troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000		000000000	0000000

Off-the-grid regularisation for Poisson inverse problems

Marta Lazzaretti^{1,2}, Luca Calatroni², Claudio Estatico¹

¹DIMA, Università di Genova ²I3S Lab, CNRS, Université Côte d'Azur

Off-the-grid and continuous methods for optimization and inverse problems in imaging workshop

22 November 2023

Outline

Introduction

Off-the-grid approach

3 Off-the-grid for Poisson noise scenarios

Homotopy

6 3D real data results

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
•0000	0000000		000000000	0000000

Introduction

Introduction	
00000	

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

Motivation: image reconstruction in biological imaging

GOAL: imaging of biological structures $< 200 \mbox{ nm}$ at fine scale and high precision

Acquisition: \mathbf{y}

Unknown signal: **x**

troduction	
0000	

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

Inverse problem formulation: discrete approach

Unknown signal: x

Introduction	
00000	

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

Inverse problem formulation: discrete approach

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

L = 1

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

L = 2

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

L = 4

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
000●	0000000	0000000000000000	000000000	0000000

Going *off-the-grid* for spike deconvolution

itroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000●	0000000		000000000	0000000

Going off-the-grid for spike deconvolution

Deconvolution of **point-like objects**, not on a fine grid, but on a **continuous domain** $\mathcal{X} \subseteq \mathbb{R}^d$

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	●000000		000000000	0000000

- $\mathcal{X} \subseteq \mathbb{R}^d$ continuous and compact domain
- *M*(*X*) = space of Radon measures on *X*

Point-like objects \rightarrow **spikes**, modelled as **Dirac delta** $a\delta_x \in \mathcal{M}(\mathcal{X})$

- $\mathcal{M}(\mathcal{X}) =$ topological dual of $\mathscr{C}(\mathcal{X})$ with the supremum norm $\|\cdot\|_{\infty,\mathcal{X}}$.
- $\mu \in \mathcal{M}(\mathcal{X})$ is a continuous linear form evaluated on functions $f \in \mathscr{C}(\mathcal{X})$: $\langle f, m \rangle_{\mathscr{C}(\mathcal{X}) \times \mathcal{M}(\mathcal{X})} = \int_{\mathcal{X}} f \, \mathrm{d}m$
- $\mathcal{M}(\mathcal{X})$ is a Banach space endowed with the TV-norm

$$|\mu|(\mathcal{X}):= \sup\left(\int_{\mathcal{X}} f \mathrm{d}\mu, f \in \mathscr{C}(\mathcal{X}), \|f\|_{\infty,\mathcal{X}} \leq 1
ight)$$

 $\mathcal{M}(\mathcal{X}) \text{ generalisation of } \mathrm{L}^1(\mathcal{X}): \quad \mathrm{L}^1(\mathcal{X}) \hookrightarrow \mathcal{M}(\mathcal{X})$

If $\mu = \sum_{i=1}^N a_i \delta_{x_i}$ is a discrete measure then $|\mu|(\mathcal{X}) = \sum_{i=1}^N |a_i| = ||a||_1$.

Off-the-grid for Poisson noise scenarios

Homotopy 0000000000 3D real data results 0000000

Off-the-grid framework

Point-like objects \rightarrow spikes, modelled as Dirac delta $\delta_x \in \mathcal{M}(\mathcal{X})$ in the space of Radon measures

Unknown signal to reconstruct: finite linear combinations of Dirac deltas $\mu_{a,x} = \sum_{i=1}^{K} a_i \delta_{x_i}$

- $a_i > 0$ is the **amplitude** of the *i*-th spike
- $x_i \in \mathcal{X}$ represents its **position**
- K number of spikes

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	○○○●○○○	000000000000000	000000000	0000000

Off-the-grid framework

Forward operator: $\tilde{\Phi} : \mathcal{M}(\mathcal{X}) \longrightarrow L^2(\mathcal{X})$ given by

$$ilde{\Phi} \mu = \int_{\mathcal{X}} arphi(oldsymbol{s}) \mathrm{d} \mu(oldsymbol{s})$$

with e.g. Gaussian PSF $\varphi(s) = \prod_{i=1}^{d} \frac{1}{\sqrt{(2\pi)\sigma_i}} \exp\left[-\frac{s_i^2}{2\sigma_i^2}\right]$

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
	○○○○●○○	000000000000000	000000000	0000000

Blurring operator: $\tilde{\Phi} : \mathcal{M}(\mathcal{X}) \longrightarrow L^2(\mathcal{X})$ given by

$$ilde{\Phi} \mu = \int_{\mathcal{X}} arphi(m{s}) \mathrm{d} \mu(m{s})$$

with Gaussian PSF $\varphi(s) = \prod_{i=1}^{d} \frac{1}{\sqrt{(2\pi)\sigma_i}} \exp\left[-\frac{s_i^2}{2\sigma_i^2}\right]$ Downsampling operator $D: L^2(X) \longrightarrow \mathbb{R}^M$

$$\Phi=D ilde{\Phi}$$

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	00000●0	000000000000000	000000000	0000000

BLASSO PROBLEM

Gaussian noise:

$$y = \Phi \mu + \eta$$

$$\Downarrow$$

$$\arg \min_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \| \Phi \mu - y \|_2^2 + \lambda |\mu|(\mathcal{X}) \qquad (\ell_2 - |\mu|)$$

- Bredies-Pikkarainen 2012
- De Castro-Gamboa 2012
- Fernandez-Granda 2013

- Duval-Peyré 2014
- Denoyelle-Duval-Peyré 2017
- Boyer-De Castro-Salmon 2017

- Poon-Peyré 2019
- ...
- and more

Off-the-grid for Poisson noise scenarios

Homotopy 0000000000 3D real data results 0000000

Optimality conditions for BLASSO $\ell_2 - |\mu|$

$$\argmin_{\mu \in \mathcal{M}(\mathcal{X})} \frac{1}{2} \| \Phi \mu - y \|_2^2 + \lambda |\mu| (\mathcal{X})$$

∜

$$\arg\max_{\substack{p \text{ s.t. } \|\Phi^*p\|_{\infty} \leq 1}} \left\|\frac{y}{\lambda} - p\right\|^2$$

 $(\mathcal{P}_{\lambda}(y))$

Extremality conditions:

- μ_{λ} solution of $(\mathcal{P}_{\lambda}(y))$
- p_{λ} solution of $(\mathcal{D}_{\lambda}(y))$

$$(\mathcal{D}_{\lambda}(y)) egin{array}{c} & -p_{\lambda} = -rac{1}{\lambda} \left(\Phi \mu_{\lambda} - y
ight) \ \Phi^* p_{\lambda} \in \partial |\mu_{\lambda}|(\mathcal{X}) \end{array}$$

Dual certificate: $\eta_{\lambda}(\mu) = \frac{1}{\lambda} \Phi^* ((y - \Phi \mu))$

Optimality conditions for
$$(\mathcal{P}_{\lambda}(y))$$
:

$$\mu = \sum_{i=1}^{N} a_{i} \delta_{x_{i}} \text{ solution of } (\mathcal{P}_{\lambda}(y))$$
:

$$\downarrow$$

$$\|\eta_{\lambda}(\mu)\|_{\infty} \leq 1$$

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000	●000000000000000000000000000000000000	000000000	0000000

Off-the-grid for Poisson noise scenarios

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
	0000000	0●00000000000000	000000000	0000000

$\mathcal{D}_{\mathit{KL}} - |\mu|$ off-the-grid variational problem for Poisson data

- $b \in \mathbb{R}^{M}_{+}$ strictly positive **background**
- Poisson noise:

$$y = \mathcal{P}(\Phi \mu + b)$$

• Hp on y:
$$y \in \mathbb{R}^M_+$$
 strictly positive

• Φ positive definite

 $\underset{\mu \in \mathcal{M}(\mathcal{X})}{\arg\min} \mathcal{D}_{\mathit{KL}}(\Phi \mu + b, y) + \lambda |\mu|(\mathcal{X}) + \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\mu)$

