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PhD student, LMO, équipe Probas & Stat
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Setting and General Background



Setting 4

We consider objectives of the form

min
µ∈M(Sd−1)

F (µ)

with:

▶ M(Sd−1) space of signed measures over the unit sphere

▶ F = J + λH convex

▶ J convex and smooth, H convex and potentially
non-smooth, λ ≥ 0



Goals 5

▶ Problem 1: how to obtain global minimum of F with
explicit CV rate ?

▶ Problem 2: how to obtain algos that are practical
computationally ?

▶ Wasserstein GD enjoys good practical behaviour but not
always global CV guarantees (Wojtowytsch, 2020; Chizat,
2022) (no explicit rate, local convergence, ...)

▶ We propose algos inspired from finite-dimensional convex
optimization to obtain global convergence guarantees



Plan of the talk 6

▶ For smooth F (i.e., λ = 0), coordinate descent (in
L2(Sd−1)) has explicit convergence guarantee in O(k−1/d)

▶ Problem: memory & compute grow linearly with iteration
k =⇒ impractical...

▶ Idea: penalize objective to encourage sparsity. e.g.:

(i) total variation penalty akin to L1 penalty (non-smooth)
(ii) attractive / repulsive kernel penalties

▶ (i) leads to proximal algorithms in space of measures
(ii) described by a PDE called Wasserstein-Fisher-Rao GF



Link with neural networks



Link with neural networks 8

▶ Consider the objective over two-layer neural networks

min
a,b∈Rm×Rm×d

{
Jm(a,b) : = Ex∼ρ [ℓ(f∗(x), fm(a,b;x))]

}
,

fm(a,b;x) =

m∑
j=1

ajσ(b⊤j x)

▶ If σ positively homogeneous (e.g., ReLU),
fm(a,b;x) =

∫
σ(u⊤x)dµm =: f(µm;x),

µm :=
∑m

j=1
aj

||bj ||δbj/||bj || ∈ M(Sd−1)

▶ Then, Jm(a,b) = J(µm), J(µ) := Ex∼ρ [ℓ(f∗(x), f(µ;x))].



Link with neural networks, use of homogeneity 9

▶ Usual training of NNs (GD) can be describe by the
Wasserstein GF over νt ∈ P2(Rd+1)

∂tνt = −div(−∇V [νt]νt)

▶ Define µ±
t ∈ M+(Sd−1) through, for any test function φ∫

φdµ±
t =

∫
±a≥0,b

|a|||b||φ
(

b

||b||

)
dνt(a, b)

▶ Then through homogeneity, Wasserstein GF =⇒
Wasserstein-Fisher-Rao GF (Chizat, 2022; Hajjar and
Chizat, 2023 for more details):

∂tµ
±
t = −div(−projtan(Sd−1)(∇V [νt])) ± 2V [νt]µ

±
t



Link with neural networks, use of homogeneity 10

▶ Actually needs homogeneity + ν0 initialized on the cone
{|a|= ||b||} =⇒ “conic” GD

▶ It holds
∫
aσ(b⊤x)dνt(a, b) =

∫
σ(u⊤x)dµt(u),

µt = µ+
t − µ−

t ∈ M(Sd−1)

▶ Remark: usual NNs trained with (Wasserstein) GD with
fixed # neurons. In this talk it evolves dynamically during
optimization



Brief overview of (some) convex
optimization methods



Coordinate descent methods 12

▶ Consider convex f : Rm → R and smooth, i.e.,
||∇f(x) −∇f(y)||≤ L||x− y||

▶ GD converges to global minimum in O(1/k) but requires m
operations at each iteration

▶ Random coordinate descent: at each iteration k, select
coordinate ik ∼ U({1, . . . ,m}) and xk+1 = xk − η∇ikf(xk)

▶ CV to a global minimum in expectation in O(m/k) but
requires O(1) operations at each iteration =⇒ m
iterations to compute a full gradient, slower CV but
cheaper iteration



Random coordinate descent methods 13

▶ Many proof techniques but essentially reduces to proving a
condition akin to a  Lojasiewicz condition:
1
2E[f(xk) −M∗]2 ≤ τE[||∇f(xk)||]2

▶  Lojasiewicz condition (PL = {L & γ = 1}):
1
2 ||∇f(x)||2≥ τ(f(x) −M∗)γ , τ, γ > 0

▶ =⇒ CV of coordinate descent to global min in

O

((
τ(γ−1)
mL k

)− 1
γ−1

)
if γ > 1

▶ Plain coordinate descent (without  Lojasiewicz assumption)
essentially same (in expectation) as  Lojasiewicz with γ = 2



Proximal coordinate descent methods 14

▶ What if g = f + h, f convex smooth, h convex non-smooth
but separable h(x) =

∑m
i=1 hi(xi) and “easy” to optimize

(e.g., h(x) = ||x||1)?

