Super-resolved Lasso

Clarice Poon (U. Warwick) and Gabriel Peyré (ENS Paris)

Outline

Outline

Super-resolution of point sources

Goal: Recover a sum of Diracs/spikes

Observe: $y=\int \phi(x) d \mu(x)+$ noise

Examples:

$$
y(x)=\sum_{j=1}^{s} a_{j} \exp \left(-\left\|x-x_{j}\right\|^{2} / \sigma\right)+\text { noise }
$$

Lasso

Discretise on grid $\left\{x_{j}: j=1, \ldots, N\right\}$:

$$
\Phi \mu=\int \phi(x) \mu(d x) \approx \sum_{j=1}^{N} \phi\left(x_{j}\right) \beta_{j}=: X \beta
$$

Sparse regularisation: $\min _{\beta \in \mathbb{R}^{N}}\|\beta\|_{1}+\frac{1}{2 \lambda}\|X \beta-y\|_{2}^{2}$

Lasso

Discretise on grid $\left\{x_{j}: j=1, \ldots, N\right\}$:

$$
\Phi \mu=\int \phi(x) \mu(d x) \approx \sum_{j=1}^{N} \phi\left(x_{j}\right) \beta_{j}=: X \beta
$$

Sparse regularisation: $\min _{\beta \in \mathbb{R}^{N}}\|\beta\|_{1}+\frac{1}{2 \lambda}\|X \beta-y\|_{2}^{2}$

This is relatively simple to solve with wide choice of algorithms.

- Algorithms become slow when grid is too fine (high coherence in columns of X)
- Quantisation effects [Duval \& Peyre '17]

Lasso

Discretise on grid $\left\{x_{j}: j=1, \ldots, N\right\}$:

$$
\Phi \mu=\int \phi(x) \mu(d x) \approx \sum_{j=1}^{N} \phi\left(x_{j}\right) \beta_{j}=: X \beta
$$

Sparse regularisation: $\min _{\beta \in \mathbb{R}^{N}}\|\beta\|_{1}+\frac{1}{2 \lambda}\|X \beta-y\|_{2}^{2}$

This is relatively simple to solve with wide choice of algorithms.
${ }^{\circ}$ Algorithms become slow when grid is too fine (high coherence in columns of X) - Quantisation effects [Duval \& Peyre '17]

Off-the-grid approaches such as Prony methods and Beurling Lasso (direct formulation in the space of measures) resolve the issue of quantisation effects, but Lasso is still widely used due to its simplicity.

Continuous Basis Pursuit ${ }_{\text {EEamanalameata } 1111}$

Ground truth is off-the-grid: $\mu=\sum_{j=1}^{s} a_{j} \delta_{x_{j}+t_{j}}$ where $\left|t_{j}\right| \leq h / 2$

$$
\text { Taylor expand: } y=\sum_{j} a_{j} \phi\left(x_{j}+t_{j}\right) \approx \sum_{j} a_{j} \phi\left(x_{j}\right)+a_{j} t_{j} \phi^{\prime}\left(x_{j}\right)+\mathcal{O}\left(h^{2}\right)
$$

Continuous Basis Pursuit ${ }_{\text {EEamanalameata } 1111}$

Ground truth is off-the-grid: $\mu=\sum_{j=1}^{s} a_{j} \delta_{x_{j}+t_{j}}$ where $\left|t_{j}\right| \leq h / 2$

$$
\text { Taylor expand: } y=\sum_{j} a_{j} \phi\left(x_{j}+t_{j}\right) \approx \sum_{j} a_{j} \phi\left(x_{j}\right)+a_{j} t_{j} \phi^{\prime}\left(x_{j}\right)+\mathcal{O}\left(h^{2}\right)
$$