₩

$$(\mathcal{D}_{\mathit{KL}} - |\mu|)$$

Introduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 0000000
Dual probler	m of $\mathcal{D}_{\textit{KL}} - \mu $			

$$\arg \min_{\mu \in \mathcal{M}(\mathcal{X})} \underbrace{\frac{1}{\lambda} \mathcal{D}_{\mathcal{KL}}(\Phi \mu + b, y)}_{G(\Phi \mu)} + \underbrace{|\mu|(\mathcal{X}) + \mathbb{1}_{\mathcal{M}(\mathcal{X})^{+}}(\mu)}_{F(\mu)} \qquad (\mathcal{D}_{\mathcal{KL}} - |\mu|)$$

•
$$G: L^2(\mathcal{X}) \to \mathbb{R} \cup \{+\infty\}$$

$$G(s) := \begin{cases} \frac{1}{\lambda} \int_{\mathcal{X}} \left(s+b\right)(x) - y(x) + y(x)\log(y(x)) - y(x)\log\left[\left(s+b\right)(x)\right] dx & s+b \in L^{2}(\mathcal{X})^{+} \\ +\infty & s+b \notin L^{2}(\mathcal{X})^{+} \end{cases}$$

•
$$F: \mathcal{M}(\mathcal{X}) \to \mathbb{R} \cup \{+\infty\}, F(\cdot) = |\cdot|(\mathcal{X}) + \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\cdot)$$

•
$$\Phi : \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$$

$$\underset{p^* \in \left(L^2(\mathcal{X})\right)^*}{\operatorname{arg max}} - F^*(\Phi^*p^*) - G^*(-p^*)$$
 (Dual of $\mathcal{D}_{\mathsf{KL}} - |\mu|$)

Introduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios 000●00000000000	Homotopy 000000000	3D real data results 0000000
Convex con	jugate of $\mathcal{D}_{\mathit{KL}}$			

Given $t, b, \lambda > 0$, consider the one-dimensional Kullback-Leibler function, defined by

$$f_{t,b}(s) = egin{cases} rac{1}{\lambda}ig(s+b-t+t\log(t)-t\log(s+b)ig) & s+b>0\ +\infty & s+b\leq 0 \end{cases}$$

$$egin{aligned} f_{t,b}^*(s^*) &= \sup_{s\in\mathbb{R}} ss^* - f_{t,b}(s) = \sup_{s+b>0} ss^* - rac{1}{\lambda}ig(s+b-t+t\log(t)-t\log(s+b)ig) = \ &= \sup_{s+b>0} sig(s^*-rac{1}{\lambda}ig) - rac{b}{\lambda} + rac{t}{\lambda}\log(s+b) + rac{t}{\lambda} - rac{t}{\lambda}\log(t) \end{aligned}$$

$$G^*(p^*) = egin{cases} +\infty & p^* \geq rac{1}{\lambda} \ rac{\mathbf{b}}{\lambda}(1-\lambda p^*) - rac{\mathbf{y}}{\lambda}\log(1-\lambda p^*) & p^* < rac{1}{\lambda} \end{cases}$$

Introduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 0000000
6				

Convex conjugate of the penalty

$$F(\cdot) = A(\cdot) + B(\cdot) \qquad F, A, B : \mathcal{M}(\mathcal{X}) \to \mathbb{R} \cup \{+\infty\}$$
$$F(\cdot) = \underbrace{|\cdot|(\mathcal{X})}_{A(\cdot)} + \underbrace{\mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\cdot)}_{B(\cdot)}$$

Convex conjugate of F can be obtained with the infimal convolution, see (Urruty 2006), (Fajardo 2012):

$${\sf F}^*(\psi) = \min_{\psi_1+\psi_2=\psi} {\sf A}^*(\psi_1) + {\sf B}^*(\psi_2)$$

$$\mathbf{A}^*(\psi) = egin{cases} 0 & \|\psi\|_\infty \leq 1 \ +\infty & \|\psi\|_\infty > 1 \end{cases}$$

Introduction 00000 Off-the-grid approach 0000000 Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

Convex conjugate of the indicator function $\mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\cdot)$

$$B^{*}(\psi) = \sup_{m \in \mathcal{M}(\mathcal{X})} \langle \psi, m \rangle_{\mathcal{C}(\mathcal{X}) \times \mathcal{M}(\mathcal{X})} - B(m)$$

= $sup_{m \in \mathcal{M}(\mathcal{X})^{+}} \langle \psi, m \rangle_{\mathcal{C}(\mathcal{X}) \times \mathcal{M}(\mathcal{X})}$
 $\geq \langle \psi, m \rangle_{\mathcal{C}(\mathcal{X}) \times \mathcal{M}(\mathcal{X})} \forall m \in \mathcal{M}(\mathcal{X})^{+}$

If $\exists \bar{x} \in \mathcal{X}$ such that $\psi(\bar{x}) > 0$, consider $\bar{m} = \alpha \delta_{\bar{x}}$ with $\alpha > 0$.

$$B^*(\psi) \ge \langle \psi, \bar{m} \rangle = \alpha \psi(\bar{x}) \xrightarrow{\alpha \to +\infty} +\infty \Rightarrow B^*(\psi) = +\infty.$$

Notice that, if $\psi(x) \leq 0 \ \forall x \in \mathcal{X} \ \langle \psi, m \rangle = \int_{\mathcal{X}} \psi dm \leq 0 \ \forall m \in \mathcal{M}(\mathcal{X})^+$. Moreover, $\langle \psi, 0 \rangle = 0$. Thus, $B^*(\psi) = 0$ if $\psi(x) \leq 0 \ \forall x \in \mathcal{X}$.

$$B^*(\psi) = egin{cases} 0 & \psi(x) \leq 0 \; orall x \in \mathcal{X} \ +\infty & \exists x \in \mathcal{X} \; ext{s.t.} \; \psi(x) > 0 \end{cases}$$

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
20000	0000000		000000000	0000000

Convex conjugate of the penalty

$$egin{aligned} & \Gamma^*(\psi) = \min_{\psi_1 + \psi_2 = \psi} A^*(\psi_1) + B^*(\psi_2) \ & = \min_{\psi_1 + \psi_2 = \psi} egin{cases} 0 & \|\psi_1\|_\infty \leq 1 \ +\infty & \|\psi_1\|_\infty > 1 \ \end{pmatrix} + egin{cases} 0 & \psi_2(x) \leq 0 \ orall x \in \mathcal{X} \ +\infty & \exists x \in \mathcal{X} \ ext{s.t.} \ \psi_2(x) > 0 \ \end{pmatrix} \end{aligned}$$

$${\mathcal F}^*(\psi) = egin{cases} 0 & orall x \in {\mathcal X} \ \psi(x) \leq 1 \ +\infty & \exists x \in {\mathcal X} \ \psi(x) > 1 \end{cases}$$

Introduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 0000000
Dual proble	m of $\mathcal{D}_{\mathit{KL}} - \mu $			

$$\arg\min_{\mu\in\mathcal{M}(\mathcal{X})} \underbrace{\frac{1}{\mathcal{D}_{\mathcal{K}L}(\Phi\mu+b,y)}}_{G(\Phi\mu)} + \underbrace{|\mu|(\mathcal{X}) + \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\mu)}_{F(\mu)} \qquad (\mathcal{D}_{\mathcal{K}L} - |\mu|)$$

$$\arg \max_{p \in S} \underbrace{-\frac{b}{\lambda}(1+\lambda p) + \frac{y}{\lambda}\log(1+\lambda p)}_{-G^*(-p^*)}$$
(Dual of $\mathcal{D}_{KL} - |\mu|$)
$$\mathcal{S} = \{p \in L^2(\mathcal{X}) : \underbrace{p > -\frac{1}{\lambda}}_{-G^*(-p^*)} \text{ and } \underbrace{\forall x \in \mathcal{X} \ \Phi^* p(x) \leq 1}_{-F^*(\Phi^* p^*)} \}$$

Extremality conditions

$$\begin{cases} -p_{\lambda} = \frac{1}{\lambda} \left(\frac{y}{\Phi \mu_{\lambda} + b} - I \right) \\ \Phi^* p_{\lambda} \in \partial |\mu_{\lambda}|(\mathcal{X}) + \partial \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\mu_{\lambda}) \end{cases}$$

Introduction 00000 Off-the-grid approach

Off-the-grid for Poisson noise scenarios

Homotopy 0000000000 3D real data results 0000000

Optimality conditions for $\mathcal{D}_{KL} - |\mu|$

troduction	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 0000000

Sliding Frank Wolfe algorithm (Denoyelle-Duval-Peyré-Soubies 2019)

