

Models and algorithms for off-the-grid point tracking in dynamic inverse problems

<u>Kristian Bredies</u> Marcello Carioni Silvio Fanzon Francisco Romero

Department of Mathematics and Scientific Computing University of Graz

Workshop on "Off-the-grid and continuous methods for optimization and inverse problems in imaging" November 21, 2023

Motivation

Motion-aware tomographic reconstruction

Motion on sub-acquisition time scales \rightsquigarrow artefacts in reconstructed images

- Imaging of the lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Motivation

Motion-aware tomographic reconstruction

Motion on sub-acquisition time scales \rightsquigarrow artefacts in reconstructed images

- Imaging of the lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Reference data

Unregularized reconstruction

Motivation

Motion-aware tomographic reconstruction Motion on sub-acquisition time scales \rightsquigarrow artefacts in reconstructed images

- Imaging of the lung or heart (motion cannot be suppressed)
- High-resolution imaging (sub-millimeter motion poses problems)

Reference data Unregularized reconstruction ~> Increase resolution via appropriate regularization

Sparse superresolution

Static problem

- Solve $\mathfrak{F} u = f$ on Σ
- \mathfrak{F} Fourier transform, $\Sigma \subset \mathbb{R}^d$ finite set
- Sparsity assumption: $u = \sum_{i=1}^{N} c_i \delta_{x_i}$

Sparse superresolution

Static problem

- Solve $\mathfrak{F} u = f$ on Σ
- \mathfrak{F} Fourier transform, $\Sigma \subset \mathbb{R}^d$ finite set
- Sparsity assumption: $u = \sum_{i=1}^{N} c_i \delta_{x_i}$

Radon-norm regularization

Solve variational problem in space of Radon measures

 $\min_{u\in\mathcal{M}(\Omega)} \ \|u\|_{\mathcal{M}} \qquad \text{subject to} \quad \mathfrak{F}u=f \quad \text{on} \quad \Sigma$

Relaxed/regularized version (noisy data)

$$\min_{u \in \mathcal{M}(\Omega)} \frac{1}{2} \|\mathfrak{F}u - f\|_{\Sigma,2}^2 + \alpha \|u\|_{\mathcal{M}}$$
[Candès/Fernandez-Granda '13] and many more

Sparse superresolution

Static problem

- Solve $\mathfrak{F} u = f$ on Σ
- \mathfrak{F} Fourier transform, $\Sigma \subset \mathbb{R}^d$ finite set
- Sparsity assumption: $u = \sum_{i=1}^{N} c_i \delta_{x_i}$

Radon-norm regularization

Solve variational problem in space of Radon measures

 $\min_{u\in\mathcal{M}(\Omega)} \|u\|_{\mathcal{M}}$ subject to $\mathfrak{F}u=f$ on Σ

Relaxed/regularized version (noisy data)

$$\min_{u \in \mathcal{M}(\Omega)} \frac{1}{2} \| \mathfrak{F}u - f \|_{\Sigma,2}^2 + \alpha \| u \|_{\mathcal{M}}$$

[Candès/Fernandez-Granda '13] and many more

 \rightsquigarrow Study a dynamic version of this approach

Outline

- Peak recovery for static inverse problems
 A successive peak insertion and thresholding algorithm
- 2 Peak tracking for dynamic inverse problems
 Dynamic optimal-transport formulations and energies
 Regularization of dynamic inverse problems
 Extremal points of the Benamou–Brenier energy
- 3 A curve insertion and evolution algorithmConvergence analysis and numerical example
- 4 Conclusions and perspectives

Outline

- Peak recovery for static inverse problems
 A successive peak insertion and thresholding algorithm
- 2 Peak tracking for dynamic inverse problems
 Dynamic optimal-transport formulations and energies
 Regularization of dynamic inverse problems
 Extremal points of the Benamou–Brenier energy
- A curve insertion and evolution algorithm
 Convergence analysis and numerical example
- 4 Conclusions and perspectives

Tikhonov functional in Radon space

Tikhonov regularization

[B./Pikkarainen '13]

$$u_{\alpha}^{\delta} \in \underset{u \in \mathcal{M}(\Omega)}{\arg\min} \ \frac{\|A^*u - f^{\delta}\|_{H}^{2}}{2} + \alpha \|u\|_{\mathcal{M}}$$

Setting

H Hilbert space

$$A \in \mathcal{L}(H, \mathcal{C}_0(\Omega))$$

predual forward model
(*B* weak*-cont. $\Leftrightarrow B = A^*$)

Tikhonov functional in Radon space

Tikhonov regularization

[B./Pikkarainen '13]

$$u_{\alpha}^{\delta} \in \underset{u \in \mathcal{M}(\Omega)}{\arg\min} \ \frac{\|A^*u - f^{\delta}\|_{H}^{2}}{2} + \alpha \|u\|_{\mathcal{M}}$$

Setting

H Hilbert space

- Ω sep. locally compact space
- *M*(Ω) = C₀(Ω)*
 space of signed Radon measures
- $A \in \mathcal{L}(H, \mathcal{C}_0(\Omega))$ predual forward model (*B* weak*-cont. $\Leftrightarrow B = A^*$)

Tikhonov functional in Radon space

Tikhonov regularization

[B./Pikkarainen '13]

$$u_{\alpha}^{\delta} \in \underset{u \in \mathcal{M}(\Omega)}{\operatorname{arg min}} \ \frac{\|A^*u - f^{\delta}\|_{H}^{2}}{2} + \alpha \|u\|_{\mathcal{M}}$$

Setting

H Hilbert space

•
$$\Omega$$
 sep. locally compact space

•
$$\mathcal{M}(\Omega) = \mathcal{C}_0(\Omega)^*$$

space of signed Radon measures

$$A \in \mathcal{L}(H, \mathcal{C}_0(\Omega))$$

predual forward model
(*B* weak*-cont. $\Leftrightarrow B = A^*$)

Tikhonov functional in Radon space

Tikhonov regularization

[B./Pikkarainen '13]

$$u_{\alpha}^{\delta} \in \underset{u \in \mathcal{M}(\Omega)}{\arg\min} \ \frac{\|A^*u - f^{\delta}\|_{H}^{2}}{2} + \alpha \|u\|_{\mathcal{M}}$$

Setting

H Hilbert space

•
$$A \in \mathcal{L}(H, \mathcal{C}_0(\Omega))$$

predual forward model
 $(B \text{ weak*-cont.} \Leftrightarrow B = A^*)$

Tikhonov functional in Radon space

Tikhonov regularization

[B./Pikkarainen '13]

$$u_{\alpha}^{\delta} \in \underset{u \in \mathcal{M}(\Omega)}{\operatorname{arg\,min}} \ \frac{\|A^*u - f^{\delta}\|_{H}^{2}}{2} + \alpha \|u\|_{\mathcal{M}}$$

Setting

- H Hilbert space
- Ω sep. locally compact space
- *M*(Ω) = C₀(Ω)*
 space of signed Radon measures
- $A \in \mathcal{L}(H, \mathcal{C}_0(\Omega))$ predual forward model (*B* weak*-cont. $\Leftrightarrow B = A^*$)

Theorem

There exists a minimizer.

Proof:

Direct method for weak*convergence in $\mathcal{M}(\Omega)$ \Box

Tikhonov functional in Radon space

Tikhonov regularization

[B./Pikkarainen '13]

$$u_{\alpha}^{\delta} \in \underset{u \in \mathcal{M}(\Omega)}{\operatorname{arg\,min}} \ \frac{\|A^*u - f^{\delta}\|_{H}^{2}}{2} + \alpha \|u\|_{\mathcal{M}}$$

Setting

- H Hilbert space
- Ω sep. locally compact space
- *M*(Ω) = C₀(Ω)*
 space of signed Radon measures
- $A \in \mathcal{L}(H, \mathcal{C}_0(\Omega))$ predual forward model (*B* weak*-cont. $\Leftrightarrow B = A^*$)

Theorem

There exists a minimizer.

