γz − y∥2 + λ∥z∥1,2Group Lasso:

“VarPro”:

19

Poon, Clarice, and Gabriel Peyré. "Smooth bilevel programming for sparse regularization." Neurips (2021)

Ref. Golub and Pereyra. "Differentiation of pseudoinverses, separable nonlinear least square problems and other tales." Academic Press. (1976)



Some properties of the Hadamard Parametrization

All stationary points of   are either global minima or strict saddles  
(  has at least one negative eigenvalue).

f
∇2f

Lee et al (2017): Gradient descent almost always avoid strict saddles.

 

Well known: for , (v) is the Schur complement of  and 

it is always no worse conditioned.

f(v) = min
u

G(u, v) ∇2f ∇2G(u, v)

   Lipschitz constant of   is independent of discretisation of .∇f Γ

In the case of the Lasso: 
Cond(∇2f )
Cond(∇2G)

= 𝒪(λ)

Ref. Poon & Peyré  Smooth over-parameterized solvers for non-smooth structured optimization. Math. Prog. (2023)
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Observation

Column i :  Γi = (exp(2π −1ik/n))|k|≤m

Solving the Lasso with a discretised 
Fourier operator ( ):n = 500

Observations:


๏ ISTA converges at  while 
proximal mirror descent converges at 

 as shown by Chizat 2021.

๏ The Hadamard parameterisations  

also converge at  

𝒪(k−2/3)

𝒪(k−1)

𝒪(k−1)
Ref. Chizat, Lénaïc. "Convergence rates of gradient methods for convex optimization in the space of measures." 
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Mirror flow interpretation
Hadamard parametrised gradient flow

γ(t) =
1
2

e−2λt |u(0) − v(0) |

ηγ(z) = γarsinh(z/γ) − z2 + γ2 + γ
 smallγ

 largeγ

{
·ut = − τ(λut + vt ∇F(ut ⊙ vt))
·vt = − τ(λvt + ut ∇F(ut ⊙ vt))

d
dt

∇ηγ(t)(z(t)) = − 2∇F(z(t))

Let , then:z(t) := u(t) ⊙ v(t)

min
z

λ∥z∥1 + F(z) = min
u,v

λ
2

(∥u∥2 + ∥v∥2) + F(u ⊙ v)

22
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Sparsistency:
Do we recover the correct number of Diracs? μ = ∑

j∈I

ajδxj+tj

If Diracs are on the grid, need


 .


define .


 

Ker(ΓI) = {0}

pL := Γ*,†
I Sign(aI)

∥Γ*Icp∥∞ = max
j∉I

|ϕ(xj)⊤pL | < 1

C-BP [Duval & Peyre ’17]: 


Let  be injective 


 define  and  .


ΓI := [(ΦX)I, (ΨX)I]

pV = Γ*,†
I (1N

0N) η(x) = ϕ(x)⊤pV

max
j∉I

η(xj) ± h
2

η′￼(xj) < 1

This does not hold in general, in particular, fails for translation invariant 
operators such as Gaussian when grid is too fine.

min
z

λ∥z∥1 +
1
2

∥Γz − y∥2

Lasso [Wainwright ’08]: 

Cannot handle .

Even if , does not hold when grid is too fine [Duval & Peyre ’17]

tj ≠ 0
tj = 0

24
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Refined condition for the group-Lasso

(N)    where 





(IC)   Define  where . 


 

Ker(ΓI) ∩ Ker(Qz*) = {0}

Qz = diag (I −
1

∥z∥2
zz⊤)

p = Γ*,†
I Sign(z*) Sign(z)i =

zi

∥zi∥
∥Γ*Icp∥∞,2 = max

j∉I
∥Γ⊤

i p∥2 < 1

min
z

λ∑
i

∥zi∥2 +
1
2

∥ ∑
i

Γizi − y∥2

Figure 1: Left: the ground truth is shown in red and the group-Lasso solution is shown in black. The signal
here is of length 40, made up of 20 groups each of size 2. The number of observations is 4. Right: Plot of
{kzik}Ni=1 where z is defined in (15). Since kzik < 1 for all i not in the recovered support on the RHS, we
know that the vector here can be stably recovered using the group-Lasso.