Add one spike per iteration: new position computed from the dual certificate

$$\begin{split} \eta^{[k]}(x) &= \frac{1}{\lambda} \Phi^* \left(I - \frac{y}{\Phi \mu_{[k]} + b} \right)(x) \\ x^{[k]}_* \in \operatorname{argmax}_{x \in \mathcal{X}} \left(\eta^{[k]}(x) \right)_+ \\ x^{\operatorname{new}} &= \left(x^{[k]}_1, \cdots, x^{[k]}_k, x^{[k]}_* \right) \end{split}$$

- If $\eta^{[k]}(x_*^{[k]}) < 1$, STOP.
- Estimate amplitudes of the reconstructed spikes, solving:

$$a^{\mathsf{new}} \in \operatorname*{argmin}_{a \in \mathbb{R}^{k+1}} \mathcal{D}_{\mathit{KL}}(\Phi_{\mathsf{x}^{\mathsf{new}}}(a) + b, y) + \lambda \|a\|_1 + \mathbb{1}_{\mathbb{R}^{k+1}_+}(a)$$

• Sliding step: non-convex step to adjust amplitudes and positions

$$(\boldsymbol{a}^{[k+1]}, \boldsymbol{x}^{[k+1]}) \in \operatorname*{argmin}_{(\boldsymbol{a}, \boldsymbol{x}) \in \mathbb{R}^{k+1} \times \mathcal{X}^{k+1}} \mathcal{D}_{KL}(\boldsymbol{\Phi}_{\boldsymbol{x}}(\boldsymbol{a}) + \boldsymbol{b}, \boldsymbol{y}) + \lambda \|\boldsymbol{a}\|_{1} + \mathbb{1}_{\mathbb{R}^{k+1}_{+}}(\boldsymbol{a})$$

solved starting from $(a^{\text{new}}, x^{\text{new}})$

Introduction 00000 Off-the-grid approach

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

1D comparison between $\ell_2 - |\mu|$ and $\mathcal{D}_{KL} - |\mu|$

- 100 randomly simulated ground truths with 6 spikes
- Corresponding acquisitions simulated with Gaussian blur + Poisson noise
- Reconstructions with $\ell_2 |\mu|$ for the following regularisation parameters:

$$10^{-x} * \eta_0, \quad x = 0, 1, \dots, 10$$

with

$$\eta_{\lambda}(\mu) = \frac{1}{\lambda} \Phi^* (y - \Phi \mu)$$

$$\eta_1(0) = \Phi^* y$$

$$\eta_0 = \|\Phi^* y\|_{\infty}$$

If I initialise SFW with $\mu_{[0]} = 0$ and $\lambda = \eta_0$,

$$\eta_\lambda(\mu_{[0]})=rac{1}{\eta_0}\Phi^*y,\qquad \|\eta_\lambda(\mu_{[0]})\|_\infty=1.$$

Introduction 00000 Off-the-grid approach

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

1D comparison between $\ell_2 - |\mu|$ and $\mathcal{D}_{KL} - |\mu|$

- 100 randomly simulated ground truths with 6 spikes
- Corresponding acquisitions simulated with Gaussian blur + Poisson noise
- Reconstructions with $\mathcal{D}_{KL} |\mu|$ for the following regularisation parameters:

$$10^{-x} * \eta_0, \quad x = 0, 1, \dots, 10$$

with

$$\eta_{\lambda}(\mu) = \frac{1}{\lambda} \Phi^* \left(I - \frac{y}{\Phi \mu + b} \right)$$
$$\eta_1(0) = \Phi^* \left(I - \frac{y}{b} \right)$$
$$\eta_0 = \left\| \left(\Phi^* \left(\frac{b - y}{b} \right) \right)_+ \right\|_{\infty}$$

If I initialise SFW with $\mu_{[0]} = 0$ and $\lambda = \eta_0$,

$$\eta_\lambda(\mu_{[0]}) = rac{1}{\eta_0} \Phi^st \Big(rac{b-y}{b}\Big), \qquad \left\| \Big(\eta_\lambda(\mu_{[0]})\Big)_+
ight\|_\infty = 1$$

itroduction	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 0000000

1D results: $\mathcal{D}_{\mathit{KL}} - |\mu|$ off-the-grid reconstruction

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	0000000

1D results: $\ell_2 - |\mu|$ off-the-grid reconstruction

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		0000000000	0000000

Quality metrics considered

$$\mathsf{Jac}_{\delta}(\mu_{GT}, \mu_{REC}) = \frac{\#\mathsf{TP}}{\#\mathsf{TP} + \#\mathsf{FP} + \#\mathsf{FN}} \in [0, 1]$$
$$\mathsf{RMSE}_{x}(\mu_{GT}, \mu_{REC}) = \sqrt{\frac{1}{\#\mathsf{TP}}\sum_{i\in\mathsf{TP}} \left((x_{rec})_{i} - x_{gt})_{i}\right)^{2}} \qquad \mathsf{RMSE}_{a}(\mu_{GT}, \mu_{REC}) = \sqrt{\frac{1}{\#\mathsf{TP}}\sum_{i\in\mathsf{TP}} \left((a_{rec})_{i} - a_{gt})_{i}\right)^{2}}$$

Introduction 00000 Off-the-grid approach 0000000 Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

1D comparison between $\ell_2 - |\mu|$ and $\mathcal{D}_{KL} - |\mu|$

Figure: Mean values over 100 different randomly generated ground truths with 6 spikes and their corresponding reconstructions. Shaded area corresponds to standard deviation.

Parameters	$\ell_2 - \mu $	$\mathcal{D}_{\mathcal{KL}} - \mu $
η_0 λ Max. iter.	$\ \Phi^* y\ _{\infty}$ $10^{-x}\eta_0, x = 0, 1, \dots, 10$ $2 * N_{molecules}$ 0.05	$ \left\ \left(\Phi^* \left(\frac{b-y}{b} \right) \right)_+ \right\ _{\infty} $ $ 10^{-x} \eta_0, x = 0, 1, \dots, 10 $ $ 2 * N_{molecules} $ $ 0.05 $
Tolerance radius 0	0.05	0.05

roduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
DOOO	0000000	000000000000000●	000000000	0000000

1D comparison between $\ell_2 - |\mu|$ and $\mathcal{D}_{KL} - |\mu|$

Figure: Mean values over 100 different randomly generated ground truths with 6 spikes and their corresponding reconstructions. Shaded area corresponds to standard deviation.
Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000	0000000000000000	●000000000	0000000

Homotopy

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
20000	0000000	000000000000000	○●○○○○○○○○	0000000

How to choose λ for SFW?

Homotopy strategy (Malioutov-Cetin-Willsky 2005) (Donoho-Tsaig 2006)

Explore the Pareto frontier by solving the $(\mathcal{D}_{KL} - |\mu|)(\lambda)$ problem for a decreasing sequence of regularisation parameters λ until the solution $\hat{\mu}_{\lambda}$ satisfies:

$$\mathcal{D}_{\mathit{KL}}(\Phi\hat{\mu}_{\lambda}+b,y)\leq\sigma_{ ext{target}}$$

Design of the homotopy algorithm:

- Choice of starting value for λ
- How to account for past knowledge
- How λ will evolve
- Choice of σ_{target} to stop the algorithm

Homotopy strategy (Malioutov-Cetin-Willsky 2005) (Donoho-Tsaig 2006)

Explore the Pareto frontier by solving the $(\mathcal{D}_{KL} - |\mu|)(\lambda)$ problem for a decreasing sequence of regularisation parameters λ until the solution $\hat{\mu}_{\lambda}$ satisfies:

 $\mathcal{D}_{\mathit{KL}}(\Phi\hat{\mu}_{\lambda}+b,y)\leq\sigma_{ ext{target}}$

Design of the homotopy algorithm:

- Choice of starting value for λ
- How to account for past knowledge
- How λ will evolve
- Choice of σ_{target} to stop the algorithm

Homotopy strategy (Malioutov-Cetin-Willsky 2005) (Donoho-Tsaig 2006)

