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Convex optimization over measures

Setting
e X compact Riemannian d-manifold (torus, sphere), d > 1
e M(X) space of signed Borel measures on X

e & : X — R” smooth filter/dictionnary, y € R" signal

S 1 2
Frim min P, FG) =5 [ @0 duta = y][, + Al

given € > 0, find u € M(X) such that F(u) — F* <e
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Convex optimization over measures

Setting
e X compact Riemannian d-manifold (torus, sphere), d > 1
e M(X) space of signed Borel measures on X

e & : X — R” smooth filter/dictionnary, y € R" signal

.. : 1 2
Frm min (0. FG) =5 / 00 du(x) — [ + Mulrv

given € > 0, find u € M(X) such that F(u) — F* <e

Global Local (with non-degeneracy)
Time complexity in ©(¢~9). Assuming F (o) < Fo, time

e Frank-Wolfe complexity in O(log(1/¢)).

e (Bregman) Gradient Descent e “Sliding” particles with GD...

¢ Bilevel Mean-Field Langevin e ...\Wasserstein-Fisher-Rao GD

Classification of some algorithmic primitives 1/21



1. Global: Bregman Gradient Descent
2. Local: Wasserstein Fisher-Rao Gradient Descent

3. The Min-Max case, joint work Guillaume Wang
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1. Global: Bregman Gradient Descent
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Convex optimization : co-dim analysis

Approach

Initialize and fix (x;)!™., uniformly (on a grid/random) and solve the
convex problem:

_ Ly ?
min Fnle), Fala)= 5| 3 ar000) =y, + Al
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Convex optimization : co-dim analysis

Approach

Initialize and fix (x;)!™., uniformly (on a grid/random) and solve the
convex problem:

_ Ly ?
min Fnle), Fala)= 5| 3 ar000) =y, + Al

Infinite dimensional analysis
e Classical guarantees explode as m — 0o, non-informative
e In contrast, oo-dimensional analysis leads to:

e Classification of algorithms in terms of cvge rates;
e Exhibits practical non-asymptotic cvge rates before grid overfitting

Fix 7 € P(X) a reference measure and let u = ar with a € L}(7):

. 1 2
Frim min F(a), F(a) =5 [ abaeCaarta v, + Malue
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Bregman Proximal Gradient Methods

Setting: Minimize F(a) = G(a) + H(a) = cvx smooth + cvx proxable.

Power-entropy Bregman divergences, for a, b € L'(7):
1 P

1 pel2
Difab) = [ (a(a) = n(b) ' (B)a— b)) ar. w(s)=q Pp-T " "
slog(s)—s+1, p=1

Proximal Gradient Method (PGM)
Choose step-size n > 0 and initialization a; € dom(H). For k =1,2,...

a1 = argmin (a, G'[adl) 2y + H(a) + 17 Do(a, a4)
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Bregman Proximal Gradient Methods

Minimize F(a) = G(a) + H(a) = cvx smooth + cvx proxable.

Power-entropy Bregman divergences, for a, b € L}(7):
1

Dy(a, b) = / (n(a) = n(b) — 7/ (b)(a — b)) d7, n(s)=¢ P(P—1
slog(s)—s+1, p=1

s, p €]l 2]

Proximal Gradient Method (PGM)
Choose step-size n > 0 and initialization a; € dom(H). For k =1,2,...

a1 = argmin (2, G [ac])iz(ry + H(2) + 1 Do(a, ax)

Accelerated Proximal Gradient Method (APGM)
Choose step-size n > 0 and a1 € dom(H) and v =1. For k =1,2,...
1. bk = (1 — vk)ak + yck
2. ciyr = argmin (¢, G'[bi])2(ry + H(c) + 1 " Do(c, ck)
3. a1 = (1 — )ak + YeCra
4

e = 3 (VY49 - ) o



Our starting point: known

Theorem! (adapted)

For a small enough step-size 7, if the iterates are bounded, it holds

F(ak)—F(a)SW
——
&k

Dp(a,a1), Vae L}(r),Vk>1

where § =1 for PGM and 5 = 2 for APGM.

e Problem: for sparse solutions D,(a*,a1) = oo (in fact a* ¢ L}(7))
e Workaround: use instead?:3