▶ Proximal methods start with upper bound:

g(y) − g(x) ≤ ⟨∇f(x), y − x⟩ +
L

2
||y − x||2+h(y) − h(x)

(1)

▶ Plugging y = xk + teik and minimizing the RHS over t ∈ R
yields the proximal step xk+1 = xk + tkeik providing a
descent step: g(xk+1) ≤ g(xk)



Convergence rates of proximal methods 15

Convergence of the proximal coordinate descent method:

▶  Lojasiewicz condition =⇒ CV to global min in

O
((

mL
τk )

)1/(γ−1)
)

▶ In general, if we assume only ||xk|| bounded, CV in
O(mL/(τk)) (same as  Lojasiewicz with γ = 2).

▶ Boundedness assumption on ||xk|| holds as soon as h is an
increasing function of some norm

▶ Q: can we adapt / generalize those methods to the
infinite-dim space of measures for NN training ?
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Random coordinate descent in the
space of signed measures



Setting 17

▶ Objective F : M(Sd−1) → R convex and smooth, i.e.,
admits continuous first variation V [µ] : Sd−1 → R, and
||V [ν] − V [µ]||∞≤ L|ν − µ|TV

▶ The first variation is the “derivative” of the functional F :
d
dtF (µ + tν)

∣∣∣
t=0

=
∫
V [µ]dν

▶ Analogous to d
dtf(x + ty)

∣∣∣
t=0

= ⟨∇f(x), y⟩ in finite-dim



Upper bound from smoothness 18

▶ Similarly to the upper bound
f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + L

2 ||y − x||2 in finite-dim:

F (ν) − F (µ) ≤
∫

V [µ]d(ν − µ) +
L

2
|ν − µ|2TV (2)

▶ Pb: compared to finite-dim, minimum over ν ∈ M(Sd−1) of
the RHS is not always tractable (Frank-Wolfe step)...

▶ However, if we restrict to L2(ω), the RHS is upper
bounded (Jensen) by

∫
V [µ](fν − fµ)dω + L

2 ||fν − fµ||2L2(ω)

▶ Minimum over fν ∈ L2(ω) is obtained (pointwise) for
f∗
ν = fµ − 1

LV [µ] and the min is − 1
2L ||V [µ]||2L2(ω)



Coordinate descent intuition 19

Back to our minimization problem

▶ In M(Sd−1), no clear notion of basis, coordinate or
projection as in finite-dim

▶ However, intuitively δu is a good candidate for a “basis”
vector and the mass µ “puts” at u ∈ Sd−1 good candidate
for coordinate along δu

▶ We plug ν = µ + tδu into the previous upper bound (2) and
minimize over t ∈ R

▶ Min is obtained for t = − 1
LV [µ](u) and equal to

− 1
2LV [µ](u)2.



Coordinate descent algorithm 20

▶ Starting from µ0 = c0δu0 , for each iteration k ≥ 1, do:

1. Sample uk ∼ ωd := U(Sd−1)

2. Set ck := − 1
LV [µk−1](uk) and µk = µk−1 + ckδuk

▶ Since ck = argmint∈R tV [µk−1](uk) + L
2 t

2, this is
reminiscent of finite-dim coordinate descent, except we
never circle back to the same coordinate twice...

▶ In expectation, this yields
E[F (µk)|µk−1] ≤ F (µk−1) − 1

2L ||V [µk−1]||2L2(ω)



Link with L2 geometry



Coordinate descent and L2 geometry 22

▶ Given µk−1, it holds for any f ∈ L2(ωd)

F (µk−1 + fωd) − F (µk−1) ≤
∫

V [µk−1]fdωd +
L

2
||f ||2L2(ωd)

▶ Minimizing the upper bound on the RHS yields
f∗ = − 1

LV [µk−1] and
F (µk−1 + f∗ωd) − F (µk−1) ≤ − 1

2L ||V [µk−1]||2L2(ωd)