Explore the Pareto frontier by solving the $(\mathcal{D}_{KL} - |\mu|)(\lambda)$ problem for a decreasing sequence of regularisation parameters λ until the solution $\hat{\mu}_{\lambda}$ satisfies:

 $\mathcal{D}_{\mathit{KL}}(\Phi\hat{\mu}_{\lambda}+b,y)\leq\sigma_{ ext{target}}$

Design of the homotopy algorithm:

- Choice of starting value for λ
- How λ will evolve
- How to account for past knowledge
- Choice of σ_{target} to stop the algorithm

000	000	

1.0

0.8

0.4

Off-the-grid approach

Off-the-grid for Poisson noise scenarios

Homotopy 000000000 3D real data results 0000000

Regularisation path

$$\lambda \longmapsto \mathsf{a}_i(\lambda)$$

Discrete setting:

175

- linear (Mairal-Yu 2012)
- *f* − ℓ₁ with *f* non-linear: piecewise smooth (Bieker-Gebken-Peitz 2022)

Continuous setting:

 l₂ - |µ|: piecewise linear (Courbot-Colicchio 2021)

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000		000000000	0000000

Algorithm 1: Homotopy-Sliding Frank Wolfe Algorithm

Input: $\mathbf{y} > 0$, $\mathbf{b} > 0$, $\boldsymbol{\phi}$, c > 0, $\sigma_{\text{target}} > 0$ Output: estimation $\hat{\mu}$

Initialization: $\hat{\mu}_0 = 0$ and $\lambda_1 = \left\| \left(\Phi^* \left(\frac{\mathbf{y} - \mathbf{b}}{\mathbf{b}} \right) \right)_+ \right\|$

FOR $t = 1, \dots$ REPEAT

- 1. Compute $\hat{\mu}_t$ solution of $(\mathcal{P}_{\lambda_t})$ with SFW with warm start $\mu_t^{[0]} = \hat{\mu}_{t-1}$.
- 2. Compute σ_t from the residual:

$$\sigma_t = \mathcal{D}_{\mathit{KL}}(\Phi \hat{\mu}_t + \mathbf{b}, \mathbf{y})$$

3. IF $\sigma_t < \sigma_{\text{target}}$

 $\hat{\mu}_t$ is a solution $\Rightarrow \text{STOP}$

4. ELSE IF $\sigma_t \geq \sigma_{target}$

$$\mathsf{Update} \quad \lambda_{t+1} = \frac{\lambda_t \left\| \left(\eta_t(\hat{\mu}_t) \right)_+ \right\|_\infty}{c+1}, \qquad \eta_t = \frac{1}{\lambda_t} \Phi^* \partial_1 \mathcal{D}_{\mathit{KL}}(\Phi \hat{\mu}_t + \mathbf{b}, \mathbf{y})$$

UNTIL $\sigma_t < \sigma_{target}$

- If $\lambda > \lambda_1$, the dual certificate $\|(\eta_\lambda(\hat{\mu}_0)_+\|_\infty < 1)$. No spikes are reconstructed.
- The sequence of estimated regularisation parameter is strictly decreasing: $\lambda_{t+1} < \lambda_t$.
- At the beginning of each homotopy iteration t + 1:

$$\left\| \left(\eta_{t+1}(\mu_{t+1}^{[0]})\right)_+ \right\|_{\infty} = \left\| \left(\eta_{t+1}(\hat{\mu}_t)\right)_+ \right\|_{\infty} = rac{\lambda_t}{\lambda_{t+1}} \left\| \left(\eta_t(\hat{\mu}_t)\right)_+ \right\|_{\infty} = 1 + c > 1,$$

hence an inner iteration of SFW is always performed.

The homotopy-SFW algorithm for the $\mathcal{D}_{KL} - |\mu|$ off-the-grid problem produces a strictly decreasing sequence $(\sigma_t)_t$.

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000	0000000000000000	000000●000	0000000

$$\mu^*(\lambda) = \arg\min_{\mu} C(y,\lambda,\mu) = \mathcal{D}_{KL}(\Phi\mu + b, y) + \lambda|\mu|(\mathcal{X})$$
(1)

$$\begin{split} \frac{\partial \mathcal{C}(y,\lambda,\mu)}{\partial \mu}\Big|_{\mu=\mu^*} &= \Phi^* \Big(\mathbf{I} - \frac{y}{\Phi\mu^* + b}\Big) + \lambda = 0 \qquad (\mu^*(\lambda) \text{ minimizer of (1)})\\ 0 &= \frac{\partial}{\partial \lambda} \Big(\frac{\partial \mathcal{C}(y,\lambda,\mu)}{\partial \mu}\Big|_{\mu=\mu^*}\Big) \qquad (\text{Deriving again with respect to } \lambda)\\ 0 &= \frac{\partial}{\partial \mu} \Big(\Phi^* \Big(\mathbf{I} - \frac{y}{\Phi\mu + b}\Big)\Big)\Big|_{\mu=\mu^*} \cdot \frac{\partial \mu^*(\lambda)}{\partial \lambda} + 1 \qquad \Rightarrow \frac{\partial \mu^*(\lambda)}{\partial \lambda} < 0 \end{split}$$

troduction 0000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000●000	3D real data results

$$\frac{\partial C(y,\lambda,\mu)}{\partial \mu}\Big|_{\mu=\mu^*} = \Phi^* \left(\mathbf{I} - \frac{y}{\Phi\mu^* + b}\right) + \lambda = 0 \qquad \Rightarrow \Phi^* \left(\mathbf{I} - \frac{y}{\Phi\mu^* + b}\right) = -\lambda$$
$$\frac{\partial}{\partial \lambda} \mathcal{D}_{KL}(\Phi\mu^*(\lambda) + b, y) = \Phi^* \left(\mathbf{I} - \frac{y}{\Phi\mu^* + b}\right) \cdot \underbrace{\frac{\partial \mu^*(\lambda)}{\partial \lambda}}_{<0} > 0$$

This entails that $\lambda \to \mathcal{D}_{KL}(\Phi \mu^*(\lambda) + b, y)$ is strictly increasing. Since $\lambda_{t+1} < \lambda_t$ and $\hat{\mu}_t = \mu^*(\lambda_t)$,

$$\sigma_{t+1} = \mathcal{D}_{\mathsf{KL}}(\Phi\hat{\mu}_{t+1} + b, y) < \sigma_t = \mathcal{D}_{\mathsf{KL}}(\Phi\hat{\mu}_t + b, \mathbf{y}). \quad \Box$$

Introduction 00000

1D comparison between $\ell_2 - |\mu|$ and $\mathcal{D}_{KL} - |\mu|$ with Homotopy-SFW

Mean value	$\ell_2 - \mu $	$\mathcal{D}_{\mathit{KL}} - \mu $
Jaccard index	0.72	0.74
Number of TP	3.32	3.30
Number of FN	0.68	0.70
Number of FP	0.73	0.54
RMSE on amplitudes of TP	0.50	0.42
RMSE on positions of TP	0.012	0.011
Final estimated λ	6.09	40.21
Number of homotopy iterations	4.55	3.93
Value of σ_{target}	4.09	77.16

Parameters	$ \ell_2 - \mu $	$\mathcal{D}_{\mathit{KL}} - \mu $
Initial value λ_0	$\frac{1}{5} \ \Phi^* y\ _{\infty}$	$\frac{1}{5} \left\ \left(\Phi^* \left(\frac{b-y}{b} \right) \right)_+ \right\ _{\infty}$
Max number of homotopy iterations	$2 * N_{molecules}$	$2 * N_{molecules}$
Max number of inner SFW iterations	1	1
Homotopy parameter <i>c</i>	13	45
Choice of σ_{target}	$ 1.5 * \frac{1}{2} \Phi \mu_{gt} + b - y ^2$	$1.5*\mathcal{D}_{\mathit{KL}}(\Phi\mu_{\mathit{gt}}+\mathit{b},\mathit{y})$

roduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
2000	0000000		00000000●0	0000000

Homotopy-SFW: choice of σ_{target} for $\mathcal{D}_{KL} - |\mu|$

Theoretical value (knowledge of ground truth) (Bertero 2010) ¹ (Bertero 2010) + knowledge of the Poisson noise level nvEstimation based only on the background

$\mathcal{D}_{\mathit{KL}}(\Phi\mu_{gt}+b,y)$	82.74
11/0	0100

$$\begin{array}{ccc} M/2 & & & 0.192 \\ M/(2 * nv) & & 81.92 \\ \mathcal{D}_{KL}(b, y_{bg})/M_{bg} * M & & 104.66 \end{array}$$

¹Bertero M., Boccacci P., Talenti G., Zanella R., Zanni L., A discrepancy principle for Poisson data, Inverse Problems, 2010.