$\min _{a \in \mathbb{R}_{+}^{N}, b \in \mathbb{R}^{N}} \frac{1}{2}\left\|y-\Phi_{X} a-\Phi_{X}^{\prime} b\right\|^{2}+\lambda\|a\|_{1} \quad$ s.t. $\quad\left|b_{j}\right| \leq \frac{h}{2} a_{j} \quad \Phi_{X}=\left[\phi\left(x_{j}\right)\right]_{j=1}^{N} \quad$ and $\quad \Phi_{X}^{\prime}=\left[\phi^{\prime}\left(x_{j}\right)\right]_{j=1}^{N}$

Ground truth is off-the-grid: $\mu=\sum_{j=1}^{s} a_{j} \delta_{x_{j}+t_{j}}$ where $\left|t_{j}\right| \leq h / 2$

$$
\text { Taylor expand: } y=\sum_{j} a_{j} \phi\left(x_{j}+t_{j}\right) \approx \sum_{j} a_{j} \phi\left(x_{j}\right)+a_{j} t_{j} \phi^{\prime}\left(x_{j}\right)+\mathcal{O}\left(h^{2}\right)
$$

$\min _{a \in \mathbb{R}_{+}^{N}, b \in \mathbb{R}^{N}} \frac{1}{2}\left\|y-\Phi_{X} a-\Phi_{X}^{\prime} b\right\|^{2}+\lambda\|a\|_{1} \quad$ s.t. $\quad\left|b_{j}\right| \leq \frac{h}{2} a_{j}$

$$
\Phi_{X}=\left[\phi\left(x_{j}\right)\right]_{j=1}^{N} \quad \text { and } \quad \Phi_{X}^{\prime}=\left[\phi^{\prime}\left(x_{j}\right)\right]_{j=1}^{N}
$$

\checkmark Convex formulation

x Restrictions

$\min _{r, l \in \mathbb{R}_{+}^{N}} \lambda\|r\|_{1}+\lambda\|l\|_{1}+\frac{1}{2}\left\|y-\left(\begin{array}{ll}\Phi_{X}+\frac{h}{2} \Phi_{X}^{\prime} & \Phi_{X}-\frac{h}{2} \Phi_{X}^{\prime}\end{array}\right)\binom{r}{l}\right\|^{2}$

- Works only for non-negative signals $a \geq 0$
- Unstable when the grid is too fine [Duval \& Peyre '17]

Super-resolved Lasso

Unconstrained optimisation problem

$$
\min _{a, b \in \mathbb{R}^{N}} \frac{1}{2}\left\|y-\Phi_{X} a-\tau \Phi_{X}^{\prime} b\right\|^{2}+\lambda \sum_{j=1}^{N} \sqrt{a_{j}^{2}+b_{j}^{2}}
$$

- Performance depends on appropriately weighting Φ_{X}^{\prime}.
- Define normalised derivative $\psi(x):=\phi^{\prime}(x) /\left\|\phi^{\prime}(x)\right\|$ and let $\Psi_{X}=\left[\psi\left(x_{j}\right)\right]_{j=1}^{N}$

Super-resolved Lasso

Unconstrained optimisation problem

$$
\min _{a, b \in \mathbb{R}^{N}} \frac{1}{2}\left\|y-\Phi_{X} a-\tau \Phi_{X}^{\prime} b\right\|^{2}+\lambda \sum_{j=1}^{N} \sqrt{a_{j}^{2}+b_{j}^{2}}
$$

- Performance depends on appropriately weighting Φ_{X}^{\prime}.
- Define normalised derivative $\psi(x):=\phi^{\prime}(x) /\left\|\phi^{\prime}(x)\right\|$ and let $\Psi_{X}=\left[\psi\left(x_{j}\right)\right]_{j=1}^{N}$

Solution interpretation

- Parameter $\tau \in[0,1]$ controls how far we move inside the grid.
○ Solution $\mu=\sum_{j=1}^{N} a_{j} \delta_{x_{j}+t_{j}}$ where $t_{j}=\frac{\tau b_{j}}{a_{j}\left\|\phi^{\prime}\left(x_{j}\right)\right\|}$