Figure 2: Display of f0 when ' is a Fourier operator. Left: Plot of f0 when the true Diracs are on the grid
(left) and when the true Diracs are o↵ the grid (right). Even though f0 escapes 1 when then true Diracs
are o↵-the-grid shift, the incoherence condition still holds if the grid points (shown with the crosses) are
su�ciently coarse and skip the part where f0 escapes 1.

4 Sensitivity analysis for the discretized group-Lasso

In this section, we will discuss the stability of (P�(y)) in the case where � is a discretized version of
continuous operators taking values in Hilbert space H. Precisely, we let {xi}ni=1 be a set of uniformly-spaced

points with |xi � xi+1| = h, and let �i = �(xi)
def.
= (�k(xi))

q
k=1, where �k : R ! H is a twice continuously

di↵erentiable function. In the notation of the previous section, we have N = qn.

The dual certificate The condition (IC) can equivalently be written in terms of the “dual certificate”
function. Define

f0(x)
def.
= k�(x)p0k2 =

X

k

|h�k(x), p0i|2 , (16)

where with a slight abuse of notation, we interpret �(x) as a linear operator �(x) : H ! Rq so for p 2 H,
�(x)p = (h�k(x), pi)qk=1. The condition (IC) is equivalent to

max
j 62I

f0(xj) < 1 and 8i 2 I, f0(xi) = 1

in which case, we say that p0 is non-degenerate.
In the following, the result will be dependent on constants

B0
def.
= sup

x
k�̄(x)k2 and B1 = sup

x

����̄(x)⇤�̄(1)(x)
��� and B2 = sup

x

����̄(2)(x)
���
2
+

����̄(1)(x)
���
2
.

11

. Each group is size 2. 

True signal is supported on 4 groups, and has sparsity .

No injectivity restricted to the support, but the signal can be stably 
recovered via group-Lasso!

Γ ∈ ℝ4×40

4 × 2 = 8

(∥Γ⊤
i p∥2)20

i=1zλ and z*

NB: (N) is necessary for uniqueness of group Lasso. Ref. Fadili, Nghia, and Tran. "Sharp, strong and unique minimizers for low complexity robust recovery." Information and Inference (2023)
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Refined condition for the group-Lasso

(N)    where 





(IC)   Define  where . 


 

Ker(ΓI) ∩ Ker(Qz*) = {0}

Qz = diag (I −
1

∥z∥2
zz⊤)

p = Γ*,†
I Sign(z*) Sign(z)i =

zi

∥zi∥
∥Γ*Icp∥∞,2 = max

j∉I
∥Γ⊤

i p∥2 < 1

Theorem  [Poon & Peyre ’23]: 

Under assumptions (N) and (IC), if , for all  and  sufficiently small, there is 
a unique solution  with support  and 

y = Γz* + w ∥w∥/λ λ
zλ,w I ∥zλ,w − z*∥ = 𝒪(λ)

min
z

λ∑
i

∥zi∥2 +
1
2

∥ ∑
i

Γizi − y∥2

Figure 1: Left: the ground truth is shown in red and the group-Lasso solution is shown in black. The signal
here is of length 40, made up of 20 groups each of size 2. The number of observations is 4. Right: Plot of
{kzik}Ni=1 where z is defined in (15). Since kzik < 1 for all i not in the recovered support on the RHS, we
know that the vector here can be stably recovered using the group-Lasso.

Figure 2: Display of f0 when ' is a Fourier operator. Left: Plot of f0 when the true Diracs are on the grid
(left) and when the true Diracs are o↵ the grid (right). Even though f0 escapes 1 when then true Diracs
are o↵-the-grid shift, the incoherence condition still holds if the grid points (shown with the crosses) are
su�ciently coarse and skip the part where f0 escapes 1.