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	●000000

3D real data results

3D off-the-grid volume deblurring

Volume acquired in widefield microscopy of yeasts expressing fluorescent proteins (*SEC16-sfGFP* and a *SEC24-sfGFP*) localized at the Endoplasmic Reticulum exit sites (ERES) a

^aToader B., Boulanger J., Korolev Y., Lenz M.O., Manton J., Schonlieb C.B., Muresan L., *Image reconstruction in light-sheet microscopy: spatially varying deconvolution and mixed noise*, Journal of Mathematical Imaging and Vision, 2022.

- 3D volume blurred and noisy acquisition: $190 \times 190 \times 17$ voxels
- Voxel size: 65nm in xy and 250nm in z

Figure: Maximum Intensity projection over xz, yz, yx planes.

oduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data resul
000	0000000		000000000	00●0000

-20

OA.

PSF estimation

• 3D Gaussian PSF:

$$\varphi(x) = \frac{1}{\sqrt{(2\pi)^3}\sigma_x \sigma_y \sigma_z} \exp\left[-\frac{x^2}{2\sigma_x^2}\right] \exp\left[-\frac{y^2}{2\sigma_y^2}\right] \exp\left[-\frac{z^2}{2\sigma_z^2}\right]$$

• $FWHM = 0.61 \frac{\lambda_{wavelength}}{NA}$ with $\lambda_{wavelength} = 509$ nm and NA = 1.49 on the xy plane. To recover σ : $FWHM = 2.355 * \sigma$.

•
$$\sigma_x = \sigma_y = 89$$
nm and $\sigma_z = 2 * \sigma_x$.

Figure: Maximum Intensity projection over xz, yz, yx planes.

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	000●000

Background estimation

Figure: Maximum Intensity projection over xz, yz, yx planes.

- Constant background estimation: *b* = 337.77
- Estimation of $\sigma_{target} = 1102067.75$
- Bertero's estimate: M/2 = 306850

troduction 0000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 0000●00
Recons	truction up to 130 sp	ikes with H-SFW $\mathcal{D}_{KI} - \mu $		

Figure: Maximum Intensity projection over xz, yz, yx planes.

Parameters	$\mathcal{D}_{\mathit{KL}} - \mu $
Initial value λ_0	$\left\ \left(\Phi^* \left(\frac{\mathbf{y} - \mathbf{b}}{\mathbf{b}} \right) \right)_+ \right\ _{\infty}$
Max number of homotopy iterations	10
Max number of inner SFW iterations	50
Homotopy parameter <i>c</i>	0.15
Choice of σ_{target}	based on the background

Off-the-grid for Poisson noise scenarios

Homotopy 0000000000 3D real data results 0000000

Conclusion and future work

Contributions

- Study of the dual problem and optimality conditions for off-the-grid variational model with Kullback-Leibler divergence as fidelity term and positivity constraints
- Practical implementation of off-the-grid approaches for Poisson noise formulation with the Kullback-Leibler divergence as fidelity term and positivity constraints
- Automatic selection of the regularisation parameter thanks to homotopy strategies
- 3D PSF modelled by Gaussian blur

Future work

- more general PSFs
- test on real-microscopy data with low photon count (e.g., fluctuation-based approaches)

Thanks for your attention!

Figure: Airy disks (3D fitting with defocus effect)

Figure: Light-sheet beam with Zernike polynomials

oduction 000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results

References

- Bertero M., Boccacci P., Talenti G., Zanella R., Zanni L., A discrepancy principle for Poisson data, Inverse Problems, 2010.
- Bieker K., Gebken B., Peitz S., On the Treatment of Optimization Problems With L1 Penalty Terms via Multiobjective Continuation, IEEE transactions on pattern analysis and machine intelligence, 2021.
- Boyer C., De Castro Y., Salmon J., *Adapting to unknown noise level in sparse deconvolution*, Information and Inference: A Journal of the IMA, 2017.
- Bredies K., Pikkarainen H. K., *Inverse problems in spaces of measures*, ESAIM: Control, Optimisation and Calculus of Variations, 2013.
- Candès E.J., Fernandez-Granda C., *Towards a Mathematical Theory of Super-resolution*, Communications on Pure and Applied Mathematics, 2013.
- Courbot J.B., Colicchio B.. A Fast Homotopy Algorithm for Gridless Sparse Recovery, Inverse Problems, 2021.
- De Castro Y., Gamboa F., *Exact reconstruction using Beurling minimal extrapolation*, Journal of Mathematical Analysis and Applications, 2012.
- Denoyelle Q. Duval V., Peyré G., *Support Recovery for Sparse Super-Resolution of Positive Measures*, Journal of Fourier Analysis and Applications, 2017.
- Denoyelle Q., Duval V., Peyré G., Soubies E., *The Sliding Frank Wolfe Algorithm and its Application to Super-Resolution*, Inverse Problems, 2019.

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	000000●

References

- Donoho D.L., Tsaig Y., Fast Solution of '1-norm Minimization Problems When the Solution May be Sparse, 2006.
- Duval V. Peyré G., *Exact Support Recovery for Sparse Spikes Deconvolution*, Foundations of Computational Mathematics, 2014.
- Frank M., Wolfe P, An algorithm for quadratic programming, Naval Res. Logist. Quart., 1956.
- Kirshner H., Aguet F.,Sage D., Unser M., *3-D PSF fitting for fluorescence microscopy: implementation and localization application*, Journal of Microscopy, 2013.
- Laville B., Blanc-Féraud L. and Aubert. G, *Off-the-grid variational sparse spike recovery: methods and algorithms*, Journal of Imaging, 2021.
- Mairal J., Bin Y., *Complexity Analysis of the Lasso Regularization Path*, International conference on Machine Learning, 2012.
- Malioutov D. M., Cetin M., Willsky A. S., *Homotopy continuation for sparse signal representation*, ICASSP 2005.
- Poon C., Peyré G., Multi-dimensional sparse super-resolution, SIAM J. Math. Anal., 2019.
- Toader B., Boulanger J., Korolev Y., Lenz M.O., Manton J., Schonlieb C.B., Muresan L., Image reconstruction in light-sheet microscopy: spatially varying deconvolution and mixed noise, Journal of Mathematical Imaging and Vision, 2022.

Introduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results •000000000000000000000000000000000000
Dual proble	m of $\mathcal{D}_{\textit{KL}} - \mu $			

$$\arg \min_{\mu \in \mathcal{M}(\mathcal{X})} \underbrace{\frac{1}{\lambda} \mathcal{D}_{\mathcal{KL}}(\Phi \mu + b, y)}_{G(\Phi \mu)} + \underbrace{|\mu|(\mathcal{X}) + \mathbb{1}_{\mathcal{M}(\mathcal{X})^{+}}(\mu)}_{F(\mu)} \qquad (\mathcal{D}_{\mathcal{KL}} - |\mu|)$$

•
$$G: L^2(\mathcal{X}) \to \mathbb{R} \cup \{+\infty\}$$

$$G(s) := \begin{cases} \frac{1}{\lambda} \int_{\mathcal{X}} \left(s+b\right)(x) - y(x) + y(x)\log(y(x)) - y(x)\log\left[\left(s+b\right)(x)\right] & \mathrm{d}x \quad s+b \in L^{2}(\mathcal{X})^{+} \\ +\infty & s+b \notin L^{2}(\mathcal{X})^{+} \end{cases}$$

•
$$F: \mathcal{M}(\mathcal{X}) \to \mathbb{R} \cup \{+\infty\}, F(\cdot) = |\cdot|(\mathcal{X}) + \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\cdot)$$

•
$$\Phi: \mathcal{M}(\mathcal{X}) \to L^2(\mathcal{X})$$

$$\underset{\rho^* \in \left(L^2(\mathcal{X})\right)^*}{\operatorname{arg max}} - F^*(\Phi^*\rho^*) - G^*(-\rho^*)$$
 (Dual of $\mathcal{D}_{\mathsf{KL}} - |\mu|$)

Introduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 000000000000000000000000000000000000
Convex	c conjugate of $\mathcal{D}_{\mathit{KL}}$			

Given $t, b, \lambda > 0$, consider the one-dimensional Kullback-Leibler function, defined by

$$f_{t,b}(s) = egin{cases} rac{1}{\lambda}ig(s+b-t+t\log(t)-t\log(s+b)ig) & s+b>0\ +\infty & s+b\leq 0 \end{cases}$$

$$f_{t,b}^*(s^*) = \sup_{s \in \mathbb{R}} ss^* - f_{t,b}(s) = \sup_{s+b>0} ss^* - \frac{1}{\lambda} \left(s+b-t+t\log(t)-t\log(s+b)\right) =$$
$$= \sup_{s+b>0} \underbrace{s\left(s^* - \frac{1}{\lambda}\right) - \frac{b}{\lambda} + \frac{t}{\lambda}\log(s+b) + \frac{t}{\lambda} - \frac{t}{\lambda}\log(t)}_{h(s)}$$

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	000000000000000000000000000000000000

Convex conjugate of $\mathcal{D}_{\textit{KL}}$

• If
$$s^* \ge \frac{1}{\lambda}$$
, then $\lim_{s \to +\infty} h(s) = +\infty$ implies $\sup_{s>0} h(s) = +\infty \Rightarrow f_{t,b}(s^*) = +\infty$.
• If $s^* < \frac{1}{\lambda}$, then $\lim_{s \to \pm\infty} h(s) = -\infty$.

$$h'(s) = s^* - \frac{1}{\lambda} + \frac{t}{\lambda(s+b)} = \frac{\lambda(s+b)s^* - (s+b) + t}{\lambda(s+b)} > 0$$
$$\iff \lambda(s+b)s^* - (s+b) + t > 0 \iff s > \frac{t}{1-\lambda s^*} - b$$
$$f_{t,b}^*(s^*) = h\left(\frac{t}{1-\lambda s^*} - b\right) = \frac{b}{\lambda}(1-\lambda s^*) - \frac{t}{\lambda}\log(1-\lambda s^*)$$

which is well-defined since $1 - \lambda s^* > 0 \iff s^* < \frac{1}{\lambda}$.

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	00●00000000000000

Convex conjugate of \mathcal{D}_{KL}

• If
$$s^* \ge \frac{1}{\lambda}$$
, then $\lim_{s \to +\infty} h(s) = +\infty$ implies $\sup_{s>0} h(s) = +\infty \Rightarrow f_{t,b}(s^*) = +\infty$.
• If $s^* < \frac{1}{\lambda}$, then $\lim_{s \to \pm\infty} h(s) = -\infty$.

$$\begin{aligned} h'(s) &= s^* - \frac{1}{\lambda} + \frac{t}{\lambda(s+b)} = \frac{\lambda(s+b)s^* - (s+b) + t}{\lambda(s+b)} > 0\\ \iff \lambda(s+b)s^* - (s+b) + t > 0 \iff s > \frac{t}{1-\lambda s^*} - b\\ f^*_{t,b}(s^*) &= h\Big(\frac{t}{1-\lambda s^*} - b\Big) = \frac{b}{\lambda}(1-\lambda s^*) - \frac{t}{\lambda}\log(1-\lambda s^*) \end{aligned}$$

which is well-defined since $1 - \lambda s^* > 0 \iff s^* < \frac{1}{\lambda}$.

$$f^*_{t,b}(s^*) = egin{cases} +\infty & s^* \geq rac{1}{\lambda} \ rac{b}{\lambda}(1-\lambda s^*) - rac{t}{\lambda}\log(1-\lambda s^*) & s^* < rac{1}{\lambda} \end{cases}$$

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	000000000000000000000000000000000000

Convex conjugate of \mathcal{D}_{KL}

• If
$$s^* \ge \frac{1}{\lambda}$$
, then $\lim_{s \to +\infty} h(s) = +\infty$ implies $\sup_{s>0} h(s) = +\infty \Rightarrow f_{t,b}(s^*) = +\infty$.
• If $s^* < \frac{1}{\lambda}$, then $\lim_{s \to \pm\infty} h(s) = -\infty$.

$$h'(s) = s^* - rac{1}{\lambda} + rac{t}{\lambda(s+b)} = rac{\lambda(s+b)s^* - (s+b) + t}{\lambda(s+b)} > 0$$
 $\iff \lambda(s+b)s^* - (s+b) + t > 0 \iff s > rac{t}{1-\lambda s^*} - b$
 $f_{t,b}^*(s^*) = h\Big(rac{t}{1-\lambda s^*} - b\Big) = rac{b}{\lambda}(1-\lambda s^*) - rac{t}{\lambda}\log(1-\lambda s^*)$

which is well-defined since $1 - \lambda s^* > 0 \iff s^* < \frac{1}{\lambda}$.

$$G^*(p^*) = egin{cases} +\infty & p^* \geq rac{1}{\lambda} \ rac{\mathbf{b}}{\lambda}(1-\lambda p^*) - rac{\mathbf{y}}{\lambda}\log(1-\lambda p^*) & p^* < rac{1}{\lambda} \end{cases}$$

ntroduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 000000000000000000000000000000000000
C	· · · · · ·			

$$F(\cdot) = A(\cdot) + B(\cdot) \qquad F, A, B : \mathcal{M}(\mathcal{X}) \to \mathbb{R} \cup \{+\infty\}$$
$$F(\cdot) = \underbrace{|\cdot|(\mathcal{X})}_{A(\cdot)} + \underbrace{\mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\cdot)}_{B(\cdot)}$$

Convex conjugate of F can be obtained with the infimal convolution, see (Urruty 2006), (Fajardo 2012):

$${\sf F}^*(\psi) = \min_{\psi_1+\psi_2=\psi} {\sf A}^*(\psi_1) + {\sf B}^*(\psi_2)$$

$$\mathbb{A}^*(\psi) = egin{cases} 0 & \|\psi\|_\infty \leq 1 \ +\infty & \|\psi\|_\infty > 1 \end{cases}$$

Introduction 00000 Off-the-grid approach 0000000 Off-the-grid for Poisson noise scenarios

Homotopy 000000000

Convex conjugate of the indicator function $\mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\cdot)$

$$B^{*}(\psi) = \sup_{m \in \mathcal{M}(\mathcal{X})} \langle \psi, m \rangle_{\mathcal{C}(\mathcal{X}) \times \mathcal{M}(\mathcal{X})} - B(m)$$

= $sup_{m \in \mathcal{M}(\mathcal{X})^{+}} \langle \psi, m \rangle_{\mathcal{C}(\mathcal{X}) \times \mathcal{M}(\mathcal{X})}$
 $\geq \langle \psi, m \rangle_{\mathcal{C}(\mathcal{X}) \times \mathcal{M}(\mathcal{X})} \forall m \in \mathcal{M}(\mathcal{X})^{+}$

If $\exists \bar{x} \in \mathcal{X}$ such that $\psi(\bar{x}) > 0$, consider $\bar{m} = \alpha \delta_{\bar{x}}$ with $\alpha > 0$.

$$B^*(\psi) \ge \langle \psi, \bar{m} \rangle = \alpha \psi(\bar{x}) \xrightarrow{\alpha \to +\infty} +\infty \Rightarrow B^*(\psi) = +\infty.$$

Notice that, if $\psi(x) \leq 0 \ \forall x \in \mathcal{X} \ \langle \psi, m \rangle = \int_{\mathcal{X}} \psi dm \leq 0 \ \forall m \in \mathcal{M}(\mathcal{X})^+$. Moreover, $\langle \psi, 0 \rangle = 0$. Thus, $B^*(\psi) = 0$ if $\psi(x) \leq 0 \ \forall x \in \mathcal{X}$.

$$B^*(\psi) = egin{cases} 0 & \psi(x) \leq 0 \; orall x \in \mathcal{X} \ +\infty & \exists x \in \mathcal{X} \; ext{s.t.} \; \psi(x) > 0 \end{cases}$$