Super-resolved Lasso

Unconstrained optimisation problem

$$
\min _{a, b \in \mathbb{R}^{N}} \frac{1}{2}\left\|y-\Phi_{X} a-\tau \Phi_{X}^{\prime} b\right\|^{2}+\lambda \sum_{j=1}^{N} \sqrt{a_{j}^{2}+b_{j}^{2}}
$$

- Performance depends on appropriately weighting Φ_{X}^{\prime}.
- Define normalised derivative

$$
\psi(x):=\phi^{\prime}(x) /\left\|\phi^{\prime}(x)\right\| \text { and let } \Psi_{X}=\left[\psi\left(x_{j}\right)\right]_{j=1}^{N}
$$

$$
\min _{a, b \in \mathbb{R}^{N}} \frac{1}{2}\left\|y-\Phi_{X} a-\tau \Psi_{X} b\right\|^{2}+\lambda \sum_{j=1}^{N} \sqrt{a_{j}^{2}+b_{j}^{2}}
$$

Solution interpretation

- Parameter $\tau \in[0,1]$ controls how far we move inside the grid.
○ Solution $\mu=\sum_{j=1}^{N} a_{j} \delta_{x_{j}+t_{j}}$ where $t_{j}=\frac{\tau b_{j}}{a_{j}\left\|\phi^{\prime}\left(x_{j}\right)\right\|}$

Group-Lasso

$$
\begin{aligned}
& \text { Let } \Gamma=\left[\begin{array}{cc}
\Phi_{X} & \tau \Psi_{X}
\end{array}\right] \text { and write } z=\binom{a}{b} \text {. Then, } \\
& \text { Group Lasso: } \quad \min _{z} \frac{1}{2}\|\Gamma z-y\|^{2}+\lambda\|z\|_{1,2}
\end{aligned}
$$

Group-Lasso

$$
\text { Let } \Gamma=\left[\begin{array}{ll}
\Phi_{X} & \tau \Psi_{X}
\end{array}\right] \text { and write } z=\binom{a}{b} \text {. Then, }
$$

Group Lasso: $\min _{a \in \mathbb{R}^{N}, b \in \mathbb{R}^{d N}} \frac{1}{2}\left\|\Gamma\binom{a}{b}-y\right\|^{2}+\lambda \sum_{i} \sqrt{a_{i}^{2}+\left\|b_{i}\right\|^{2}}$

Multivariate setting:

${ }^{\circ} \Psi_{X} b=\sum_{i=1}^{N} b_{i}^{\top}\left(G_{x_{i}}^{-1 / 2} \nabla \phi\left(x_{i}\right)\right)$, with $b_{i} \in \mathbb{R}^{d}$ and $G_{x}=\nabla \phi(x) \nabla \phi(x)^{\top}$

- Normalisation to ensure that $\Gamma^{\top} \Gamma$ is block identity I_{d+1}.
- For translation invariant kernels, $\langle\phi(x), \phi(z)\rangle=\kappa(x-y)$

$$
G_{x}=-\nabla^{2} \kappa(0) \text { is constant. }
$$

Shift $t_{j}=\frac{\tau}{a_{j}} G_{x_{j}}^{-\frac{1}{2}} b_{j}$

Group-Lasso

$$
\begin{gathered}
\text { Let } \Gamma=\left[\begin{array}{ll}
\Phi_{X} & \tau \Psi_{X}
\end{array}\right] \text { and write } z=\binom{a}{b} \text {. Then, } \\
\text { Group Lasso: } \min _{a \in \mathbb{R}^{N}, b \in \mathbb{R}^{d N}} \frac{1}{2}\left\|\Gamma\binom{a}{b}-y\right\|^{2}+\lambda \sum_{i} \sqrt{a_{i}^{2}+\left\|b_{i}\right\|^{2}}
\end{gathered}
$$