4 Sensitivity analysis for the discretized group-Lasso

In this section, we will discuss the stability of (P�(y)) in the case where � is a discretized version of
continuous operators taking values in Hilbert space H. Precisely, we let {xi}ni=1 be a set of uniformly-spaced

points with |xi � xi+1| = h, and let �i = �(xi)
def.
= (�k(xi))

q
k=1, where �k : R ! H is a twice continuously

di↵erentiable function. In the notation of the previous section, we have N = qn.

The dual certificate The condition (IC) can equivalently be written in terms of the “dual certificate”
function. Define

f0(x)
def.
= k�(x)p0k2 =

X

k

|h�k(x), p0i|2 , (16)

where with a slight abuse of notation, we interpret �(x) as a linear operator �(x) : H ! Rq so for p 2 H,
�(x)p = (h�k(x), pi)qk=1. The condition (IC) is equivalent to

max
j 62I

f0(xj) < 1 and 8i 2 I, f0(xi) = 1

in which case, we say that p0 is non-degenerate.
In the following, the result will be dependent on constants

B0
def.
= sup

x
k�̄(x)k2 and B1 = sup

x

����̄(x)⇤�̄(1)(x)
��� and B2 = sup

x

����̄(2)(x)
���
2
+

����̄(1)(x)
���
2
.

11

. Each group is size 2. 

True signal is supported on 4 groups, and has sparsity .

No injectivity restricted to the support, but the signal can be stably 
recovered via group-Lasso!

Γ ∈ ℝ4×40

4 × 2 = 8

(∥Γ⊤
i p∥2)20

i=1zλ and z*

NB: (N) is necessary for uniqueness of group Lasso. Ref. Fadili, Nghia, and Tran. "Sharp, strong and unique minimizers for low complexity robust recovery." Information and Inference (2023)



Sparsistency for SR-Lasso

Certificate 
 where f(x) = |ϕ(x)⊤p |2 + τ2 |ψ(x)⊤p |2

p = Γ*,†
I Sign((a, b))

Ground truth:   where  with 


  where 

μ =
s

∑
j=1

ajδuj
uj = xkj

+ tj I := {kj}

Φμ ≈ ΓI (a
b) + 𝒪(∥t∥2

∞) bj = ajτ−1∥ϕ′￼(xj)∥

Condition for sparsistency 
for all ,  


for all ,  

j ∈ I f(xj) = 1
k ∉ I f(xk) < 1

If b = 0 (i.e. on the grid), then 
the condition holds under 

sufficient separation of .{uj}

In general,  near  
for . Choose grid 

sufficiently coarse (depends 
on the shift) to have a non-

degenerate certificate.

f(x) > 1 xi
i ∈ I

27



Translation invariant case
Minimum separation:  Δmin := min

i≠j
|uj − ui |

Kernel functions :  

 

K0(x) = κ(x)2 + τ2κ̃1(x)2

K1(x) = κ̃1(x)(κ(x) + τ2κ̃2(x))
K2(x) = κ̃2(x) + τ−2κ̃1(x)2

Figure 3: Plot of K0,K1,K2 defined in (25) for the Gaussian kernel.

5.3 Proof of Theorem 3

Intuition on proof To establish support stability, we need to check that f0 satisfy the conditions (18)
and (19) given in Theorem 2. In the translation invariant case, when �min is su�ciently large, we will show
(Lemma 6) that the coe�cients u, v in (23) satisfy u ⇡ sa and v ⇡ sb/⌧

2. So, ⌘ defined in (23) satisfies

⌘(x) ⇡
X

j2I

gi(x� xj)

where gi(x) := (sa,i(x)� sb,i⌧
�1

̃1(x)). (27)

Moreover, when the separation distance �min is su�ciently large with respect to the decay of  away from
0, we can essentially consider the gi functions as having disjoint support, and f0 is closely approximated by
the following function Gi when near xi:

Gi(x) = gi(x)
2 +

⌧
2

|00(0)|g
0

i(x)
2
. (28)

This is illustrated in Figure 4 and formalised in the appendix. It is therefore su�cient to check that Gi

satisfy the conditions (19) and (18) of Theorem 2. To intuitively see that Gi can be shown to satisfy these
conditions, note that

Gi(x) = s
2
a,i

�
(x)2 + ⌧

2
̃1(x)

2
�

| {z }
K0

+s
2
b,i ⌧

�2
�
̃1(x)

2 + ⌧
2
̃2(x)

2
�

| {z }
K2

�2sa,isb,i⌧
�1

̃1(x)
�
(x) + ⌧

2
̃2(x)

�
| {z }

K1

(29)

So,

Gi(x) = s
2
a,i(K0(x)� 2�K1(x)) + s

2
b,iK2(x), where � =

sb.i

sa,i⌧
.

The conditions on K0,K1,K2 imply that

G
00

i (x) 6 (1� �)G00

i (0), 8x 2 [�r, r] (30)

and |Gi(x)| 6 1� µ, 8 |x| > r. (31)

The assumptions essentially mean that in each neighbourhood of xi, we can simply consider the quadratic
approximation

Gi(0) +G
0

i(0)x+
1

2
G

00

i (0)x
2
,

in place of studying f0. We will make use of the following key properties of Gi, which can be readily verified
by direct computation:
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K′￼′￼0(x) − γK′￼′￼1(x) < K′￼′￼0(0)
and K′￼′￼2(x) < K′￼′￼2(0)

|K0(x) − γK1(x) | < 1
and |K2(x) | < 1

Theorem [Poon & Peyré ’23]: 

Stable support recovery provided that   and t ≲ h(1 − τ2) λ ∼ (1 − τ2)h κ′￼′￼(0)

1 − τ2 ≳ sup{
s

∑
i=1

| κ̃ℓ(z0 − zi) | ; min
i≠j

|zi − zj | ≥
1
2

Δmin}
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Gaussian case ϕ(x) = exp(−x2/σ2)
Theorem [Poon & Peyre ’23] 
Let .  Constant is . Then, SR-Lasso recovers  Diracs stably if

 ,  ,  

τ ∈ (0.8,1) C ∼ 1 − τ2 s
min
i≠j

|uj − ui | ≳ σ | log(C) | | tj | ≤ C min(h, σ) λ ∼ Ch/σ

⌧
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Figure 1: This figure displays the certificate f0 and super-resolved Lasso for a range of ⌧ values. In the
above, ⌧ = 0.8, 1 have nondegenerate certificates and hence, there is support stability.
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Distance between spikes is 4 ,  and spikes are  inside the grid. σ h = σ 0.25h
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Comparison against certificate for c-BP

Figure 8: The left graph shows the maximum absolute value of the C-BP certificates and the SR-Lasso
certificate outside the true support. For this example, one can observe that SR-Lasso remains nondegenerate
as N increases, and the reconstructions are sparsistent. For C-BP, the reconstruction is sparsistent and
certificate is nondegenerate when the grid is su�ciently coarse (N = 10), but for larger values of N , the
certificates are degenerate and hence, the solution is not sparsistent for large N .

certificate become degenerate, one no longer has sparsistent reconstructions. In contrast, SR-Lasso remains
non-degenerate as N increases and its reconstructions are sparsistent.

More generally, we show in Figure 9 the reconstruction error as a function of �, where the data is again
samples of the Gaussian operator, the the ground truth are randomly generated positive sparse measures,
made up of 4 spikes spaced at least 0.2 apart, and 0.2h o↵-the-grid. The results are averaged over 10
randomly generated signals. In Figure 10, we compare against Lasso for recovering complex signed measures
from samples of the Fourier transform of a 2D sparse measure. In Figure 11, we compare against Lasso in
the case where

'(x1, x2, z) =
⇣
exp(�k(x1, x2)� (t1,i � t2,i)k2 /(2�2)) exp(�t3,iz)

⌘m

i=1
.