F(ak) —F* < aeiBfZT) (F(a) = F*) + kap(a., 21)

e Estimate the bound using a smoothing of a* as candidate

LPaul Tseng, (2010). Approximation accuracy, gradient methods, and error bound for structured convex optimization
2Jacobs‘ Léger, Li, Osher (2018). Solving large-scale optimization problems with a convergence rate

3Chizat (2021).Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures
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Main results

Theorem: convergence rates® [C. 2021]

The convergence rate is F(ax) — F* = O(-) with - as follows:

PGM APGM o Lip. | Vo Lip.
p=1| log(k)k™* | log(k)k? Gl']>0] gq=1| gq=2
2
p>1 k_(Pflq)dJrq k_<pfl‘);d+q G/[H*] =0 qg=2 g=24
(a) Convergence rates (b) Value of g (highest that applies)

e rates are tight up to log factors (lower bounds on explicit instances)

G'[11*] = 0 means the penalization H is inactive
e for p = 2 this is the rate of ISTA and FISTA (cursed!)
for signed problems and p = 1: use hyperbolic entropy

n(s) = s-arcsinh(s) — Vs2+ 141

e Comparable to Frank-Wolfe, but can be generically accelerated

LChizat (2021). Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures.
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Numerics

In pratice: these are the non-asymptotic rates (before overfitting the grid)
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(a) PGM (d=2,q=2) (b) APGM (d=2,¢9=2)

Observed vs. theoretical rates on a non-degenerate sparse 2D
deconvolution problem

~» p =1 (APGM with hyperbolic entropy) is one order of magnitude faster
than p =2 (FISTA) on a large range of accuracies!
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2. Local: Wasserstein Fisher-Rao Gradient Descent
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Re-parameterization with weighted particles

Nonnegative case

min F P = 5| @@ du®) -] + @)

Particle formulation
e Take m € N particles with weight/position (a;, x;) € Ry x X
e Parameterize pg = L 37| a;6,, with 6 = (a;, %)™,

e Find the minimizer (in 6 and m) of

Fm(0) = %(% Z a;d(x;) — y>2 + %Z aj
i=1 i=1

~> convex in (a;), non-convex in (x;)
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Re-parameterization with weighted particles

Nonnegative case

min F P = 5| @@ du®) -] + @)

Particle formulation
e Take m € N particles with weight/position (a;, x;) € Ry x X
e Parameterize pg = L 37| a;6,, with 6 = (a;, %)™,

e Find the minimizer (in 6 and m) of

171 & 2 A&
Fm(0) = 5 (; ; ai®(x;) — )/> +— ; aj
~> convex in (a;), non-convex in (x;)

Signed case
e Give sign to particles: 6 = (a;, x;, 07)", with o; = {+1, —1}.

e Equivalent to the unsigned case with X = two copies of X’ 8/21



Wasserstein-Fisher-Rao (aka Conic Particle) Gradient Flow

Algorithm in continuous time (C. 2019)
o Initialize with (a;(0), x;(0))™; (potentially warm start)
o Compute (0(t))¢>0 by following

Ea,-(t) = —4m- a;(t)V, Fn(0(t))
d a-m
X = TN X'Fm
G0 = =5y Y Fnl(0(0)
Why multiplicative updates for weights?
Initializing with 6(0) = (ag, xo)
=

‘ Initializing with 6(0) = ((a0/2, x0), (20/2, x0))

*

Discrete time version (see paper)

e Entropic mirror descent on (a;)

e Gradient descent update on (x;) 9/21



Sparsity and optimality

Assumption 1 (Uniqueness)

There exists a unique minimizer which is sparse: p* = 27;1 a; Oxr.

Let V[u] € C3(X) be the first variation of F at u, characterized by

F(pu+ev) = F(u)+ e/ V[p](x) dv(x) 4+ o(e), Vv € M(X) admiss.
X

Proposition (Optimality conditions)

The first variation of F at p* satisfies
VI >0 and spt(a’) = {4, x5} € {VIu'] = 0}.

' vyl
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Kernels and Non-degeneracy assumption

Definition (Interaction kernels)

Global interaction kernel K € S;(m*(d + 1)) (convention V¢ = 2¢):

K/ {74 = \/7VJ¢ Xi a' ) \/EVJ"(b(X;, ')>L2

Local interaction kernel H = diag(H;)™, € S, (m*d) with
H; = V2V[u*](x)

Definition (Non-degeneracy)

We say that F is non-degenerate iff: ~~ Can be guaranteed a priori

o K-0 under spikes separation & noise
. level conditions®:3
o argmin V[u*] = {x5, ..., x5}

o Hi=0ie{l,...,m}

1Duval and Peyré, 2015.Exact Support Recovery for Sparse Spikes Deconvolution
2poon, Keriven, Peyré, 2018. Support Localization [..]