Proof:

Direct method for weak*convergence in $\mathcal{M}(\Omega)$

• Case $\Omega \subset \mathbb{R}^d$ open $\rightsquigarrow [Scherzer/Walch '08]$

Original problem

$$\min_{\boldsymbol{u}\in\mathcal{M}(\Omega)}\frac{\|\boldsymbol{A}^{*}\boldsymbol{u}-\boldsymbol{f}^{\delta}\|_{H}^{2}}{2}+\alpha\|\boldsymbol{\mu}\|_{\mathcal{M}}$$

Predual problem

$$\min_{\boldsymbol{v}\in H}\frac{\|\boldsymbol{v}-\boldsymbol{f}^{\delta}\|_{H}^{2}}{2}+I_{\{\|\boldsymbol{A}\boldsymbol{v}\|_{\infty}\leq\alpha\}}(\boldsymbol{v})$$

Original problem

$$\min_{u \in \mathcal{M}(\Omega)} \frac{\|A^*u - f^{\delta}\|_{H}^{2}}{2} + \alpha \|\mu\|_{\mathcal{M}}$$

Predual problem

$$\min_{v\in H}\frac{\|v-f^{\delta}\|_{H}^{2}}{2}+I_{\{\|Av\|_{\infty}\leq\alpha\}}(v)$$

 Primal-dual optimality system via subgradient inclusions

Optimality system

$$\begin{cases} \|A(A^*u^* - f^{\delta})\|_{\infty} \le \alpha \\ \sup p u^* \subset \{|A(A^*u^* - f^{\delta})| = \alpha\} \\ u^* \le 0 \text{ on } \{A(A^*u^* - f^{\delta}) = \alpha\} \\ u^* \ge 0 \text{ on } \{A(A^*u^* - f^{\delta}) = -\alpha\} \end{cases}$$

Original problem

$$\min_{\boldsymbol{u}\in\mathcal{M}(\Omega)}\frac{\|\boldsymbol{A}^{*}\boldsymbol{u}-\boldsymbol{f}^{\delta}\|_{H}^{2}}{2}+\alpha\|\boldsymbol{\mu}\|_{\mathcal{M}}$$

Predual problem

$$\min_{v\in H} \frac{\|v-f^{\delta}\|_{H}^{2}}{2} + I_{\{\|Av\|_{\infty} \leq \alpha\}}(v)$$

 Primal-dual optimality system via subgradient inclusions

Optimality system $\begin{cases} \|A(A^*u^* - f^{\delta})\|_{\infty} \leq \alpha \\ \text{supp } u^* \subset \{|A(A^*u^* - f^{\delta})| = \alpha\} \\ u^* \leq 0 \text{ on } \{A(A^*u^* - f^{\delta}) = \alpha\} \\ u^* \geq 0 \text{ on } \{A(A^*u^* - f^{\delta}) = -\alpha\} \end{cases}$

Original problem

$$\min_{\boldsymbol{u}\in\mathcal{M}(\Omega)}\frac{\|\boldsymbol{A}^{*}\boldsymbol{u}-\boldsymbol{f}^{\delta}\|_{H}^{2}}{2}+\alpha\|\boldsymbol{\mu}\|_{\mathcal{M}}$$

Predual problem

$$\min_{v\in H} \frac{\|v-f^{\delta}\|_{H}^{2}}{2} + I_{\{\|Av\|_{\infty} \leq \alpha\}}(v)$$

 Primal-dual optimality system via subgradient inclusions

Optimality system $\begin{cases} \|A(A^*u^* - f^{\delta})\|_{\infty} \leq \alpha \\ \text{supp } u^* \subset \{|A(A^*u^* - f^{\delta})| = \alpha\} \\ u^* \leq 0 \text{ on } \{A(A^*u^* - f^{\delta}) = \alpha\} \\ u^* \geq 0 \text{ on } \{A(A^*u^* - f^{\delta}) = -\alpha\} \end{cases}$

~~ Sparse solutions possible

Numerical minimization

Aim

• Produce sparse iterates $\rightsquigarrow u^n = \sum_i v_i^n \delta_{x_i^n}$

Algorithm

- 1 Set $u_0 = 0$, $M_0 = \|f^{\delta}\|_H^2/(2\alpha)$
- 2 Compute $w^n = -A(A^*u^n f^{\delta})$, find a maximum x^* of the function $|w^n|$
- 3 Set $\nu^n = \alpha^{-1} M_0 w^n(x^*) \delta_{x^*}$ if $|w^n(x^*)| > \alpha$, $\nu = 0$ else
- 4 Compute convex combination $u^{n+1/2} = u^n + s_n(\nu^n u^n)$, $s_n \in [0, 1]$ appropriate
- 5 Perform soft-thresholding step on the coefficients of $u^{n+1/2}$ analogous to [DDD '04] \rightsquigarrow next iterate u^{n+1}

8 / 55

Numerical minimization

Aim

• Produce sparse iterates $\rightsquigarrow u^n = \sum_i v_i^n \delta_{x_i^n}$

Algorithm

- 1 Set $u_0 = 0$, $M_0 = \|f^{\delta}\|_H^2/(2\alpha)$
- 2 Compute $w^n = -A(A^*u^n f^{\delta})$, find a maximum x^* of the function $|w^n|$
- 3 Set $\nu^n = \alpha^{-1} M_0 w^n(x^*) \delta_{x^*}$ if $|w^n(x^*)| > \alpha$, $\nu = 0$ else
- 4 Compute convex combination $u^{n+1/2} = u^n + s_n(\nu^n u^n)$, $s_n \in [0, 1]$ appropriate
- 5 Perform soft-thresholding step on the coefficients of $u^{n+1/2}$ analogous to [DDD '04] \rightsquigarrow next iterate u^{n+1}

~ Successive peak insertion and thresholding (SPInAT)

Properties of the algorithm

Peak insertion

Amounts to generalized conditional gradient method on

9 / 55

Properties of the algorithm

Peak insertion

Amounts to generalized conditional gradient method on

• Converges $\mathcal{O}(n^{-1})$ in the functional values \Rightarrow subsequential weak*-convergence to a minimizer

Properties of the algorithm

Peak insertion

Amounts to generalized conditional gradient method on

• Converges $\mathcal{O}(n^{-1})$ in the functional values

 \Rightarrow subsequential weak*-convergence to a minimizer

Soft thresholding

- Eliminates "superfluous" peaks
- Decreases functional values \Rightarrow combined method converges

GRAZ

1D Deconvolution

 $\min_{u\in\mathcal{M}(\Omega)} \ \frac{1}{2} \|u*k-f^{\delta}\|_{H}^{2} + \alpha \|\mu\|_{\mathcal{M}}$

• *H* discrete space, *k* cubic *B*-spline $\rightarrow \mathcal{M}(\Omega)$ is not discretized

- Merge peaks if functional value decreases
- Gradient flow w.r.t. peak positions

1D Deconvolution

 $\min_{u\in\mathcal{M}(\Omega)} \ \frac{1}{2} \|u*k-f^{\delta}\|_{H}^{2} + \alpha \|\mu\|_{\mathcal{M}}$

• *H* discrete space, *k* cubic *B*-spline $\rightsquigarrow \mathcal{M}(\Omega)$ is not discretized

- Merge peaks if functional value decreases
- Gradient flow w.r.t. peak positions

1D Deconvolution

$$\min_{u \in \mathcal{M}(\Omega)} \frac{1}{2} \| u * k - f^{\delta} \|_{H}^{2} + \alpha \| \mu \|_{\mathcal{M}}$$

• *H* discrete space, *k* cubic *B*-spline $\rightarrow \mathcal{M}(\Omega)$ is not discretized

- Merge peaks if functional value decreases
- Gradient flow w.r.t. peak positions

1D Deconvolution

 $\min_{u\in\mathcal{M}(\Omega)} \frac{1}{2} \|u*k-f^{\delta}\|_{H}^{2} + \alpha \|\mu\|_{\mathcal{M}}$

• *H* discrete space, *k* cubic *B*-spline $\rightsquigarrow \mathcal{M}(\Omega)$ is not discretized

- Merge peaks if functional value decreases
- Gradient flow w.r.t. peak positions

Outline

- Peak recovery for static inverse problems
 A successive peak insertion and thresholding algorithm
- 2 Peak tracking for dynamic inverse problems
 Dynamic optimal-transport formulations and energies
 Regularization of dynamic inverse problems
 Extremal points of the Benamou–Brenier energy
- A curve insertion and evolution algorithm
 Convergence analysis and numerical example
- 4 Conclusions and perspectives

- $\Omega \subset \mathbf{R}^d$ bounded domain, $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$
- $T: \Omega \to \Omega$ measurable, $\rho_1 = T_{\#}\rho_0$

- $\Omega \subset \mathbf{R}^d$ bounded domain, $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$
- $T: \Omega \rightarrow \Omega$ measurable, $\rho_1 = T_{\#}\rho_0$

- $\Omega \subset \mathbf{R}^d$ bounded domain, $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$
- $T: \Omega \to \Omega$ measurable, $\rho_1 = T_{\#}\rho_0$

Goal

- Move ρ_0 to ρ_1 in an optimal way
- Cost of moving mass from x to y: $c(x, y) = \frac{1}{2}|x y|^2$

- $\Omega \subset \mathbf{R}^d$ bounded domain, $\rho_0, \rho_1 \in \mathcal{P}(\Omega)$
- $T: \Omega \rightarrow \Omega$ measurable, $\rho_1 = T_{\#}\rho_0$

Goal

- Move ρ_0 to ρ_1 in an optimal way
- Cost of moving mass from x to y: $c(x,y) = \frac{1}{2}|x-y|^2$