In all cases, one can observe the SR-Lasso significantly improves on the reconstruction error and has sharper
support recovery.

Conclusion

In this paper, we have proposed a new source estimation method that relies on solving a finite-dimensional
convex optimization problem. This approach allows bypassing the use of infinite-dimensional solvers by
depending on a standard group lasso problem. In contrast to existing finite-dimensional alternatives with
similar computational costs (such as Lasso or C-BP), it demonstrates superior sparsistency properties, which,
in practice, translates into sharper source localization.
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A Supplementary bounds for the Proof of Theorem 3

Bound on the coe�cients We first provide the following bound on the coe�cients u and v, the proof is
in the appendix.
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Recovering 2 spikes from samples of Gaussian convolution  ϕ(x) = (exp( − (x − xj)2/σ)j∈[m]
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Figure 9: 1D comparison for the recovery of 4 positive spikes in the case of Gaussian sampling.
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Figure 10: 2D comparison for the recovery of 3 signed spikes in the case of Fourier sampling.
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A few numerical results
Evaluation metric MMD. Given a measure  and a function ,


 


We use the Laplace kernel  and consider


 

μ k(x, y)

MMD2
k(μ) := ∫ k(x, y)dμ(x)dμ(y)

k(x, y) = exp( −∥x − y∥)

D(μ, ν) = ∥μ − ν∥2
k

NB: Our loss term can be seen as minimising MMD with kernel  


Laplace kernel: slow Fourier decay—> measures the match on ‘higher order moments’.

k(x, y) := ϕ(x)⊤ϕ(y) .
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Impact of τ

Result averaged over 10 random noisy instantiations .

Images on 2nd row is showing one noisy instantiation for visualisation of the reconstructions.


y = Φμ0 + noiseϕ(x) = (exp(2πikx))|k|≤ fc

33
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Figure 7: 1D Fourier. Showing e↵ects of ⌧ . Grid size N = 20 and fixed � = 0.1.

support despite discretization errors, we do not add measurement noise to the observations, so that y = �µ0.
In light of this measure estimation problem, it makes sense to compute the estimation error using some norm
or distance between measures. For simplicity, we employ here the Maximum Mean Discrepancies (MMD)
norms [32], which are Hilbert kernelized norms over the space of measures. An alternative – and arguably
more complex – approach is to use the Optimal Transport distance, as advocated in [16, 18].

For some positive kernel k(x, y), its associated MMD norm of a complex-valued measure ⇠ is defined as

k⇠k2k :=

Z
k(x, y)d⇠(x)⇠̄(y).

Provided that k is universal, this defines a norm, which metrizes the weak⇤ convergence on the space of
measure, thus o↵ering a way to asses the estimation error on both amplitude and position of the sources.
We consider here the Laplace kernel k(x, y) = exp(�kx� yk), which in practice has better behavior that
the more usual Gaussian kernel (because it has a slower spacial decay), and define our error metric as

D(µ, ⌫) , kµ� ⌫k2k.

For all measures µ, ⌫, we have D(µ, ⌫) > 0 and D(µ, ⌫) = 0 if and onlly if µ = ⌫. An interesting connexion
with the initial estimation problem is that, assuming y = �(µ0), then the standard Euclidean loss minimized
in Lasso-type problems such as (2) can be re-written as a MMD norm since

k�µ� yk2
H

= kµ� µ0k2k0
where k0(x, x

0) , '(x)>'(y).

Since the Laplace kernel k that we use for error assessment typically has a much slower Fourier decay than
the measurement kernel k0 (which, in our experiments, is either an ideal low-pass filter or a Gaussian kernel),
the discrepancy D evaluates the super-resolution capability of the method, i.e., its ability to recover “higher
order moments”.