▶ Thus, a step of coordinate descent is (in expectation)
equivalent to a minimization in L2(ωd) geometry

▶ V is the gradient w.r.t L2(ωd) geometry



Brief outline for the convergence
proof



 Lojasiewicz inequality in M(Sd−1) 24

▶ Assumptions:

1. (|µk|TV )k≥0 is bounded
2. There is K > 0 such that for any u, v ∈ Sd−1 and

µ ∈ M(Sd−1), |V [µ](v) − V [µ](u)|≤ K||v − u||

▶  Lojasiewicz inequality:

Lemma (Chizat, Hajjar & Giraud (2023))

There is a constant τ > 0 such that:

1

2
||V [µk]||2L2(ωd)

≥ τ(F (µk) − F ∗)d+1.



Global convergence result 25

Theorem (Chizat, Hajjar & Giraud (2023))

Let µk be the iterates generated by the coordinate descent
algorithm in M(Sd−1). Then, under the previous assumptions,
there is a constant C > 0 such that, for any k ≥ 1:

0 ≤ E[F (µk) − F ∗] ≤ C

k1/d
.

▶ Issue: the number of atoms of µk grows linearly with k
=⇒ computationally impractical because new particle
added at each iteration

▶ Idea: add sparsity-inducing penalties such as total
variation norm !

▶ Mix global CV steps with Wasserstein GD “conic” steps
which have good local convergence properties
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Proximal algorithms for the total
variation penalty



Total variation penalty 27

▶ TV norm for measures is analogous to L1 penalty in
finite-dim: |

∑
j cjδuj |TV =

∑
j |cj |

▶ As in finite-dim it encourages sparsity (see next slide)

▶ We consider the objective functional F (µ) = J(µ) +λ|µ|TV ,
J convex smooth, |−|TV is convex but not smooth

▶ Diff with finite-dim: |−|TV is not separable, cannot write
|µ|TV =

∫
fµdωd in general



Proximal bound and sparsity 28

As in finite-dim, proximal upper bound:

F (ν) − F (µ) ≤
∫

V [µ]d(ν − µ) +
L

2
|ν − µ|2TV +λ|ν|TV −λ|µ|TV

(3)

▶ Plug ν = µ + tδu for u ∈ Sd−1 and minimize the RHS w.r.t
t ∈ R

▶ If u not in supp(µ), we get (similarly to finite-dim),

t∗ = −V [µ](u)
L max

(
0, 1 − λ

|V [µ](u)|

)
▶ Large λ =⇒ sparsity (at least support does not grow)



Proximal algorithm for the total variation 29

Basic variant of the proximal algorithm: starting from
µ0 = c0δu0 , for each iteration k ≥ 1, do

1. Sample uk ∼ ωd = U(Sd−1)

2. Set ck = −V [µk−1](uk)
L max

(
0, 1 − λ

|V [µ](uk)|

)

3. If ck = 0, µk = µk−1, else µk = µk−1 + ckδuk



Discussion 30

Issues:

1. No real sparsity because support size can still grow as αk,
α ∈ (0, 1)...

2. Global convergence guarantee is lost (no smoothness =⇒
previous proof does not work, and same technique as
finite-dim does not apply because of TV)

3. Worse, trade-off between sparsity and descent:

F (µk+1) − F (µk) ≤ − 1
2L max

(
0, |V [µk](uk+1)|−λ

)2
,

objective decrease only if new atom added...



A modified proximal algorithm 31

Idea:

▶ Proximal update with TV penalty =⇒ we don’t always
add a new atom

▶ If we sample from existing atoms maybe we can “kill” some
atoms (same effect as L1 penalty in finite-dim) ?

▶ Thus sample new atom half the time and existing atom
half the time

▶ Need to recompute the upper bound when sampling
existing atom



A modified proximal algorithm 32

▶ Let µk =
∑k

j=0 cjδuj , j ∈ {0, . . . , k}. RHS of (3) with

ν = µk + tδuj is tV [µk](uj) + L
2 t

2 + λ|cj + t|−λ|cj |

▶ Min w.r.t t ∈ R same as prox step with L1 penalty in finite
dim: Iterative Soft Thresholding

t∗ = −cj +

(
cj −

V [µk](uj)

L

)
max

(
0, 1 − λ

|V [µk](uj) − Lcj |

)

▶ Total weight on uj after update is cj + t∗: can be 0 for
large λ =⇒ decrease of the number of atoms !