11/21



Non-degeneracy vs. stability

Wasserstein-Fisher-Rao metric!
Define, for pu,v € M (X):

WERH(t,) i= minKL(li) + KLO2p) + [[ el y)dixy)
X2
where v € M (X x X) has marginals 71,72 and c(x, y) ~ dist(x, y)?/o?

Theorem* : quadratic growth (C., 2019)
If F is non-degenerate then 3Fy > F* such that if F(u) < Fy then

WER (1, 1) S F(p) = F* S WFR3(p, %)

o All results are uniform in m (hold even with m = o)

e WFR geometry appropriate for non-degenerate sparse problems

Lijero, Mielke, Savaré (2015). Kondratyev, Monsaingeon, Vorotnikov (2015). Chizat, Peyré, Schmitzer, Vialard (2015)

2Chizat (2019). Sparse optimization on measures with over-parameterized gradient descent.
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Back to dynamics

Rewriting WFR gradient flow using the first-variation V' gives:

%a;(t) = —4a;(t) V[u] (xi(2))

&
dt
where fip = L 37 3;(t)0,(r) € M4 (X).

xi(t) = —aVV[u(xi(t))

Proposition (Dynamics in the space of measures)

The curve (u;): solves (distributionally) the PDE:

Aepe = aV - (e V V[ue]) — 4pueV[pa]
—_— — —

Drift Reaction

This is the gradient flow of F under the metric WFR.
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Energy dissipation

Energy dissipation It holds & F () = —||VwrrF (1¢)||* with the
squared-norm of WFR gradient:

IVwrrF(u)]? == /X (@ V VIR + 41V ()]?) dp(x)

Theorem : PL inequality! C. 2019)
If F is non-degenerate then 3Fy > F* such that if F(u) < Fy then

IVwerFlull|? 2 F(n) - F*

Corollary

If F is non-degenerate then 3Cy, C; > 0 independent of m such that
F(uo) — F* < G = F(u)— F* < Ge O

e Overall time complexity O(m?nlog(1/¢))
e PL inequality and growth are related in finite dimension®

1 Chizat (2019). Sparse optimization on measures with over-parameterized gradient descent. 14/2]_

2Rebjock, Boumal (2023). Fast convergence to non-isolated minima |[...]



Proof idea and local expansion

Decompose p into local moments in
small balls B; around each x;":

e local biases b; € R9*1

e local covariances ¥; € R4xd

Local Taylor expansion of F around p*

po 1 N .
F(p)— F"~ =b"(K+ H)b +Zaitr(ZiHi)+/ V] dw
2 i=1 X\(UB;)
Bias term (local+global)  Variance term (local) Mass sent to 0
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3. The Min-Max case, joint work Guillaume Wang
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Bilinear minmax problem

Continuous strategy spaces X', ), pay-off function f € C3(X x V).

Mixed Nash equilibrium of continuous games

;Lemﬁ(nx)uén;(xy){ e /Xxy (o) ) )
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Bilinear minmax problem

Continuous strategy spaces X', ), pay-off function f € C3(X x V).

Mixed Nash equilibrium of continuous games
min  max {F U ::/ f(x,y)du(x)dv }
LI (w,v) ey (x,y) dp(x) dv(y)

Why bilinear?

e Applications to robust training of 2-layer Neural Networks
e Contains all difficulties of general convex-concave objectives

e In particular, explicit (or continuous-time) fixed-grid methods do not
converge for bilinear games ~+ need implicit steps

Parameterize = Y 1", ai0x, and v = Y. | bid,, with a,b € A™~1
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Conic Particle Proximal Point (CPPP)

(OZH, 0rr1) = , ar(g mi)n argmaxgy_(p,,y)m Fn(6",0")
- iy Xi )i=1

+ %KL(a\a(k)) + ozln Z a;(k)dist(x;, x;(k))?

i

+ KL (| b(k +—Zb )dist(y;, yi(k))?