Influence of ⌧ . In Figure 7, we show the MMD error for di↵erent values of ⌧ . We use here finite dimensional
Fourier frequency measurements '(x) = (e2i⇡kx)fck=�fc

. In this experiment, we observe samples of the Fourier
transform up to fc = 4 of a sparse measure made up of 2 spikes, whose positions are spaced 0.3h o↵-the-grid,
where h = 1/N is the grid size and N = 20. At 0h (true spikes are on the grid), the error is smallest for
⌧ = 0, and unsurprisingly, as h increases, the optimal ⌧ value increases. Note however that the error for
choosing ⌧ = 1 in the on-the-grid case is only slightly higher than choosing ⌧ = 0, and in practice, we find
that choosing ⌧ = 1 is e↵ective.

Comparison against continuous basis pursuit (c-BP) and Lasso In Figure 8, we consider the
reconstruction of 2 spikes from samples of the Gaussian operator, that is, '(x) =

�
exp(�(x� tj)2/�2)

�m
j=1

.

We let {tj} be 50 uniformly spaced points in [0, 1]. For this experiment, we observe that the certificates
for both c-BP and SR-Lasso are nondegenerate when the grid size is not too large (around N = 10), but
the c-BP certificate becomes degenerate as N increases. Accordingly, one can observe that when the c-BP
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1D Gaussian sampling (positive signs)
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Figure 9: 1D comparison for the recovery of 4 positive spikes in the case of Gaussian sampling.
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Figure 10: 2D comparison for the recovery of 3 signed spikes in the case of Fourier sampling.
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2D Fourier sampling (complex signs)
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Figure 9: 1D comparison for the recovery of 4 positive spikes in the case of Gaussian sampling.
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Figure 10: 2D comparison for the recovery of 3 signed spikes in the case of Fourier sampling.
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3D “Microscopy example” ϕ(Ω, R) = exp (−
∥Ωi − Ω∥2

(2σ2) ) exp(−RjR)

(i,j)∈[M]×[T]
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Figure 11: 3D comparison for the recovery of 3 signed spikes in the case of Gaussian-Laplace sampling.

Lemma 6. We have ⌥I is invertible and the following bounds on the coe�cients u, v defined in (24):

ku� sak1 6 �min

(1� 2�min)

✓
ksak1 +

1

⌧
ksbk1

◆

and
��v � ⌧

�2
sb

��
1

6 �min

(1� 2�min)

✓
1

⌧2
ksbk1 +

1

⌧
ksak1

◆
.

Proof of Lemma 6. Denote ⌥I =

✓
A B

B
>

D

◆
, where

A = (�⇤

X�X)
I,I , B := (⌧�⇤

X X)
I,I , D := ⌧

2 ( ⇤

X X)
I,I .

then
v = (D�1 +D

�1
B

>
S
�1

BD
�1)sb �D

�1
B

>
S
�1

sa and u = S
�1

sa � S
�1

BD
�1

sb.

where S :=
�
A�BD

�1
B

>
�
.

We will make use of the following operator bounds:

kId�Ak
1

6 max
i2I

X

j2I\{i}

|(xi � xj)| 6 �min,

kBk
1

6 ⌧ max
i2I

X

j2I\{i}

|̃0(xi � xj)| 6 ⌧�min,

��⌧2Id�D
��
1

6 ⌧
2 max

i2I

X

j2I\{i}

|̃00(xi � xj)| 6 ⌧
2
�min.

So,
��Id� ⌧

�2
D
��
1

6 �min =)
��D�1

�� 6 1

⌧2(1� �min)
.
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Summary

• SR-Lasso is a ‘half-way’ option for resolving sparse sum of Diracs. Only 
require evaluation of  and  on a fixed grid.


• Inspired by C-BP but can handle arbitrary signs and dimensions.


• Able to recover shifts that are  while retaining sparsistency.


• Since this is a standard group-Lasso problem, we can exploit existing solvers. 
We advocate the use of VarPro with L-BFGS.

ϕ ϕ′￼

𝒪(h)
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