A modified proximal algorithm 33

Modified proximal algorithm: starting from µ0 = c0δu0 , for
each iteration k ≥ 1, do

1. if k odd: sample uk ∼ ωd = U(Sd−1),
else: sample uk ∼ U({u0, . . . , uk−1})

2. Set ck accordingly depending on parity of k

3. if total mass on uk after update is 0: µk = µk−1,
else: µk = µk−1 + ckδuk



Discussion 34

▶ The proximal algo is a true descent algo: F (µk+1) ≤ F (µk)

▶ Odd steps are strict descent only if new neuron is added

▶ Even steps are strict descent (in expectation) as soon as
µ2k+1 is not optimal among measures with the same
support

▶ Unfortunately no global convergence guarantee and no
explicit control over number of atoms

▶ But, good empirical behaviour ! (see next slides)



Numerical experiments for proximal
coordinate descent with TV penalty



Numerical simulation 36

▶ Mix algos with “conic” Wasserstein GD steps (usual GD
for NNs) which often have good behaviour in practice

▶ Algos: pure coord descent, prox-TV, prox-TV fixed
support, modified prox-TV, modified prox-TV + conic,
pure conic GD (no penalty)

▶ Setting d = 10, m = 500 atoms for pure conic and fixed
support, 3, 000 iterations



Numerical simulation 37

(a) Penalized objective (b) Original objective

(c) # atoms

Figure 1: Empirical performance of different algorithms



Discussion on numerical simulation 38

▶ Modified prox-TV and conic variant have low objective and
penalized objective values

▶ # atoms seem to be bounded compared to pure coord
descent and basic prox-TV

▶ pure coord descent and pure conic GD have distinctly
lower objective value but former computation cost grows
linearly and latter has no CV rate

▶ modified prox-TV and conic variant seem to strike a
balance between theoretical soundness and computational
cost (dynamical adaptation of # atoms)



Part III 39

Kernel penalties



Setting 40

▶ Objective functional

F (µ) = J(µ) + λ

∫
u,v

K(u, v)d|µ|(u)d|µ|(v)

▶ J convex smooth, K(u, v) = κ(⟨u, v⟩), κ : R → R+, λ > 0

▶ Attractive kernel (resp. repulsive) if κ decreasing (resp.
increasing)

▶ e.g., κa,σ(s) = 1 − e(s−1)/σ2
or κr,σ(s) = e(s−1)/σ2



Intuition 41

▶ Idea: by pushing particles closer together or far apart,
some particles will aggregate

▶ Then, merging particles which are at distance less than ϵ
=⇒ sparsity

▶ Theoretically motivated approach but no guarantees
unfortunately...



Evolution equations: PDE dynamics 42

▶ Evolution equations come from Wasserstein GF lifted on
the sphere (called Wasserstein-Fisher-Rao GF)

▶ Starting from µ0 ∈ M(Sd−1), PDEs (distributionally)

∂tµ
±
t = −div(±ṽ±t µ

±
t ) ± 2g±t µ

±
t

▶ µ+
t , µ

−
t ∈ M+(Sd−1) positive/negative part of

µt ∈ M(Sd−1)

▶ Advection / reaction terms (V is first variation of J):

g±t (u) = −
(
±V [µt](u) + λ

∫
K(u, v)d|µt|(v)

)
,

ṽ±t (u) = proj{u}⊥
(
∇g±t (u)

)
.



Inconclusive numerical results 43

▶ PDEs can be discretized in time an provide iterates (µk)k≥0

▶ Still work in progress but numerical experiments are
inconclusive at this stage

▶ Not obvious empirically that the dynamics induce sparsity

▶ Dynamics decrease the objective but less than pure coord
descent or conic GD



Open questions / future work 44

▶ Proof of the boundedness of |µk|TV for the CV of pure
coord descent

▶ Proof of CV for modified prox-TV in specific settings ?

▶ Control of the number of neurons for prox-TV and kernel
penalties ?

▶ Empirical setting where kernel penalties are effective in
terms of sparsity ?



Thank you!



Supplementary figures 46

Kernel penalties performance

(a) ϵ = 0.1 (b) ϵ = 0.15 (c) ϵ = 0.25

Figure 2: Initial objective J(µk) vs. k.

(a) ϵ = 0.1 (b) ϵ = 0.15 (c) ϵ = 0.25

Figure 3: Number of neurons mk vs. k.
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