Multivariate setting:

${ }^{\circ} \Psi_{X} b=\sum_{i=1}^{N} b_{i}^{\top}\left(G_{x_{i}}^{-1 / 2} \nabla \phi\left(x_{i}\right)\right)$, with $b_{i} \in \mathbb{R}^{d}$ and $G_{x}=\nabla \phi(x) \nabla \phi(x)^{\top}$

- Normalisation to ensure that $\Gamma^{\top} \Gamma$ is block identity I_{d+1}.
- For translation invariant kernels, $\langle\phi(x), \phi(z)\rangle=\kappa(x-y)$

$$
G_{x}=-\nabla^{2} \kappa(0) \text { is constant. }
$$

L-BFGS solver for SR-Lasso (VarPro)

Smooth formulation: $\min _{u, v} G(u, v) \quad$ where $\quad G(u, v)=\frac{1}{2}\left\|\Gamma\left(v_{i} u_{g_{i}}\right)_{i}-y\right\|^{2}+\frac{\lambda}{2}\|u\|^{2}+\frac{\lambda}{2}\|v\|^{2}$

L-BFGS solver for SR-Lasso (VarPro)

Group Lasso: $\quad \min _{z} \frac{1}{2}\|\Gamma z-y\|^{2}+\lambda\|z\|_{1,2} \sum_{j=1}^{n}\left\|z_{z,}\right\|=\min _{\substack{2 \\ z=\mu_{u_{k}}}} \frac{1}{2} v_{i}^{2}+\frac{1}{2}\left\|u_{s}\right\|^{2}$
Smooth formulation: $\min _{u, v} G(u, v) \quad$ where $\quad G(u, v)=\frac{1}{2}\left\|\Gamma\left(v_{i} u_{g_{i}}\right)_{i}-y\right\|^{2}+\frac{\lambda}{2}\|u\|^{2}+\frac{\lambda}{2}\|v\|^{2}$ "VarPro": $\min _{v} f(v)$ where $f(v)=\min _{u} \frac{1}{2}\left\|\Gamma\left(v_{i} u_{g_{i}}\right)_{i}-y\right\|^{2}+\frac{\lambda}{2}\|u\|^{2}+\frac{\lambda}{2}\|v\|^{2}$

L-BFGS solver for SR-Lasso (VarPro)

Group Lasso: $\quad \min _{z} \frac{1}{2}\|\Gamma z-y\|^{2}+\lambda\|z\|_{1,2}$
Smooth formulation: $\min _{u, v} G(u, v) \quad$ where $\quad G(u, v)=\frac{1}{2}\left\|\Gamma\left(v_{i} u_{g_{i}}\right)_{i}-y\right\|^{2}+\frac{\lambda}{2}\|u\|^{2}+\frac{\lambda}{2}\|v\|^{2}$

$$
\text { "VarPro": } \min _{v} f(v) \text { where } f(v)=\min _{u} \frac{1}{2}\left\|\Gamma\left(v_{i} u_{g_{i}}\right)_{i}-y\right\|^{2}+\frac{\lambda}{2}\|u\|^{2}+\frac{\lambda}{2}\|v\|^{2}
$$

One can prove that all saddle points are strict (gradient descent always converge to global min)

Apply L-BFGS to this smooth function!

Some properties of the Hadamard Parametrization

All stationary points of f are either global minima or strict saddles ($\nabla^{2} f$ has at least one negative eigenvalue).

Lee et al (2017): Gradient descent almost always avoid strict saddles.

Well known: for $f(v)=\min G(u, v), \nabla^{2} f(\mathrm{v})$ is the Schur complement of $\nabla^{2} G(u, v)$ and it is always no worse conditioned.

Lipschitz constant of ∇f is independent of discretisation of Γ.