Optimal transport

Solve
$$\min_{T:\Omega \to \Omega} \frac{1}{2} \int_{\Omega} |T(x) - x|^2 \, d\rho_0(x)$$
 subject to $T_{\#}\rho_0 = \rho_1$

Dynamic optimal transport

Idea

Introduce a time variable $t \in [0, 1]$ and consider evolution of ho_t

Time-dependent probability measures

 $t\mapsto
ho_t\in \mathcal{P}(\Omega) \ \ ext{for} \ \ t\in [0,1]$

• Velocity field advecting ρ_t

 $v_t \colon [0,1] \times \Omega \to \mathbf{R}^d$

• (ρ_t, v_t) solves the continuity equation with initial conditions

$$\begin{cases} \partial_t \rho_t + \operatorname{div}(\rho_t v_t) = 0 \\ \text{Initial data } \rho_0, \text{ final data } \rho_1 \end{cases}$$
(CE-IC)

Dynamic optimal transport

Idea

Introduce a time variable $t \in [0, 1]$ and consider evolution of ho_t

Time-dependent probability measures

$$t\mapsto
ho_t\in \mathcal{P}(\Omega)$$
 for $t\in [0,1]$

• Velocity field advecting ρ_t

$$v_t \colon [0,1] \times \Omega \to \mathbf{R}^d$$

• (ρ_t, v_t) solves the continuity equation with initial conditions

$$\begin{cases} \partial_t \rho_t + \operatorname{div}(\rho_t v_t) = 0 & (\text{CE-IC}) \\ \text{Initial data } \rho_0, \text{ final data } \rho_1 & \rho_1 \\ \rho_0 & \rho_1 & \rho_1 \\ \rho_0 & \rho_1 & \rho_1 \\ \rho_1 & \rho_1 & \rho_1 \\ \rho_1$$

Dynamic optimal transport

Dynamic optimal transport

Theorem [Benamou/Brenier '00]

$$\min_{\substack{(\rho_t, v_t) \\ \text{solving (CE-IC)}}} \int_0^1 \int_\Omega |v_t(x)|^2 \rho_t(x) dx dt$$

$$= \min_{\substack{T : \Omega \to \Omega \\ T_{\#\rho_0 = \rho_1}}} \int_\Omega |T(x) - x|^2 \rho_0(x) dx$$

Advantages of the dynamic formulation

By introducing $m_t = \rho_t v_t$, we have the convex energy $\int_0^1 \int_\Omega |v_t(x)|^2 \rho_t(x) \, dx \, dt = \int_0^1 \int_\Omega \frac{|m_t(x)|^2}{\rho_t(x)} \, dx \, dt$ The continuity equation becomes linear $\partial_t \rho_t + \text{div } m_t = 0$

Full trajectory ρ_t is known and v_t can be recovered from m_t

Consider a triple (ρ_t, v_t, g_t) with $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ mass density (not probability measures) $v_t: (0, 1) \times \overline{\Omega} \to \mathbf{R}^d$ velocity field, $g_t: (0, 1) \times \overline{\Omega} \to \mathbf{R}$ growth rate

Consider a triple (ρ_t, v_t, g_t) with $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ mass density (not probability measures) $v_t: (0, 1) \times \overline{\Omega} \to \mathbf{R}^d$ velocity field, $g_t: (0, 1) \times \overline{\Omega} \to \mathbf{R}$ growth rate

Continuity equation

$$\partial_t \rho + \operatorname{div}(\rho v_t) = \rho g_t$$

Initial/final data ρ_0, ρ_1 (CE-IC*)

Consider a triple (ρ_t, v_t, g_t) with $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ mass density (not probability measures) $v_t : (0, 1) \times \overline{\Omega} \to \mathbf{R}^d$ velocity field, $g_t : (0, 1) \times \overline{\Omega} \to \mathbf{R}$ growth rate

Continuity equation {

$$\partial_t
ho + {
m div}(
ho v_t) =
ho g_t$$

Initial/final data $ho_0,
ho_1$

(CE-IC*)

Unbalanced dynamic optimal transport For $\delta \in (0, \infty]$, solve $\min_{\substack{(\rho_t, v_t, g_t)\\ \text{solving (CE-IC^*)}}} \int_0^1 \int_{\overline{\Omega}} |v_t(x)|^2 + \delta^2 |g_t(x)|^2 \, d\rho_t(x) \, \mathrm{d}t$

Consider a triple (ρ_t, v_t, g_t) with $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ mass density (not probability measures) $v_t: (0, 1) \times \overline{\Omega} \to \mathbf{R}^d$ velocity field, $g_t: (0, 1) \times \overline{\Omega} \to \mathbf{R}$ growth rate

Continuity equation {

$$\partial_t
ho + {\sf div}(
ho {m v}_t) =
ho {m g}_t$$

Initial/final data $ho_0,
ho_1$

(CE-IC*)

Unbalanced dynamic optimal transport For $\delta \in (0, \infty]$, solve $\min_{\substack{(\rho_t, v_t, g_t) \\ \text{solving (CE-IC^*)}}} \int_0^1 \int_{\overline{\Omega}} |v_t(x)|^2 + \delta^2 |g_t(x)|^2 \, d\rho_t(x) \, \mathrm{d}t$

See [Chizat et al. '18], [Liero/Mielke/Savaré '18]

Definition
• Let
$$X = (0, 1) \times \overline{\Omega}$$

• For $(\rho, m, \mu) \in \mathcal{M}(X) \times \mathcal{M}(X)^d \times \mathcal{M}(X)$, let
 $B_{\delta}(\rho, m, \mu) = \int_X \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}, \frac{d\mu}{d\lambda}\right) d\lambda$
where $\lambda \in \mathcal{M}^+(X)$ is such that $\rho, m, \mu \ll \lambda$ and
 $\Psi(t, x, y) = \frac{|x|^2 + \delta^2 y^2}{2t}$ if $t > 0$, $\Psi = \infty$ else

Definition
• Let
$$X = (0,1) \times \overline{\Omega}$$

• For $(\rho, m, \mu) \in \mathcal{M}(X) \times \mathcal{M}(X)^d \times \mathcal{M}(X)$, let
 $B_{\delta}(\rho, m, \mu) = \int_X \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}, \frac{d\mu}{d\lambda}\right) d\lambda$
where $\lambda \in \mathcal{M}^+(X)$ is such that $\rho, m, \mu \ll \lambda$ and
 $\Psi(t, x, y) = \frac{|x|^2 + \delta^2 y^2}{2t}$ if $t > 0$, $\Psi = \infty$ else

Generalizes $\frac{1}{2} \int_{0}^{1} \int_{\overline{\Omega}} \frac{|m|^{2}}{\rho} + \delta^{2} \frac{\mu^{2}}{\rho} dx dt$ for functions $\rho : X \to [0, \infty)$, $m : X \to \mathbb{R}^{d}$, $\mu : X \to \mathbb{R}$ to arbitrary Radon measures

< ⊡ > < ≣ >

 $16 \, / \, 55$

Proposition

- [B./Fanzon '20]
- The functional B_{δ} is proper, convex, weak* lower semi-continuous and 1-homogeneous

Proposition

- [B./Fanzon '20]
- The functional B_δ is proper, convex, weak* lower semi-continuous and 1-homogeneous
- If $B_{\delta}(
 ho,m,\mu)<\infty$ and $\partial_t
 ho+{
 m div}\ m=\mu$, then

• $\rho = dt \otimes \rho_t$ for a weak*-continuous curve $t \mapsto \rho_t \in \mathcal{M}^+(\overline{\Omega})$

• $m = \rho v_t$ for some velocity field $v_t : (0, 1) \times \overline{\Omega} \to \mathbf{R}^d$ • $\mu = \rho g_t$ for some growth rate $g_t : (0, 1) \times \overline{\Omega} \to \mathbf{R}$

Proposition

- [B./Fanzon '20]
- The functional B_δ is proper, convex, weak* lower semi-continuous and 1-homogeneous
- If $B_{\delta}(
 ho,m,\mu)<\infty$ and $\partial_t
 ho+{
 m div}\ m=\mu$, then

• $\rho = dt \otimes \rho_t$ for a weak*-continuous curve $t \mapsto \rho_t \in \mathcal{M}^+(\overline{\Omega})$

• $m = \rho v_t$ for some velocity field $v_t : (0, 1) \times \overline{\Omega} \to \mathbf{R}^d$ • $\mu = \rho g_t$ for some growth rate $g_t : (0, 1) \times \overline{\Omega} \to \mathbf{R}$

$$B_{\delta}(\rho,m,\mu) = \frac{1}{2} \int_0^1 \int_{\overline{\Omega}} |\mathbf{v}_t(x)|^2 + \delta^2 |g_t(x)|^2 \, d\rho_t(x) \, dt$$