1\/\/ang, Chizat (2022). An Exponentially Converging Particle Method for Mixed Nash Equilibria [...].
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Conic Particle Proximal Point (CPPP)

(OZH, 0rr1) = , ar(g mi)n argmaxgy_(p,,y)m Fn(6",0")
- iy Xi )i=1

+ %KL(a\a(k)) + ozln Z a;(k)dist(x;, x;(k))?

+ KL(b|b +—Zb )dist(y;, yi(k))?

Theorem : Local convergence®
If F admits a unique sparse, non-degenerate saddle (u*, v*) and given
a > 0, there exists C; > 0 (independent of m) such that

n < G, A(G”(O),G”(O)) <G = A(@N(t)79’/(t)) < C2e—C37,2t

where A denotes the primal-dual gap.

~~ In practice: replace proximal point by extra-gradient
~» Continuous-time does not converge in general

1\/\/ang, Chizat (2022). An Exponentially Converging Particle Method for Mixed Nash Equilibria [...].
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Surprising behavior

Player A Player B Player A Player B
2 2 H g
o HS o HI
position positon postton positon
Implicit, fixed positions Implicit, everything moves
Player A Player B Player A Player B
0 1 o HE
positon position positon positon

Explicit, fixed positions

Explicit, everything moves




Local analysis

The ODE Z/(t) = M(z(t) — z*) satisfies ||z(t) — z*||, = ©(et5*(M)).
Spectral Abscissa (local convergence rate)

sa(M) =

= m Real(A\) <0
AESpectrum(M)
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Local analysis

The ODE Z/(t) = M(z(t) — z*) satisfies ||z(t) — z*||, = ©(et5*(M)).
Spectral Abscissa (local convergence rate)

sa(M) = max Real(A\) <0
AESpectrum(M)

Generic game f(x,y) € C3(R9 x RY) with saddle z* = (x*, y*).

—Vif —VAf 2f 0 —V3,f
M = YXXT vzxy (") = - VS 2 + 20 T Vi
V3T VR f 0 Vif| " |VAf 0
S (psd) A (antisym.)
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Local analysis

The ODE Z/(t) = M(z(t) — z*) satisfies ||z(t) — z*||, = ©(et5*(M)).
Spectral Abscissa (local convergence rate)

sa(M) = max Real(A\) <0
AESpectrum(M)

Generic game f(x,y) € C3(R9 x RY) with saddle z* = (x*, y*).

—Vif —VAf 2f 0 —V3,f
M = YXXT vzxy (") = - VS 2 + 20 T Vi
V3T VR f 0 Vif| " |VAf 0
S (psd) A (antisym.)

e If A=0, then sa(M) = — min EigenVal(5)
e If f is p-strongly convex/concave, then sa(M) < —p
e in bilinear games, S =0 and sa(M) =0

~» What is sa(M) in general?
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Local convergence rate

A remark (Partial curvature suffices)

Let S # 0 a psd matrix. Then for almost any A, sa(M) < 0.

1\/\/ang, Chizat (2023). Local Convergence of Gradient Methods for Min-Max Games under Partial Curvature.
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Local convergence rate

A remark (Partial curvature suffices)

Let S # 0 a psd matrix. Then for almost any A, sa(M) < 0.

Theorem: Mean curvature matters, not min curvature!

Let S a psd matrix. If V2 f(z*) (the interaction part) is nonsingular, has
distinct eigenvalues and its singular vectors are uniformly distributed,
then for M, = A+ aS it holds

atr(S)
__ d

Average of eigenvalues

Ef[sa(M,)] = +0(a®) + ae(d)

where |e(d)| < 24/log(d)/(tr(S)/||S]|F) is small if S's spectrum is not
sparse.

~ In the ‘particle’ case, the convergence rate is generically ©(a?n)

1\/\/ang, Chizat (2023). Local Convergence of Gradient Methods for Min-Max Games under Partial Curvature.
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Conclusion

Last remarks
e Theory suggests the following building blocks:
e Global: APGM with hyperbolic entropy
e Local: WFR gradient descent (can be accelerated as well)
e Not discussed:

e Role of noise and Mean-Field Langevin dynamics
e Using a single algorithm instead of two

Based on the following papers:

I C. (2021). Convergence Rates of Gradient Methods for Convex
Optimization in the Space of Measures.
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Il Wang, C. (2022). An Exponentially Converging Particle Method for
Mixed Nash Equilibria [...]. and Wang, C. (2023). Local Convergence of

Gradient Methods for Min-Max Games under Partial Curvature 00
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