Ref. Poon \& Peyré Smooth over-parameterized solvers for non-smooth structured optimization. Math. Prog. (2023)

Observation

Solving the Lasso with a discretised
Fourier operator ($n=500$):
Column i: $\quad \Gamma_{i}=(\exp (2 \pi \sqrt{-1} i k / n))_{|k| \leq m}$

Observations:

- ISTA converges at $\mathcal{O}\left(k^{-2 / 3}\right)$ while proximal mirror descent converges at $\mathcal{O}\left(k^{-1}\right)$ as shown by Chizat 2021.
- The Hadamard parameterisations also converge at $\mathcal{O}\left(k^{-1}\right)$

Mirror flow interpretation

Hadamard parametrised gradient flow

$$
\min _{z} \lambda\| \| \|_{1}+F(z)=\min _{u, v} \frac{\lambda}{2}\left(\|u\|^{2}+\|v\|^{2}\right)+F(u \odot v)
$$

$$
\left\{\begin{array}{l}
\dot{u}_{t}=-\tau\left(\lambda u_{t}+v_{t} \nabla F\left(u_{t} \odot v_{t}\right)\right) \\
\dot{v}_{t}=-\tau\left(\lambda v_{t}+u_{t} \nabla F\left(u_{t} \odot v_{t}\right)\right)
\end{array}\right.
$$

Let $z(t):=u(t) \odot v(t)$, then:

$$
\frac{d}{d t} \nabla \eta_{\gamma(t)}(z(t))=-2 \nabla F(z(t)) \quad \gamma(t)=\frac{1}{2} e^{-2 \lambda t}|u(0)-v(0)|
$$

$$
\eta_{\gamma}(z)=\gamma \operatorname{arsinh}(z / \gamma)-\sqrt{z^{2}+\gamma^{2}}+\gamma
$$

Outline

THE METHOD

Sparsistency:

Do we recover the correct number of Diracs?
 $$
\mu=\sum_{j \in I} a_{j} \delta_{x_{j}+t_{j}}
$$

Lasso [Wainwright '08]:

$$
\min _{z} \lambda\|z\|_{1}+\frac{1}{2}\|\Gamma z-y\|^{2}
$$

If Diracs are on the grid, need

- $\operatorname{Ker}\left(\Gamma_{I}\right)=\{0\}$.
\circ define $p_{L}:=\Gamma_{I}^{*, \dagger} \operatorname{Sign}\left(a_{I}\right)$.

$$
\left\|\Gamma_{I c}^{*} p\right\|_{\infty}=\max _{j \notin I}\left|\phi\left(x_{j}\right)^{\top} p_{L}\right|<1
$$

C-BP [Duval \& Peyre '17]:

- Let $\Gamma_{I}:=\left[\left(\Phi_{X}\right)_{I},\left(\Psi_{X}\right)_{I}\right]$ be injective
${ }^{\circ}$ define $p_{V}=\Gamma_{I}^{*, \dagger}\binom{1_{N}}{0_{N}}$ and $\eta(x)=\phi(x)^{\top} p_{V}$.

$$
\max _{j \notin I} \eta\left(x_{j}\right) \pm \frac{h}{2} \eta^{\prime}\left(x_{j}\right)<1
$$

- Cannot handle $t_{j} \neq 0$.
- Even if $t_{j}=0$, does not hold when grid is too fine [Duval \& Peyre '17]

Refined condition for the group-Lasso

(N$) \operatorname{Ker}\left(\Gamma_{I}\right) \cap \operatorname{Ker}\left(Q_{z^{*}}\right)=\{0\}$ where

$$
Q_{z}=\operatorname{diag}\left(I-\frac{1}{\|z\|^{2}} z^{\top}\right)
$$

(IC) Define $p=\Gamma_{I}^{*, \dagger} \operatorname{Sign}\left(z^{*}\right)$ where $\operatorname{Sign}(z)_{i}=\frac{z_{i}}{\left\|z_{i}\right\|}$.

$$
\left\|\Gamma_{I}^{*} p\right\|_{\infty, 2}=\max _{j \notin I}\left\|\Gamma_{i}^{\top} p\right\|_{2}<1
$$

- True signal is supported on 4 groups, and has sparsity $4 \times 2=8$.
- No injectivity restricted to the support, but the signal can be stably recovered via group-Lasso!