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	00000000000

$$F^{*}(\psi) = \min_{\psi_{1}+\psi_{2}=\psi} A^{*}(\psi_{1}) + B^{*}(\psi_{2})$$

=
$$\min_{\psi_{1}+\psi_{2}=\psi} \begin{cases} 0 & \|\psi_{1}\|_{\infty} \leq 1 \\ +\infty & \|\psi_{1}\|_{\infty} > 1 \end{cases} + \begin{cases} 0 & \psi_{2}(x) \leq 0 \ \forall x \in \mathcal{X} \\ +\infty & \exists x \in \mathcal{X} \text{ s.t. } \psi_{2}(x) > 0 \end{cases}$$

• If $\|\psi\|_{\infty} \leq 1$, consider $\psi_1 = \psi$, which implies $A^*(\psi_1) = 0$, and $\psi_2 = 0$, which implies $B^*(\psi_2) = 0$. Thus $F^*(\psi) = 0$.

troduction	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 000000000000000000000000000000000000

$$F^{*}(\psi) = \min_{\psi_{1}+\psi_{2}=\psi} A^{*}(\psi_{1}) + B^{*}(\psi_{2})$$

=
$$\min_{\psi_{1}+\psi_{2}=\psi} \begin{cases} 0 & \|\psi_{1}\|_{\infty} \leq 1 \\ +\infty & \|\psi_{1}\|_{\infty} > 1 \end{cases} + \begin{cases} 0 & \psi_{2}(x) \leq 0 \ \forall x \in \mathcal{X} \\ +\infty & \exists x \in \mathcal{X} \text{ s.t. } \psi_{2}(x) > 0 \end{cases}$$

• If $\|\psi\|_{\infty} > 1$ and $\exists \bar{x}$ such that $\psi(\bar{x}) > 1$, we have $F^*(\psi) = +\infty$. Assume there exist $\psi_1, \psi_2 \in \mathcal{C}(\mathcal{X})$ such that $\psi_1 + \psi_2 = \psi$ and $\|\psi_1\|_{\infty} \leq 1$ and $\psi_2(x) \leq 0 \ \forall x \in \mathcal{X}$.

$$1 < \psi(\bar{x}) = \underbrace{\psi_1(\bar{x})}_{\leq 1} + \underbrace{\psi_2(\bar{x})}_{\leq 0} \leq 1 \Rightarrow 1 < 1$$

Then, $\forall \psi_1, \psi_2$ such that $\psi_1 + \psi_2 = \psi$ either $\|\psi_1\|_{\infty} > 1$ or $\psi_2(x) > 0$ for some $x \in \mathcal{X}$. Hence, $F^*(\psi) = +\infty$.

troduction	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 000000000000000000000000000000000000

$$\begin{aligned} F^*(\psi) &= \min_{\psi_1 + \psi_2 = \psi} A^*(\psi_1) + B^*(\psi_2) \\ &= \min_{\psi_1 + \psi_2 = \psi} \begin{cases} 0 & \|\psi_1\|_{\infty} \le 1 \\ +\infty & \|\psi_1\|_{\infty} > 1 \end{cases} + \begin{cases} 0 & \psi_2(x) \le 0 \ \forall x \in \mathcal{X} \\ +\infty & \exists x \in \mathcal{X} \text{ s.t. } \psi_2(x) > 0 \end{cases} \end{aligned}$$

• If $\|\psi\|_{\infty} > 1$ and $\psi(x) \leq 1 \ \forall x \in \mathcal{X}$, consider $\psi_1 = \psi^+$ and $\psi_2 = \psi^-$, with

$$\psi^+(x) = egin{cases} \psi(x) & \psi(x) \ge 0 \ 0 & \psi(x) < 0 \end{cases} \qquad \psi^-(x) = egin{cases} 0 & \psi(x) > 0 \ \psi(x) & \psi(x) \le 0 \end{cases}$$

 $\psi=\psi^++\psi^- \text{ and } \|\psi^+\|_\infty\leq 1 \text{ and } \forall \ x\in \mathcal{X} \ \psi^-(x)\leq 0 \text{, thus } F^*(\psi)=0.$

Introduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000	000000000000000	000000000	000000000000

$$\begin{aligned} F^{*}(\psi) &= \min_{\psi_{1}+\psi_{2}=\psi} A^{*}(\psi_{1}) + B^{*}(\psi_{2}) \\ &= \min_{\psi_{1}+\psi_{2}=\psi} \begin{cases} 0 & \|\psi_{1}\|_{\infty} \leq 1 \\ +\infty & \|\psi_{1}\|_{\infty} > 1 \end{cases} + \begin{cases} 0 & \psi_{2}(x) \leq 0 \ \forall x \in \mathcal{X} \\ +\infty & \exists x \in \mathcal{X} \text{ s.t. } \psi_{2}(x) > 0 \end{cases} \end{aligned}$$

$${\mathcal F}^*(\psi) = egin{cases} 0 & orall x \in {\mathcal X} \ \psi(x) \leq 1 \ +\infty & \exists x \in {\mathcal X} \ \psi(x) > 1 \end{cases}$$

Introduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 000000000000000000000000000000000000
Dual proble	em of $\mathcal{D}_{\mathit{KL}} - \mu $			

$$\arg \min_{\mu \in \mathcal{M}(\mathcal{X})} \underbrace{\frac{1}{\lambda} \mathcal{D}_{\mathcal{K}L}(\Phi \mu + b, y)}_{G(\Phi \mu)} + \underbrace{|\mu|(\mathcal{X}) + \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\mu)}_{F(\mu)} \qquad (\mathcal{D}_{\mathcal{K}L} - |\mu|)$$

$$\arg \max_{p \in S} \underbrace{-\frac{b}{\lambda}(1+\lambda p) + \frac{y}{\lambda}\log(1+\lambda p)}_{-G^*(-p^*)}$$
(Dual of $\mathcal{D}_{KL} - |\mu|$)
$$\mathcal{S} = \{p \in L^2(\mathcal{X}) : \underbrace{p > -\frac{1}{\lambda}}_{-G^*(-p^*)} \text{ and } \underbrace{\forall x \in \mathcal{X} \ \Phi^* p(x) \leq 1}_{-F^*(\Phi^* p^*)} \}$$

Extremality conditions

$$\begin{cases} -p_{\lambda} = \frac{1}{\lambda} \left(\frac{y}{\Phi \mu_{\lambda} + b} - I \right) \\ \Phi^* p_{\lambda} \in \partial |\mu_{\lambda}|(\mathcal{X}) + \partial \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\mu_{\lambda}) \end{cases}$$

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	000000000000000000000000000000000000

Algorithm 2: Sliding Frank Wolfe Algorithm for $\ell_2 - |\mu|$

- Input: initialisation $\mu_{[0]}=0$ and maximum number of iterations $K_{\max} \in \mathbb{N}$
- Repeat: For 0 ≤ k ≤ K_{max}
 - 1 Insertion step:

$$x_*^{[k]} \in \operatorname*{argmax}_{x \in \mathcal{X}} |\eta^{[k]}(x)|$$
 with $\eta^{[k]}(x) = \frac{1}{\lambda} \Phi^*(\Phi \mu_{[k]} - y)$

- If $|\eta^{[k]}(x_*^{[k]})| < 1$, then $\mu_{[k]}$ is the solution of BLASSO problem
- Else $\mu_{[k]} = \sum_{i=1}^k a_i^{[k]} \delta_{x^{[k]}}$ has to be updated
- **2** Update positions and amplitudes:

$$\begin{aligned} x^{[k+1/2]} &= (x_1^{[k]}, \cdots, x_k^{[k]}, x_*^{[k]}) \\ a^{[k+1/2]} &\in \operatorname*{argmin}_{a \in \mathbb{R}^{k+1}} \frac{1}{2} \| y - \Phi_{x^{[k+1/2]}}(a) \|_2^2 + \lambda \| a \|_1 \end{aligned}$$

Sliding step:

$$(a^{[k+1]}, x^{[k+1]}) \in \operatorname*{argmin}_{(a,x) \in \mathbb{R}^{k+1} \times \mathcal{X}^{k+1}} \frac{1}{2} \|y - \Phi_x(a)\|_2^2 + \lambda \|a\|_1$$