Proposition

- [B./Fanzon '20]
- The functional B_δ is proper, convex, weak* lower semi-continuous and 1-homogeneous
- If $B_{\delta}(
 ho,m,\mu)<\infty$ and $\partial_t
 ho+{
 m div}\ m=\mu$, then

• $\rho = dt \otimes \rho_t$ for a weak*-continuous curve $t \mapsto \rho_t \in \mathcal{M}^+(\overline{\Omega})$

• $m = \rho v_t$ for some velocity field $v_t : (0, 1) \times \overline{\Omega} \to \mathbf{R}^d$ • $\mu = \rho g_t$ for some growth rate $g_t : (0, 1) \times \overline{\Omega} \to \mathbf{R}$

$$B_{\delta}(\rho, \boldsymbol{m}, \mu) = \frac{1}{2} \int_0^1 \int_{\overline{\Omega}} |\boldsymbol{v}_t(\boldsymbol{x})|^2 + \delta^2 |\boldsymbol{g}_t(\boldsymbol{x})|^2 \, d\rho_t(\boldsymbol{x}) \, dt$$

 \rightsquigarrow Use as an energy for Tikhonov regularization

Dynamic inverse problem

General setting

- $\Omega \subset \mathbf{R}^d$ bounded open domain, $d \geq 1$
- For $t \in [0, 1]$ assume given

 - $\begin{cases} \blacksquare \ H_t \ \text{Hilbert space (measurement space)} \\ \blacksquare \ K_t^* \colon \mathcal{M}(\overline{\Omega}) \to H_t \ \text{linear continuous operator} \\ \text{(forward operator)} \end{cases}$
- → time dependence allows for spatial undersampling

Dynamic inverse problem

General setting

- $\Omega \subset \mathbf{R}^d$ bounded open domain, $d \geq 1$
- For $t \in [0, 1]$ assume given

 - $\begin{cases} \blacksquare \ H_t \text{ Hilbert space (measurement space)} \\ \blacksquare \ K_t^* \colon \mathcal{M}(\overline{\Omega}) \to H_t \text{ linear continuous operator} \\ \text{(forward operator)} \end{cases}$

 \rightsquigarrow time dependence allows for spatial undersampling

Inverse problem

Given some data $\{f_t\}_{t \in [0,1]}$ with $f_t \in H_t$, find a curve of measures $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ such that

$$K_t^* \rho_t = f_t$$
 for a.e. $t \in [0, 1]$. (P)

Tikhonov regularization

Inverse problem

Solve $K_t^* \rho_t = f_t$ in H_t for a.e. $t \in [0, 1]$

Tikhonov regularized problem $\min_{\substack{(\rho,m,\mu)\in\mathcal{M}(X)^{d+2}}} \underbrace{\frac{1}{2} \int_{0}^{1} \|K_{t}^{*}\rho_{t} - f_{t}\|_{H_{t}}^{2} dt}_{\text{fidelty term}} + \underbrace{\alpha B_{\delta}(\rho, m, \mu)}_{\text{optimal-transport term}} + \underbrace{\beta \|\rho\|_{\mathcal{M}}}_{\text{total-variation term}}$ subject to $\partial_{t}\rho + \text{div } m = \mu$ (CE) Regularization parameters $\alpha > 0, \beta > 0$

Tikhonov regularization

Inverse problem

Solve $K_t^* \rho_t = f_t$ in H_t for a.e. $t \in [0, 1]$

Tikhonov regularized problem

$$\min_{\substack{(\rho,m,\mu)\in\mathcal{M}(X)^{d+2}\\(\rho,m,\mu)\in\mathcal{M}(X)^{d+2}}} \underbrace{\frac{1}{2}\int_{0}^{1} ||K_{t}^{*}\rho_{t} - f_{t}||_{H_{t}}^{2} dt}_{\text{fidelty term}} + \underbrace{\alpha B_{\delta}(\rho,m,\mu)}_{\text{optimal-transport term}} + \underbrace{\beta ||\rho||_{\mathcal{M}}}_{\text{total-variation term}}$$
subject to $\partial_{t}\rho + \operatorname{div} m = \mu$ (CE)
Regularization parameters $\alpha > 0, \beta > 0$

• (CE) ensures
$$\rho = dt \otimes \rho_t$$
 and $m, \mu \ll \rho$
• $m = v_t \rho_t \rightsquigarrow$ motion, $\mu = g_t \rho_t \rightsquigarrow$ contrast changes

Assumption (H)

The spaces H_t vary in a "measurable" way w.r.t $t \in [0, 1]$

- ∃ Banach space *D* and $i_t : D \to H_t$ linear continuous
- $i_t(D) \subset H_t$ dense, $\sup_t \|i_t\| \leq C$
- for each $\varphi, \psi \in D$ the map $t \mapsto \langle i_t \varphi, i_t \psi \rangle_{H_t}$ is Lebesgue measurable

Assumption (H)

The spaces H_t vary in a "measurable" way w.r.t $t \in [0, 1]$

- ∃ Banach space D and $i_t : D \to H_t$ linear continuous
- $i_t(D) \subset H_t$ dense, $\sup_t ||i_t|| \leq C$
- for each $\varphi, \psi \in D$ the map $t \mapsto \langle i_t \varphi, i_t \psi \rangle_{H_t}$ is Lebesgue measurable

Assumption (H)

The spaces H_t vary in a "measurable" way w.r.t $t \in [0, 1]$

- \exists Banach space D and $i_t : D \to H_t$ linear continuous
- $i_t(D) \subset H_t$ dense, $\sup_t ||i_t|| \leq C$
- for each $\varphi, \psi \in D$ the map $t \mapsto \langle i_t \varphi, i_t \psi \rangle_{H_t}$ is

Lebesgue measurable

Assumption (H)

The spaces H_t vary in a "measurable" way w.r.t $t \in [0, 1]$

- ∃ Banach space D and $i_t : D \to H_t$ linear continuous
- $i_t(D) \subset H_t$ dense, $\sup_t ||i_t|| \leq C$
- for each $\varphi, \psi \in D$ the map $t \mapsto \langle i_t \varphi, i_t \psi \rangle_{H_t}$ is Lebesgue measurable
- A map $\varphi \colon [0,1] \to D$ is a step function if $\varphi_t = \sum_{j=1}^N \chi_{E_j}(t) \varphi_j$ for $\varphi_j \in D$, $E_j \subset [0,1]$ measurable

Assumption (H)

The spaces H_t vary in a "measurable" way w.r.t $t \in [0, 1]$

 \blacksquare \exists Banach space D and $i_t \colon D \to H_t$ linear continuous

$$\quad \quad I_t(D) \subset H_t \text{ dense, } \sup_t \|i_t\| \leq C$$

• for each $\varphi, \psi \in D$ the map $t \mapsto \langle i_t \varphi, i_t \psi \rangle_{H_t}$ is Lebesgue measurable

UNI GRAZ

Dynamic data spaces

$$\begin{array}{l} \textbf{Definition} \ L^2_H = \left\{ f \colon [0,1] \to \cup_t H_t \ \Big| \ f_t \in H_t, \\ f \ \text{strongly measurable} \ , \ \int_0^1 \|f_t\|^2_{H_t} \ \mathrm{d}t < \infty \right\} \end{array}$$

UNI GRAZ

Dynamic data spaces

Definition
$$L_{H}^{2} = \left\{ f : [0,1] \to \bigcup_{t} H_{t} \mid f_{t} \in H_{t}, f \text{ strongly measurable }, \int_{0}^{1} \|f_{t}\|_{H_{t}}^{2} dt < \infty \right\}$$

Theorem [B./Fanzon '20] The space L_H^2 is Hilbert with the scalar product $\langle f, g \rangle_{L_H^2} = \int_0^1 \langle f_t, g_t \rangle_{H_t} dt$

UNI GRAZ

Dynamic data spaces

Definition
$$L_{H}^{2} = \left\{ f : [0,1] \to \bigcup_{t} H_{t} \mid f_{t} \in H_{t}, f \text{ strongly measurable }, \int_{0}^{1} \|f_{t}\|_{H_{t}}^{2} dt < \infty \right\}$$

Theorem [B./Fanzon '20] The space L_H^2 is Hilbert with the scalar product $\langle f, g \rangle_{L_H^2} = \int_0^1 \langle f_t, g_t \rangle_{H_t} dt$

For
$$i_t^* f_t : [0, T] \to D^*$$
, there exists the Gelfand integral
 $\langle I(f), \varphi \rangle_{D^* \times D} = \int_0^1 \langle i_t^* f_t, \varphi \rangle_{D^*, D} dt$ for all $\varphi \in D$

In general, $i_t^* f_t$ is not Bochner-strongly measurable

UNI GRAZ

Assumption (K) The operators $K_t^* \colon \mathcal{M}(\overline{\Omega}) \to H_t$ satisfy