Refined condition for the group-Lasso

(N$) \operatorname{Ker}\left(\Gamma_{I}\right) \cap \operatorname{Ker}\left(Q_{z^{*}}\right)=\{0\}$ where

$$
Q_{z}=\operatorname{diag}\left(I-\frac{1}{\|z\|^{2}} z z^{\top}\right)
$$

(IC) Define $p=\Gamma_{I}^{*, \dagger} \operatorname{Sign}\left(z^{*}\right)$ where $\operatorname{Sign}(z)_{i}=\frac{z_{i}}{\left\|z_{i}\right\|}$.

$$
\left\|\Gamma_{I}^{*} p\right\|_{\infty, 2}=\max _{j \notin I}\left\|\Gamma_{i}^{\top} p\right\|_{2}<1
$$

- $\Gamma \in \mathbb{R}^{4 \times 40}$. Each group is size 2 .
- True signal is supported on 4 groups, and has sparsity $4 \times 2=8$.
- No injectivity restricted to the support, but the signal can be stably recovered via group-Lasso!

Theorem [Poon \& Peyre '23]:

Under assumptions (N) and (IC), if $y=\Gamma z^{*}+w$, for all $\|w\| / \lambda$ and λ sufficiently small, there is a unique solution $z_{\lambda, w}$ with support I and $\left\|z_{\lambda, w}-z^{*}\right\|=\mathcal{O}(\lambda)$

Sparsistency for SR-Lasso

Ground truth: $\mu=\sum_{j=1}^{s} a_{j} \delta_{u_{j}}$ where $u_{j}=x_{k_{j}}+t_{j}$ with $I:=\left\{k_{j}\right\}$
$\Phi \mu \approx \Gamma_{I}\binom{a}{b}+\mathcal{O}\left(\|t\|_{\infty}^{2}\right)$ where $b_{j}=a_{j} \tau^{-1}\left\|\phi^{\prime}\left(x_{j}\right)\right\|$

Certificate

$$
\begin{aligned}
& f(x)=\left|\phi(x)^{\top} p\right|^{2}+\tau^{2}\left|\psi(x)^{\top} p\right|^{2} \text { where } \\
& p=\Gamma_{I}^{*, \dagger} \operatorname{Sign}((a, b))
\end{aligned}
$$

If $b=0$ (i.e. on the grid), then the condition holds under sufficient separation of $\left\{u_{j}\right\}$.

Condition for sparsistency

- for all $j \in I, f\left(x_{j}\right)=1$
- for all $k \notin I, f\left(x_{k}\right)<1$

In general, $f(x)>1$ near x_{i}
for $i \in I$. Choose grid sufficiently coarse (depends on the shift) to have a nondegenerate certificate.

Translation invariant case

Minimum separation: $\Delta_{\min }:=\min _{i \neq j}\left|u_{j}-u_{i}\right| \quad 1-\tau^{2} \gtrsim \sup \left\{\sum_{i=1}^{s}\left|\tilde{\kappa}_{e}\left(z_{0}-z_{i}\right)\right| ; \min _{i \neq j}\left|z_{i}-z_{j}\right| \geq \frac{1}{2} \Delta_{\min }\right\}$