- Until: $k = K_{\max}$;
- Output:
 - $K \in \mathbb{N}$ number of spikes;
 - $a \in \mathbb{R}^{K}$ s.t. $a_i > 0$ for $i = 1, \dots, K$ amplitudes;
 - $x \in \mathcal{X}^{K}$ positions of the spikes.

roduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
2000	0000000		000000000	000000000000000000000000000000000000

Algorithm 3: Sliding Frank Wolfe Algorithm for $\mathcal{D}_{KL} - |\mu|$

- Input: initialisation $\mu_{[0]}=0$ and maximum number of iterations $K_{max} \in \mathbb{N}$
- **Repeat:** For $0 \le k \le K_{\max}$
 - **1** Insertion step:

$$x_*^{[k]} \in \operatorname*{argmax}_{x \in \mathcal{X}} \left(\eta^{[k]}(x) \right)_+ \text{ with } \eta^{[k]}(x) = \frac{1}{\lambda} \Phi^* \left(I - \frac{y}{\Phi \mu_{[k]} + b} \right)$$

• If
$$|\eta^{[k]}(x_*^{[k]})| < 1$$
, then $\mu_{[k]}$ is the solution of $\mathcal{D}_{KL} - |\mu|$ problem
• Else $\mu_{[k]} = \sum_{i=1}^k a_i^{[k]} \delta_{x_i^{[k]}}$ has to be updated

2 Update positions and amplitudes:

$$\begin{aligned} x^{[k+1/2]} &= (x_1^{[k]}, \cdots, x_k^{[k]}, x_*^{[k]}) \\ a^{[k+1/2]} &\in \operatorname*{argmin}_{a \in \mathbb{R}^{k+1}} \mathcal{D}_{\mathcal{KL}}(\Phi_{x^{[k+1/2]}}(a) + b, y) + \lambda \|a\|_1 \end{aligned}$$

3 Sliding step:

$$(a^{[k+1]}, x^{[k+1]}) \in \operatorname*{argmin}_{(a,x) \in \mathbb{R}^{k+1} \times \mathcal{X}^{k+1}} \mathcal{D}_{\mathit{KL}}(\Phi_x(a) + b, y) + \lambda \|a\|_1$$

- Until: $k = K_{max}$;
- Output:

 - $K \in \mathbb{N}$ number of spikes; $a \in \mathbb{R}^{K}$ s.t. $a_{i} > 0$ for $i = 1, \cdots, K$ amplitudes;
 - $x \in \mathcal{X}^{K}$ positions of the spikes.

iction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
OO	0000000		000000000	000000000000000000000000000000000000

Regularisation path for $\ell_2 - |\mu|$

Introc		
000	00	

Off-the-grid approach 0000000 Off-the-grid for Poisson noise scenarios

Homotopy 0000000000

Regularisation path for $\mathcal{D}_{KL} - |\mu|$

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000		000000000	000000000000000000000000000000000000

On-the-grid Super-Resolution

$$\underset{\mathbf{x}\in\mathbb{R}^{N}}{\arg\min}\frac{1}{2}\|\mathbf{A}\mathbf{x}-\mathbf{y}\|_{2}^{2}+\lambda\mathbf{x}$$

- ℓ_2 -fidelity corresponds to a Gaussian noise formulation
- Penalty to enforce sparsity in the reconstruction: ℓ₀-norm ||**x**||₀ = #{j | x_j ≠ 0}

•
$$\ell_1$$
-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^N |x_i|$

• $\phi_{capped-\ell_1}(\mathbf{x}, \theta) = \min\{\theta | \mathbf{x} |, 1\}, \theta > 0$

•
$$\ell_p$$
-norm: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^N |x_i|^p\right)^{1/p}, \ 0$

• $\phi_{log-sum}(\mathbf{x}, \delta) = \log(\delta + |\mathbf{x}|), \ \delta > 0$

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000		000000000	000000000000000000000000000000000000

On-the-grid Super-Resolution

 $\underset{\mathbf{x} \in \mathbb{R}^{N}}{\arg\min} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \lambda \mathbf{y}$

- ℓ_2 -fidelity corresponds to a Gaussian noise formulation
- Penalty to enforce sparsity in the reconstruction: ℓ₀-norm ||x||₀ = #{j | x_j ≠ 0}

Relaxations of $\ell_0\text{-norm}$

•
$$\phi_{MCP}(\mathbf{x}, \lambda, \beta) = \lambda \left(\frac{\beta \lambda}{2} \mathbb{1}_{\{|\mathbf{x}| > \beta \lambda\}} + \left(|\mathbf{x}| - \frac{\mathbf{x}^2}{2\beta \lambda} \right) \mathbb{1}_{\{|\mathbf{x}| \le \beta \lambda\}} \right), \ \theta > 0, \ \lambda > 0$$

• $\phi_{SCAD}(\mathbf{x}, \lambda, \mathbf{a}) = \begin{cases} \lambda |\mathbf{x}| & \text{if } |\mathbf{x}| \le \lambda \\ -\frac{\lambda^2 - 2a\lambda |\mathbf{x}| + \mathbf{x}^2}{2(a-1)} & \text{if } \lambda < |\mathbf{x}| \le a\lambda, \ \mathbf{a} > 2, \ \lambda > 0 \\ \frac{(a+1)\lambda^2}{2} & \text{if } |\mathbf{x}| > a\lambda \end{cases}$
• $\phi_{CEL0}(\mathbf{x}, \lambda, \mathbf{a}) = \lambda - \frac{a^2}{2} \left(|\mathbf{x}| - \frac{\sqrt{2\lambda}}{a} \right)^2 \mathbb{1}_{\{|\mathbf{x}| \le \frac{\sqrt{2\lambda}}{a}\}}, \ \lambda > 0, \ \mathbf{a} > 0$

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
00000	0000000		000000000	000000000000000000

Sudifferential of the penalty

If
$$\mu = \sum_{i=1}^{N} a_i \delta_{x_i}$$
 with $a_i > 0$, $x_i \in \mathcal{X}$ we have
 $\partial |\mu|(\mathcal{X}) = \{\eta_1 \in \mathcal{C}(\mathcal{X}) : \|\eta_1\|_{\infty} \leq 1 \text{ and } \eta_1(x_i) = 1, i = 1, \dots, N\}$
 $\partial \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\mu) = \{\eta_2 \in \mathcal{C}(\mathcal{X}) : \forall x \in \mathcal{X} \ \eta_2(x) \leq 0 \text{ and } \eta_2(x_i) = 0, i = 1, \dots, N\}$
Thus,

$$\partial |\mu|(\mathcal{X}) + \partial \mathbb{1}_{\mathcal{M}(\mathcal{X})^+}(\mu) \subseteq \{\eta \in \mathcal{C}(\mathcal{X}): \ \forall x \in \mathcal{X} \ \eta(x) \leq 1 \text{ and } \eta(x_i) = 1, \ i = 1, \dots, N\}$$

Introduction 00000	Off-the-grid approach 0000000	Off-the-grid for Poisson noise scenarios	Homotopy 000000000	3D real data results 000000000000000
Fenchel	duality			

For $\Lambda: V \to Y$ linear, $F: V \to \mathbb{R}$ and $G: Y \to \mathbb{R}$ convex, the primal problem

$$\arg \min_{u \in V} F(u) + G(\Lambda u)$$
 (Primal)

has a dual problem which reads

$$\arg \max_{p^* \in Y^*} -F^*(\Lambda^* p^*) - G^*(-p^*)$$
 (Dual)

Moreover, if $u \in V$ and $p^* \in Y^*$ are respectively solutions of the primal and dual, the following extremality conditions hold:

 $\begin{cases} -p^* \in \partial G(\Lambda u) \\ \Lambda^* p^* \in \partial F(u) \end{cases}$

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000	000000000000000	000000000	0000000000000000

Certificate and its argmax

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000		000000000	00000000000000000

Insertion step related to argmax of certificate

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
20000	0000000		000000000	0000000000000000

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000		000000000	00000000000000000000

Certificate and its argmax

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000		000000000	00000000000000000

Insertion step related to argmax of certificate

ntroduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
20000	0000000		000000000	0000000000000000

troduction	Off-the-grid approach	Off-the-grid for Poisson noise scenarios	Homotopy	3D real data results
0000	0000000		000000000	000000000000000000