• K_t^* linear continuous and weak*-to-weak continuous

$$\sup_t \|K_t^*\| \leq C$$

• for $ho \in \mathcal{M}(\overline{\Omega})$ the map $t \mapsto K_t^*
ho$ is strongly measurable

UNI GRAZ

Assumption (K)

The operators $K^*_t \colon \mathcal{M}(\overline{\Omega}) \to H_t$ satisfy

• K_t^* linear continuous and weak*-to-weak continuous

- $= \sup_t \|K_t^*\| \leq C$
- for $ho \in \mathcal{M}(\overline{\Omega})$ the map $t \mapsto K_t^*
 ho$ is strongly measurable

UNI GRAZ

Assumption (K) The operators $K_t^* \colon \mathcal{M}(\overline{\Omega}) \to H_t$ satisfy

• K_t^* linear continuous and weak*-to-weak continuous

- $= \sup_t \|K_t^*\| \leq C$
- for $\rho \in \mathcal{M}(\overline{\Omega})$ the map $t \mapsto K_t^* \rho$ is strongly measurable

Assumption (K)

The operators $K^*_t \colon \mathcal{M}(\overline{\Omega}) \to H_t$ satisfy

K^{*}_t linear continuous and weak*-to-weak continuous
 sup_t ||K^{*}_t|| < C

• for $ho \in \mathcal{M}(\overline{\Omega})$ the map $t \mapsto K_t^*
ho$ is strongly measurable

Proposition [B./Fanzon '20] $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ weak* continuous $\Rightarrow t \mapsto K_t^* \rho_t$ is in L_H^2

Assumption (K)

The operators $\mathcal{K}^*_t \colon \mathcal{M}(\overline{\Omega}) o \mathcal{H}_t$ satisfy

K^{*}_t linear continuous and weak*-to-weak continuous
 sup_t ||K^{*}_t|| ≤ C
 for a ⊂ M(Ω) the map t → K* a is strength measural

• for $\rho \in \mathcal{M}(\overline{\Omega})$ the map $t \mapsto K_t^* \rho$ is strongly measurable

Proposition [B./Fanzon '20] $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ weak* continuous $\Rightarrow t \mapsto K_t^* \rho_t$ is in L_H^2

Tikhonov functional Let $f \in L^2_H$ given data. For $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$ set $T_{\alpha,\beta}(\rho, m, \mu) = \frac{1}{2} \int_0^1 ||K_t^* \rho_t - f_t||^2_{H_t} dt + \alpha B_{\delta}(\rho, m, \mu) + \beta ||\rho||_{\mathcal{M}}$ if $\partial_t \rho + \operatorname{div} m = \mu$, and $T_{\alpha,\beta}(\rho, m, \mu) = \infty$ else

Existence and stability

UN GRAZ

Assume (H)-(K).

Theorem[B./Fanzon '20] $\min_{(\rho,m,\mu)\in\mathcal{M}(X)^{d+2}} T_{\alpha,\beta}(\rho,m,\mu)$ (Tikh)admits a solution for $f \in L^2_H$.If K^*_t is injective for a.e. t, then the solution is unique.

Existence and stability

Assume (H)-(K).

Theorem

 $\min_{\substack{(\rho,m,\mu)\in\mathcal{M}(X)^{d+2}}} T_{\alpha,\beta}(\rho,m,\mu) \qquad (\mathsf{Tikh})$

admits a solution for $f \in L^2_H$.

If K_t^* is injective for a.e. t, then the solution is unique.

Theorem[B./Fanzon '20] $\{f^n\} \text{ noisy data such that } f^n \to f^{\dagger} \text{ strongly in } L^2_H$ $K^*_t \rho^{\dagger}_t = f^{\dagger}_t \text{ for a.e. } t \in [0, 1]$ $(\rho^n, m^n, \mu^n) \text{ be a solution to (Tikh) with data } f^n \text{ and } \alpha_n, \beta_n \to 0 \text{ suitably}$ Then: $(\rho^n, m^n, \mu^n) \stackrel{*}{\to} (\rho^{\dagger}, m^{\dagger}, \mu^{\dagger}) \text{ in } \mathcal{M}(X)^{d+2}$

$$\sigma_t = \mathcal{H}^1 \, {\sqsubseteq} \, L_t$$

• $\Omega = (-1, 1)^2$ image domain, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density • $H_t = L^2_{\sigma_t}(\mathbf{R}^2, \mathbf{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbf{R}^2)$ sampling measures

• $\Omega = (-1, 1)^2$ image domain, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density • $H_t = L^2_{\sigma_t}(\mathbf{R}^2, \mathbf{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbf{R}^2)$ sampling measures

• $\Omega = (-1, 1)^2$ image domain, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density • $H_t = L^2_{\sigma_t}(\mathbf{R}^2, \mathbf{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbf{R}^2)$ sampling measures

• $\Omega = (-1, 1)^2$ image domain, $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ proton density • $H_t = L^2_{\sigma_t}(\mathbf{R}^2, \mathbf{C}^N)$ with $\sigma_t \in \mathcal{M}^+(\mathbf{R}^2)$ sampling measures

• $\mathcal{K}_t^* \colon \mathcal{M}(\overline{\Omega}) \to \mathcal{H}_t$ masked Fourier transform $\mathcal{K}_t^* \rho = (\mathfrak{F}(c_1 \rho), \dots, \mathfrak{F}(c_N \rho))$ with $c_j \in C_0(\mathbb{R}^2; \mathbb{C})$ coil sensitivities (accounting for phase inhomogeneities)

Assumption (M)

Assume that the family $\sigma_t \in \mathcal{M}^+(\mathbf{R}^2)$ satisfies

- $= \sup_t \|\sigma_t\| \le C$
- for each $\varphi \in C_0(\mathbb{R}^2, \mathbb{C})$ the map $t \mapsto \int_{\mathbb{R}^2} \varphi(x) \, d\sigma_t(x)$ is measurable

Assumption (M)

Assume that the family $\sigma_t \in \mathcal{M}^+(\mathbf{R}^2)$ satisfies

- $\blacksquare \sup_t \|\sigma_t\| \leq C$
- for each $\varphi \in C_0(\mathbb{R}^2, \mathbb{C})$ the map $t \mapsto \int_{\mathbb{R}^2} \varphi(x) \, d\sigma_t(x)$ is measurable

Assumption (M)

Assume that the family $\sigma_t \in \mathcal{M}^+(\mathbf{R}^2)$ satisfies

- $\sup_t \|\sigma_t\| \le C$
- for each $\varphi \in C_0(\mathbb{R}^2, \mathbb{C})$ the map $t \mapsto \int_{\mathbb{R}^2} \varphi(x) \, d\sigma_t(x)$ is measurable

Theorem [B./Fanzon '19] Assume (M). Let $\alpha, \beta > 0, \delta \in (0, \infty], f \in L^2_H, c \in C_0(\mathbb{R}^2, \mathbb{C}^N)$. Then, $\min_{\substack{(\rho, m, \mu) \in \mathcal{M}(X)^4 \\ \partial_t \rho + \text{div } m = \mu}} \frac{1}{2} \sum_{j=1}^N \int_0^1 \|\mathfrak{F}(c_j \rho_t) - f_t\|^2_{L^2_{\sigma_t}} dt + \alpha B_{\delta}(\rho, m, \mu) + \beta \|\rho\|$ admits a solution

Special case: Benamou–Brenier energy

Assume $\delta = \infty \rightsquigarrow$ Benamou–Brenier energy

Definition

• For $(\rho, m) \in \mathcal{M}(X) \times \mathcal{M}(X)^d$, let $B(\rho, m) = \int_X \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}\right) d\lambda$ where $\lambda \in \mathcal{M}^+(X)$ is such that $\rho, m \ll \lambda$ and $\Psi(t, x) = \frac{|x|^2}{2t}$ if t > 0, $\Psi = \infty$ else

Special case: Benamou–Brenier energy

Assume $\delta = \infty \rightsquigarrow$ Benamou–Brenier energy

Definition

For
$$(\rho, m) \in \mathcal{M}(X) \times \mathcal{M}(X)^d$$
, let

$$B(\rho, m) = \int_X \Psi\left(\frac{d\rho}{d\lambda}, \frac{dm}{d\lambda}\right) d\lambda$$
where $\lambda \in \mathcal{M}^+(X)$ is such that $\rho, m \ll \lambda$ and
 $\Psi(t, x) = \frac{|x|^2}{2}$ if $t > 0$, $\Psi = \infty$ else

 $|\infty|$

Benamou–Brenier regularizer
et
$$\alpha, \beta > 0$$
. For $(\rho, m) \in \mathcal{M}(X) \times \mathcal{M}(X)^d$ we set
 $f_{\alpha,\beta}(\rho, m) = \begin{cases} \alpha B(\rho, m) + \beta \|\rho\|_{\mathcal{M}(X)} & \text{if } \partial_t \rho + \text{div } m = 0 \\ \infty & \text{otherwise} \end{cases}$