Kernel functions :

$$
\begin{aligned}
& K_{0}(x)=\kappa(x)^{2}+\tau^{2} \tilde{\kappa}_{1}(x)^{2} \\
& K_{1}(x)=\tilde{\kappa}_{1}(x)\left(\kappa(x)+\tau^{2} \tilde{\kappa}_{2}(x)\right) \\
& K_{2}(x)=\tilde{\kappa}_{2}(x)+\tau^{-2} \tilde{\kappa}_{1}(x)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \forall|x| \leq r \\
& K_{0}^{\prime \prime}(x)-\gamma K_{1}^{\prime \prime}(x)<K_{0}^{\prime \prime}(0) \\
& \quad \text { and } \quad K_{2}^{\prime \prime}(x)<K_{2}^{\prime \prime}(0) \\
& \forall|x| \geq r \\
& \quad\left|K_{0}(x)-\gamma K_{1}(x)\right|<1 \\
& \quad \text { and } \quad\left|K_{2}(x)\right|<1
\end{aligned}
$$

Theorem [Poon \& Peyré '23]:

Stable support recovery provided that $t \lesssim h\left(1-\tau^{2}\right)$ and $\lambda \sim\left(1-\tau^{2}\right) h \sqrt{\kappa^{\prime \prime}(0)}$

Gaussian case $\phi(x)=\exp \left(-x^{2} / \sigma^{2}\right)$

Theorem [Poon \& Peyre '23]

Let $\tau \in(0.8,1)$. Constant is $C \sim 1-\tau^{2}$. Then, SR-Lasso recovers s Diracs stably if

$$
\min _{i \neq j}\left|u_{j}-u_{i}\right| \gtrsim \sigma \sqrt{|\log (C)|}, \quad\left|t_{j}\right| \leq C \min (h, \sigma), \lambda \sim C h / \sigma
$$

Distance between spikes is $4 \sigma, h=\sigma$ and spikes are $0.25 h$ inside the grid.

Comparison against certificate for c-BP

Recovering 2 spikes from samples of Gaussian convolution $\phi(x)=\left(\exp \left(-\left(x-x_{j}\right)^{2} / \sigma\right)_{j \in[m]}\right.$

Outline

A few numerical results

Evaluation metric MMD. Given a measure μ and a function $k(x, y)$,

$$
\operatorname{MMD}_{k}^{2}(\mu):=\int k(x, y) d \mu(x) d \mu(y)
$$

We use the Laplace kernel $k(x, y)=\exp (-\|x-y\|)$ and consider

$$
D(\mu, \nu)=\|\mu-\nu\|_{k}^{2}
$$

NB: Our loss term can be seen as minimising MMD with kernel $k(x, y):=\phi(x)^{\top} \phi(y)$.
Laplace kernel: slow Fourier decay -> measures the match on 'higher order moments'.

Impact of τ

$$
\phi(x)=(\exp (2 \pi i k x))_{|k| \leq f_{c}}
$$

Result averaged over 10 random noisy instantiations $y=\Phi \mu_{0}+$ noise.
Images on 2nd row is showing one noisy instantiation for visualisation of the reconstructions.

1D Gaussian sampling (positive signs)

Figure 9: 1D comparison for the recovery of 4 positive spikes in the case of Gaussian sampling.

2D Fourier sampling (complex signs)

Figure 10: 2D comparison for the recovery of 3 signed spikes in the case of Fourier sampling.

3D "Microscopy example"

$$
\phi(\Omega, R)=\left(\exp \left(-\frac{\left\|\Omega_{i}-\Omega\right\|^{2}}{\left(2 \sigma^{2}\right)}\right) \exp \left(-R_{j} R\right)\right)
$$

Figure 11: 3D comparison for the recovery of 3 signed spikes in the case of Gaussian-Laplace sampling.

Summary

- SR-Lasso is a 'half-way' option for resolving sparse sum of Diracs. Only require evaluation of ϕ and ϕ^{\prime} on a fixed grid.
- Inspired by C-BP but can handle arbitrary signs and dimensions.
- Able to recover shifts that are $\mathcal{O}(h)$ while retaining sparsistency.
- Since this is a standard group-Lasso problem, we can exploit existing solvers. We advocate the use of VarPro with L-BFGS.