E

Extremal points of $J_{\alpha,\beta}$

- **Determine the extremal points of** $J_{\alpha,\beta}$ -balls
- Consider the closed, convex unit ball of $J_{\alpha,\beta}$

 $\mathcal{C} = \left\{ (
ho, m) \in \mathcal{M}(X) imes \mathcal{M}(X)^d \, \big| \, J_{lpha, eta}(
ho, m) \leq 1
ight\}$

Extremal points of $J_{\alpha,\beta}$

- Determine the extremal points of $J_{\alpha,\beta}$ -balls
- Consider the closed, convex unit ball of $J_{\alpha,\beta}$

$$\mathcal{C} = \left\{ (
ho, m) \in \mathcal{M}(X) imes \mathcal{M}(X)^d \ \middle| \ J_{lpha, eta}(
ho, m) \leq 1
ight\}$$

Definition

• For
$$\gamma \in \mathsf{AC}^2([0,1],\overline{\Omega})$$
 define $\rho_\gamma \in \mathcal{M}(X)$, $m_\gamma \in \mathcal{M}(X)^d$:
 $\rho_\gamma = a_\gamma \, dt \otimes \delta_{\gamma(t)}$, $m_\gamma = \dot{\gamma} \, \rho_\gamma$, $a_\gamma^{-1} = \frac{\alpha}{2} \int_0^1 |\dot{\gamma}(t)|^2 \, dt + \beta$

Extremal points of $J_{\alpha,\beta}$

- **Determine the extremal points of** $J_{\alpha,\beta}$ -balls
- Consider the closed, convex unit ball of $J_{\alpha,\beta}$

$$\mathcal{C} = \left\{ (
ho, m) \in \mathcal{M}(X) imes \mathcal{M}(X)^d \, \big| \, J_{lpha, eta}(
ho, m) \leq 1
ight\}$$

Definition

• For
$$\gamma \in AC^2([0,1],\overline{\Omega})$$
 define $\rho_{\gamma} \in \mathcal{M}(X)$, $m_{\gamma} \in \mathcal{M}(X)^d$:
 $\rho_{\gamma} = a_{\gamma} dt \otimes \delta_{\gamma(t)}$, $m_{\gamma} = \dot{\gamma} \rho_{\gamma}$, $a_{\gamma}^{-1} = \frac{\alpha}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt + \beta$

Theorem[B./Carioni/Fanzon/Romero '21]The extremal points of C are characterized by $Extr(C) = \{(0,0)\} \cup C$ where $C = \{(\rho_{\gamma}, m_{\gamma}) \mid \gamma \in AC^2([0,1]; \overline{\Omega})\}$

Fix $N \geq 1$ times $0 < t_1 < t_2 < \cdots < t_N < 1$, let

- H_i finite-dimensional Hilbert space, $\mathcal{H} = \sum_{i=1}^{N} H_i$
- $K_i^* \colon \mathcal{M}(\overline{\Omega}) \to H_i$ linear and weak*-continuous

Fix $N \ge 1$ times $0 < t_1 < t_2 < \cdots < t_N < 1$, let

• H_i finite-dimensional Hilbert space, $\mathcal{H} = \bigotimes_{i=1}^N H_i$

• $K_i^* \colon \mathcal{M}(\overline{\Omega}) \to H_i$ linear and weak*-continuous

Inverse problem

• For $(f_1, \ldots, f_N) \in \mathcal{H}$ find a curve $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ such that $K_i^* \rho_{t_i} = f_i$ for $i = 1, \ldots, N$

Fix $N \ge 1$ times $0 < t_1 < t_2 < \cdots < t_N < 1$, let

- H_i finite-dimensional Hilbert space, $\mathcal{H} = \bigotimes_{i=1}^N H_i$
- $K_i^* : \mathcal{M}(\overline{\Omega}) \to H_i$ linear and weak*-continuous

Inverse problem

• For $(f_1, \ldots, f_N) \in \mathcal{H}$ find a curve $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ such that $K_i^* \rho_{t_i} = f_i$ for $i = 1, \ldots, N$

 $\begin{array}{l} \textbf{Theorem} & [B./Carioni/Fanzon/Romero \ '21]\\ \min_{(\rho,m)\in\mathcal{M}(X)^{d+1}} \frac{1}{2} \sum_{i=1}^{N} \|K_i\rho_{t_i} - f_i\|_{H_i}^2 + \alpha B(\rho,m) + \beta \|\rho\|_{\mathcal{M}(X)}\\ \text{admits a solution of the form} & (\rho^*,m^*) = \sum_{i=1}^{p} c_i \left(\rho_{\gamma_i},m_{\gamma_i}\right) \end{array}$

Fix $N \ge 1$ times $0 < t_1 < t_2 < \cdots < t_N < 1$, let

• H_i finite-dimensional Hilbert space, $\mathcal{H} = \bigotimes_{i=1}^N H_i$

• $K_i^* \colon \mathcal{M}(\overline{\Omega}) \to H_i$ linear and weak*-continuous

Inverse problem

• For $(f_1, \ldots, f_N) \in \mathcal{H}$ find a curve $t \mapsto \rho_t \in \mathcal{M}(\overline{\Omega})$ such that $K_i^* \rho_{t_i} = f_i$ for $i = 1, \ldots, N$

 $\begin{array}{l} \textbf{Theorem} & [B./Carioni/Fanzon/Romero \ '21]\\ \min_{(\rho,m)\in\mathcal{M}(X)^{d+1}} \frac{1}{2} \sum_{i=1}^{N} \|K_i\rho_{t_i} - f_i\|_{H_i}^2 + \alpha B(\rho,m) + \beta \|\rho\|_{\mathcal{M}(X)}\\ \text{admits a solution of the form} & (\rho^*,m^*) = \sum_{i=1}^{p} c_i \left(\rho_{\gamma_i},m_{\gamma_i}\right) \end{array}$

Proof Also see [Boyer et al. '19], [B./Carioni '20]

Further direction: unbalanced OT case

Hellinger-Kantorovich regularizer Let $\alpha, \beta, \delta > 0$. For $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$ we set $J_{\alpha,\beta}(\rho, m) = \begin{cases} \alpha B_{\delta}(\rho, m, \mu) + \beta \|\rho\|_{\mathcal{M}(X)} \text{ if } \partial_{t}\rho + \operatorname{div} m = \mu \\ \infty & \text{otherwise} \end{cases}$

Further direction: unbalanced OT case

Hellinger-Kantorovich regularizer
Let
$$\alpha, \beta, \delta > 0$$
. For $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$ we set
 $J_{\alpha,\beta}(\rho, m) = \begin{cases} \alpha B_{\delta}(\rho, m, \mu) + \beta \|\rho\|_{\mathcal{M}(X)} \text{ if } \partial_{t}\rho + \operatorname{div} m = \mu \\ \infty & \text{otherwise} \end{cases}$

Further direction Carry out same analysis for $J_{\alpha,\beta}$ above

Further direction: unbalanced OT case

Hellinger-Kantorovich regularizer
Let
$$\alpha, \beta, \delta > 0$$
. For $(\rho, m, \mu) \in \mathcal{M}(X)^{d+2}$ we set
 $J_{\alpha,\beta}(\rho, m) = \begin{cases} \alpha B_{\delta}(\rho, m, \mu) + \beta \|\rho\|_{\mathcal{M}(X)} \text{ if } \partial_{t}\rho + \operatorname{div} m = \mu \\ \infty & \text{otherwise} \end{cases}$

Further direction Carry out same analysis for $J_{\alpha,\beta}$ above

Key ingredients

Extremal point characterization:

$$ho = h(t) dt \otimes \delta_{\gamma(t)}, \quad m = \dot{\gamma} \rho, \quad \mu = \frac{h}{h} \rho$$

• $h\colon [0,1] \to [0,\infty)$, $\gamma\colon [0,1] \to \overline{\Omega}$ with certain regularity

Based on a new superposition principle for $\partial_t \rho + \text{div } m = \mu$ [B./Carioni/Fanzon '22]

Outline

- Peak recovery for static inverse problemsA successive peak insertion and thresholding algorithm
- 2 Peak tracking for dynamic inverse problems
 Dynamic optimal-transport formulations and energies
 Regularization of dynamic inverse problems
 Extremal points of the Benamou–Brenier energy
- 3 A curve insertion and evolution algorithmConvergence analysis and numerical example
- 4 Conclusions and perspectives

Consider the equivalent time-continuous problem

$$\begin{split} \min_{\substack{(\rho,m)\in\mathcal{M}(X)^{d+1}}} \tilde{T}_{\alpha,\beta}(\rho,m) \\ \text{for} \quad \tilde{T}_{\alpha,\beta}(\rho,m) = \frac{1}{2}\int_0^1 \|K_t^*\rho_t - f_t\|_{H_t}^2 \, \mathrm{d}t + \varphi(J_{\alpha,\beta}(\rho,m)) \\ \text{where, e.g., } \varphi(t) = t + \chi_{\{s \le M_0\}}(t), \ M_0 = \frac{1}{2}\int_0^1 \|f_t\|_{H_t}^2 \, \mathrm{d}t \end{split}$$

Consider the equivalent time-continuous problem

$$\min_{\substack{(\rho,m)\in\mathcal{M}(X)^{d+1}}}\tilde{T}_{\alpha,\beta}(\rho,m)$$

for $\tilde{T}_{\alpha,\beta}(\rho,m) = \frac{1}{2}\int_0^1 \|K_t^*\rho_t - f_t\|_{H_t}^2 dt + \varphi(J_{\alpha,\beta}(\rho,m))$
where $\rho(g_{\alpha,\beta}(r)) = t + Y_{\alpha,\beta}(r) M_{\alpha,\beta}(r) = t + \varphi(J_{\alpha,\beta}(r))$

where, e.g., $\varphi(t) = t + \chi_{\{s \le M_0\}}(t)$, $M_0 = \frac{1}{2} \int_0^1 \|f_t\|_{H_t}^2 dt$

Conditional gradient method

• Linearization of the smooth term around $(\tilde{\rho}, \tilde{m})$

$$\min_{\substack{(\rho,m)\in\mathcal{M}(X)^{d+1}}} - \int_0^1 \langle \rho_t, w_t \rangle_{\mathcal{M}(\overline{\Omega}) \times C(\overline{\Omega})} dt + \varphi(J_{\alpha,\beta}(\rho,m))$$

$$w_t = -K_t(K_t^* \tilde{\rho}_t - f_t)$$

Consider the convex unit ball of $J_{\alpha,\beta}$

$$\mathcal{C} = \left\{ (
ho, m) \in \mathcal{M}(X)^{d+1} : \ J_{lpha, eta}(
ho, m) \leq 1
ight\}$$

and denote by $\mathsf{Extr}(\mathit{\mathcal{C}}) = \{0\} \cup \mathcal{C}$ its extremal points

Consider the convex unit ball of $J_{\alpha,\beta}$

$$\mathcal{C} = \left\{ (
ho, m) \in \mathcal{M}(X)^{d+1} : \ J_{lpha, eta}(
ho, m) \leq 1
ight\}$$

and denote by $\mathsf{Extr}(\mathit{\mathcal{C}}) = \{0\} \cup \mathit{\mathcal{C}}$ its extremal points

Theorem [B./Carioni/Fanzon/Romero '21] Assume (H)-(K), let $f \in L^2_{H}$, $t \mapsto \tilde{\rho}_t \in \mathcal{M}(\overline{\Omega})$ weak* continuous, set $w_t = -K_t(K_t^*\tilde{\rho}_t - f_t)$

There exists a solution $(\rho^*, m^*) \in \mathsf{Extr}(C)$ to

$$\min_{(\rho,m)\in C} - \int_0^1 \langle \rho_t, w_t \rangle_{\mathcal{M}(\overline{\Omega}) \times C(\overline{\Omega})} dt$$

Consider the convex unit ball of $J_{lpha,eta}$

$$\mathcal{C} = \left\{ (
ho, m) \in \mathcal{M}(X)^{d+1} : \ J_{lpha, eta}(
ho, m) \leq 1
ight\}$$

and denote by $\mathsf{Extr}({\mathcal C})=\{0\}\cup {\mathcal C}$ its extremal points

[B./Carioni/Fanzon/Romero '21] Theorem Assume (H)-(K), let $f \in L^2_H$, $t \mapsto \tilde{\rho}_t \in \mathcal{M}(\overline{\Omega})$ weak* continuous, set $w_t = -K_t(K_t^* \tilde{\rho}_t - f_t)$ There exists a solution $(\rho^*, m^*) \in \text{Extr}(C)$ to $\min_{(\rho,m)\in C} - \int_0^1 \langle \rho_t, w_t \rangle_{\mathcal{M}(\overline{\Omega}) \times C(\overline{\Omega})} dt$ and an $M \ge 0$ such that $(M\rho^*, Mm^*)$ is a solution to $\min_{(\rho,m)\in\mathcal{M}(X)^{d+1}} - \int_{0}^{1} \langle \rho_{t}, w_{t} \rangle_{\mathcal{M}(\overline{\Omega}), C(\overline{\Omega})} dt + \varphi(J_{\alpha,\beta}(\rho, m))$

Let $f \in L^2_H$ be given. Initialize $(\rho^0, m^0) = (0, 0) \in \mathcal{M}(X)^{d+1}$

Let $f \in L^2_H$ be given. Initialize $(
ho^0, m^0) = (0, 0) \in \mathcal{M}(X)^{d+1}$

1 Insertion Assume $(\rho^n, m^n) = \sum_j c_j^n (\rho_{\gamma_j^n}, m_{\gamma_j^n})$ for $\gamma_j^n \in AC^2([0, 1]; \overline{\Omega})$ pairwise distinct, $c_j^n > 0$

Let $f \in L^2_H$ be given. Initialize $(
ho^0, m^0) = (0, 0) \in \mathcal{M}(X)^{d+1}$

- **1 Insertion** Assume $(\rho^n, m^n) = \sum_j c_j^n (\rho_{\gamma_j^n}, m_{\gamma_j^n})$ for $\gamma_j^n \in AC^2([0, 1]; \overline{\Omega})$ pairwise distinct, $c_j^n > 0$
- Compute the dual variable $w_t = -K_t(K_t^* \rho_t^n f_t)$ and solve

$$\gamma_0^n \in \argmin_{\gamma \in \mathsf{AC}^2([0,1];\overline{\Omega})} - \left(\frac{\alpha}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt + \beta\right)^{-1} \int_0^1 w_t(\gamma(t)) dt$$

Let $f \in L^2_H$ be given. Initialize $(\rho^0, m^0) = (0, 0) \in \mathcal{M}(X)^{d+1}$

- **1 Insertion** Assume $(\rho^n, m^n) = \sum_j c_j^n (\rho_{\gamma_j^n}, m_{\gamma_j^n})$ for $\gamma_j^n \in AC^2([0, 1]; \overline{\Omega})$ pairwise distinct, $c_j^n > 0$
- Compute the dual variable $w_t = -K_t(K_t^* \rho_t^n f_t)$ and solve

$$\gamma_0^n \in \argmin_{\gamma \in \mathsf{AC}^2([0,1];\overline{\Omega})} - \left(\frac{\alpha}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt + \beta\right)^{-1} \int_0^1 w_t(\gamma(t)) dt$$

2 Optimization Solve the quadratic program

$$\bar{c}^n = (\bar{c}^n_j)_j \in \argmin_{c^n_j \geq 0} T_{\alpha,\beta} \left(\sum\nolimits_j c^n_j (\rho_{\gamma^n_j}, m_{\gamma^n_j}) \right)$$

Let $f \in L^2_H$ be given. Initialize $(
ho^0, m^0) = (0, 0) \in \mathcal{M}(X)^{d+1}$

- **1 Insertion** Assume $(\rho^n, m^n) = \sum_j c_j^n (\rho_{\gamma_j^n}, m_{\gamma_j^n})$ for $\gamma_j^n \in AC^2([0, 1]; \overline{\Omega})$ pairwise distinct, $c_j^n > 0$
- Compute the dual variable $w_t = -K_t(K_t^* \rho_t^n f_t)$ and solve

$$\gamma_0^n \in \argmin_{\gamma \in \mathsf{AC}^2([0,1];\overline{\Omega})} - \left(\frac{\alpha}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt + \beta\right)^{-1} \int_0^1 w_t(\gamma(t)) dt$$

2 Optimization Solve the quadratic program

$$ar{c}^n = (ar{c}_j^n)_j \in rgmin_{c_j^n \ge 0} T_{lpha, eta} \left(\sum_j c_j^n(
ho_{\gamma_j^n}, m_{\gamma_j^n})
ight)$$

 $\mathbf{Set} \ (
ho^{n+1}, m^{n+1}) = \sum_j ar{c}_j^n(
ho_{\gamma_j^n}, m_{\gamma_j^n})$

Convergence

- Define functional distance $r(\rho, m) = T_{\alpha,\beta}(\rho, m) \min T_{\alpha,\beta}$
 - **Theorem** [B./Carioni/Fanzon/Romero '22] Let $f \in L^2_H$, $\alpha, \beta > 0$, $\{(\rho^n, m^n)\}$ in $\mathcal{M}(X)^{d+1}$ the sequence in the conditional gradient method. Then,
 - { (ρ^n, m^n) } is minimizing with $r(\rho^n, m^n) \le \frac{C}{n}$ where C > 0 depends only on f, α, β
 - Each weak* accumulation point of {(ρⁿ, mⁿ)} is a minimizer for T_{α,β}

Convergence

- Define functional distance $r(\rho, m) = T_{\alpha,\beta}(\rho, m) \min T_{\alpha,\beta}$
 - **Theorem** [B./Carioni/Fanzon/Romero '22] Let $f \in L^2_H$, $\alpha, \beta > 0$, $\{(\rho^n, m^n)\}$ in $\mathcal{M}(X)^{d+1}$ the sequence in the conditional gradient method. Then,
 - { (ρ^n, m^n) } is minimizing with $r(\rho^n, m^n) \le \frac{C}{n}$ where C > 0 depends only on f, α, β

Each weak* accumulation point of {(ρⁿ, mⁿ)} is a minimizer for T_{α,β}

Faster convergence

Under certain regularity assumptions, *R*-linear convergence in terms of *r*, γ_j and c_j can be obtained [*B./Carioni/Fanzon/Walter, in preparation*]

Solve the curve insertion problem

$$\gamma_0^n \in \arg\min_{\gamma \in \mathsf{AC}^2([0,1];\overline{\Omega})} - \left(\frac{\alpha}{2}\int_0^1 |\dot{\gamma}(t)|^2 dt + \beta\right)^{-1}\int_0^1 w_t^n(\gamma(t)) dt$$

via gradient descent with suitable stepsize rule

Solve the curve insertion problem

$$\gamma_0^n \in \arg\min_{\gamma \in \mathsf{AC}^2([0,1];\overline{\Omega})} - \left(\frac{\alpha}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt + \beta\right)^{-1} \int_0^1 w_t^n(\gamma(t)) dt$$

via gradient descent with suitable stepsize rule

Solve the curve insertion problem

$$\gamma_0^n \in \arg\min_{\gamma \in \mathsf{AC}^2([0,1];\overline{\Omega})} - \left(\frac{\alpha}{2} \int_0^1 |\dot{\gamma}(t)|^2 dt + \beta\right)^{-1} \int_0^1 w_t^n(\gamma(t)) dt$$

via gradient descent with suitable stepsize rule

Theorem [B./Carioni/Fanzon/Romero '22] Under suitable regularity assumptions, the gradient descent procedure converges subsequentially to stationary points and strongly in $AC^2([0, 1]; \overline{\Omega})$.

Multiple starts with suitable initial guess (crossovers, random curves, etc.) to increase chance to obtain global minimizer
 Multiple insertion ~>> insert all obtained stationary points

■ Alternative Curve insertion via dynamic programming ~> [Duval/Tovey '21]

Details and additionals tweaks

- Alternative Curve insertion via dynamic programming ~~ [Duval/Tovey '21]
- Sliding step Perform gradient descent steps for

$$\min_{c_j^n \ge 0, \ \gamma_j^n \in \mathsf{AC}^2([0,1];\overline{\Omega})} T_{\alpha,\beta} \Big(\sum_j c_j^n (\rho_{\gamma_j^n}, m_{\gamma_j^n}) \Big)$$

Details and additionals tweaks

- Alternative Curve insertion via dynamic programming ~> [Duval/Tovey '21]
- Sliding step Perform gradient descent steps for

$$\min_{c_j^n \ge 0, \ \gamma_j^n \in \mathsf{AC}^2([0,1];\overline{\Omega})} T_{\alpha,\beta} \left(\sum_j c_j^n (\rho_{\gamma_j^n}, m_{\gamma_j^n}) \right)$$

Stopping criterion

$$\left(\frac{\alpha}{2}\int_0^1|\dot{\gamma}_0^n(t)|^2\,dt+\beta\right)^{-1}\int_0^1w_t^n(\gamma_0^n(t))\,dt\leq 1$$

or up to some tolerance

Numerical experiments

•
$$\Omega = (0,1)^2$$
, $\sigma = \mathcal{H}^0 igsquart s$ where $s =$ spiral points in Ω

• $H_t = L^2_{\sigma}(\mathbf{R}^2, \mathbf{C})$ (time independent)

• $K_t^* \colon \mathcal{M}(\overline{\Omega}) \to H_t$ masked Fourier transform

Numerical experiments

A simple example

Ground truth

Backprojected data

< ⊡ > < ≣ >

Static problems Dynamic problems Algorithm Conclusions K. Bredies 38

Numerical experiments

A simple example

Ground truth

Reconstruction (thresholded at 0.01)

< ⊡ > < ≣ >

Static problems Dynamic problems Algorithm Conclusions K. Bredies 3

Numerical experiments

A simple example

Ground truth

Reconstruction (no thresholding)

< ⊡ > < ≣ >

Static problems Dynamic problems Algorithm Conclusions K. Bredies

UNI GRAZ

Numerical experiments

< ⊡ > < ⊇ >

Numerical experiments

Convergence plot: exhibits linear rate Error = $T_{\alpha,\beta}(\rho^n, m^n) - T_{\alpha,\beta}(\rho^{n+1}, m^{n+1})$

Numerical experiments

A more difficult example

Ground truth

Backprojected data

Numerical experiments

A more difficult example

Ground truth

Reconstruction (thresholded at 0.05)

< - 17 ▶ - 4 ⊒ ▶ Static problems Dynamic problems Algorithm Conclusions K. Bredies

Numerical experiments

A more difficult example

Ground truth

Reconstruction (no thresholding)

< ⊡ > < ⊇ >

Static problems Dynamic problems Algorithm Conclusions K. Bredies

Numerical experiments

<⊡ > < ≣ >

Numerical experiments

Convergence plot: exhibits linear rate Error = $T_{\alpha,\beta}(\rho^n, m^n) - T_{\alpha,\beta}(\rho^{n+1}, m^{n+1})$

Numerical experiments

A crossing example

Ground truth

Backprojected data

Image: A marked bit
 Image: A marked bit<

Static problems Dynamic problems Algorithm Conclusions K. Bredies

Numerical experiments

A crossing example

Ground truth

Reconstruction (thresholded at 0.01)

< ⊡ > < ≣ >

Static problems Dynamic problems Algorithm Conclusions K. Bredies 49/55

Numerical experiments

A crossing example

Ground truth

Reconstruction (no thresholding)

< ⊡ > < ≣ >

 $50 \, / \, 55$

Numerical experiments

Numerical experiments

Convergence plot: exhibits linear rate Error = $T_{\alpha,\beta}(\rho^n, m^n) - T_{\alpha,\beta}(\rho^{n+1}, m^{n+1})$

Outline

- Peak recovery for static inverse problems
 A successive peak insertion and thresholding algorithm
- 2 Peak tracking for dynamic inverse problems
 Dynamic optimal-transport formulations and energies
 Regularization of dynamic inverse problems
 Extremal points of the Benamou–Brenier energy
- 3 A curve insertion and evolution algorithmConvergence analysis and numerical example
- 4 Conclusions and perspectives

Conclusions

 Introduced rigorous framework for optimal transport regularization of time dependent inverse problems

Conclusions

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Characterization of the extremal points of the Benamou–Brenier/Hellinger–Kantorovich regularizer

Conclusions

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Characterization of the extremal points of the Benamou–Brenier/Hellinger–Kantorovich regularizer
- Numerical algorithm for dynamic spike reconstruction

Conclusions

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Characterization of the extremal points of the Benamou–Brenier/Hellinger–Kantorovich regularizer
- Numerical algorithm for dynamic spike reconstruction
- Application to dynamic superresolution

Conclusions

- Introduced rigorous framework for optimal transport regularization of time dependent inverse problems
- Characterization of the extremal points of the Benamou–Brenier/Hellinger–Kantorovich regularizer
- Numerical algorithm for dynamic spike reconstruction
- Application to dynamic superresolution

Perspectives

 Understanding sparsity and non-degeneracy for the Benamou–Brenier approach

[B./Carioni/Fanzon/Walter, in preparation]

Extension to other problems

Literature

K Bredies and S Fanzon

An optimal transport approach for solving dynamic inverse problems in spaces of measures

ESAIM: Mathematical Modelling and Numerical Analysis, 54(6):2351-2382, 2020.

K. Bredies, M. Carioni, S. Fanzon and F. Romero, On the extremal points of the ball of the Benamou-Brenier energy. Bulletin of the London Mathematical Society, 53(5):1436-1452, 2021.

K. Bredies, M. Carioni and S. Fanzon,

A superposition principle for the inhomogeneous continuity equation with Hellinger-Kantorovich-regular coefficients.

Communications in Partial Differential Equations, 47(10):2023-2069, 2022.

K. Bredies, M. Carioni, S. Fanzon and F. Romero.

A generalized conditional gradient method for dynamic inverse problems with optimal transport regularization.

Foundations of Computational Mathematics, 23(3):833-898, 2023.

F Supported by Austrian Science Fund (FWF) and Christian Doppler Research Society (CDG) Project PIR27 "Mathematical methods for motion-aware medical imaging"