

Convex Optimization in the Space of Measure

Global vs Local Methods

Lénaïc Chizat^{*}

2024

*EPFL, DOLA chair

Convex optimization over measures

Setting

- ${\mathcal X}$ compact Riemannian *d*-manifold (torus, sphere), $d\geq 1$
- $\mathcal{M}(\mathcal{X})$ space of signed Borel measures on \mathcal{X}
- $\Phi: \mathcal{X} \to \mathbb{R}^n$ smooth filter/dictionnary, $y \in \mathbb{R}^n$ signal

$$F^* := \min_{\mu \in \mathcal{M}(\mathcal{X})} F(\mu), \quad F(\mu) := \frac{1}{2} \left\| \int \Phi(x) \, \mathrm{d}\mu(x) - y \right\|_2^2 + \lambda \|\mu\|_{\mathsf{TV}}$$

Goal: given $\epsilon > 0$, find $\mu \in \mathcal{M}(\mathcal{X})$ such that $F(\mu) - F^* \leq \epsilon$

Convex optimization over measures

Setting

- ${\mathcal X}$ compact Riemannian *d*-manifold (torus, sphere), $d\geq 1$
- $\mathcal{M}(\mathcal{X})$ space of signed Borel measures on \mathcal{X}
- $\Phi: \mathcal{X} \to \mathbb{R}^n$ smooth filter/dictionnary, $y \in \mathbb{R}^n$ signal

$$\mathcal{F}^* := \min_{\mu \in \mathcal{M}(\mathcal{X})} \mathcal{F}(\mu), \quad \mathcal{F}(\mu) := \frac{1}{2} \Big\| \int \Phi(x) \,\mathrm{d}\mu(x) - y \Big\|_2^2 + \lambda \|\mu\|_{\mathsf{TV}}$$

Goal: given $\epsilon > 0$, find $\mu \in \mathcal{M}(\mathcal{X})$ such that $F(\mu) - F^* \leq \epsilon$

Global

Time complexity in $\Theta(\epsilon^{-d})$.

- Frank-Wolfe
- (Bregman) Gradient Descent
- Bilevel Mean-Field Langevin

Local (with non-degeneracy)

Assuming $F(\mu_0) \leq F_0$, time complexity in $O(\log(1/\epsilon))$.

- "Sliding" particles with GD...
-Wasserstein-Fisher-Rao GD

Classification of some algorithmic primitives

1. Global: Bregman Gradient Descent

2. Local: Wasserstein Fisher-Rao Gradient Descent

3. The Min-Max case, joint work Guillaume Wang

1. Global: Bregman Gradient Descent

2. Local: Wasserstein Fisher-Rao Gradient Descent

3. The Min-Max case, joint work Guillaume Wang

Convex optimization : ∞ -dim analysis

Approach

Initialize and fix $(x_i)_{i=1}^m$ uniformly (on a grid/random) and solve the *convex* problem:

$$\min_{a\in\mathbb{R}^m}F_m(a), \qquad F_m(a):=\frac{1}{2}\Big\|\sum_{i=1}^m a_i\Phi(x_i)-y\Big\|_2^2+\lambda\|a\|_1$$

Convex optimization : ∞ -dim analysis

Approach

Initialize and fix $(x_i)_{i=1}^m$ uniformly (on a grid/random) and solve the *convex* problem:

$$\min_{a\in\mathbb{R}^m}F_m(a), \qquad F_m(a):=\frac{1}{2}\Big\|\sum_{i=1}^m a_i\Phi(x_i)-y\Big\|_2^2+\lambda\|a\|_1$$

Infinite dimensional analysis

- Classical guarantees explode as $m \to \infty$, non-informative
- In contrast, ∞ -dimensional analysis leads to:
 - Classification of algorithms in terms of cvge rates;
 - Exhibits practical non-asymptotic cvge rates before grid overfitting

Fix $\tau \in \mathcal{P}(\mathcal{X})$ a reference measure and let $\mu = a\tau$ with $a \in L^1(\tau)$:

$$F^* := \min_{a \in L^1(\tau)} F(a), \quad F(a) := \frac{1}{2} \left\| \int a(x) \Phi(x) \, \mathrm{d}\tau(x) - y \right\|_2^2 + \lambda \|a\|_{L^1(\tau)}$$

Bregman Proximal Gradient Methods

Setting: Minimize F(a) = G(a) + H(a) = cvx smooth + cvx proxable. Power-entropy Bregman divergences, for $a, b \in L^1(\tau)$:

$$D_{p}(a,b) = \int (\eta(a) - \eta(b) - \eta'(b)(a-b)) \, \mathrm{d}\tau, \quad \eta(s) = \begin{cases} \frac{1}{p(p-1)} s^{p}, & p \in]1,2]\\ s \log(s) - s + 1, & p = 1 \end{cases}$$

Proximal Gradient Method (PGM)

Choose step-size $\eta > 0$ and initialization $a_1 \in \text{dom}(H)$. For k = 1, 2, ...

$$a_{k+1} = \arg\min \langle a, G'[a_k] \rangle_{L^2(\tau)} + H(a) + \eta^{-1} D_p(a, a_k)$$

Bregman Proximal Gradient Methods

Setting: Minimize F(a) = G(a) + H(a) = cvx smooth + cvx proxable. Power-entropy Bregman divergences, for $a, b \in L^1(\tau)$:

$$D_{p}(a,b) = \int (\eta(a) - \eta(b) - \eta'(b)(a-b)) d\tau, \quad \eta(s) = \begin{cases} \frac{1}{p(p-1)} s^{p}, & p \in]1,2] \\ s \log(s) - s + 1, & p = 1 \end{cases}$$

Proximal Gradient Method (PGM)

Choose step-size $\eta > 0$ and initialization $a_1 \in \text{dom}(H)$. For k = 1, 2, ...

$$a_{k+1} = \arg\min \langle a, G'[a_k] \rangle_{L^2(\tau)} + H(a) + \eta^{-1} D_p(a, a_k)$$

Accelerated Proximal Gradient Method (APGM)

Choose step-size $\eta > 0$ and $a_1 \in \text{dom}(H)$ and $\gamma_0 = 1$. For k = 1, 2, ...

1.
$$b_{k} = (1 - \gamma_{k})a_{k} + \gamma_{k}c_{k}$$

2. $c_{k+1} = \arg\min \langle c, G'[b_{k}] \rangle_{L^{2}(\tau)} + H(c) + \eta^{-1}D_{\rho}(c, c_{k})$
3. $a_{k+1} = (1 - \gamma_{k})a_{k} + \gamma_{k}c_{k+1}$
4. $\gamma_{k+1} = \frac{1}{2}(\sqrt{\gamma_{k}^{4} + 4\gamma_{k}^{2}} - \gamma_{k}^{2})$

4/21

Theorem¹ (adapted)

For a small enough step-size $\eta,$ if the iterates are bounded, it holds

$$F(a_k) - F(a) \leq rac{4}{rac{\eta k^eta}{\xi_k}} D_p(a,a_1), \quad orall a \in L^1(au), orall k \geq 1$$

where $\beta = 1$ for PGM and $\beta = 2$ for APGM.

- Problem: for sparse solutions D_p(a^{*}, a₁) = ∞ (in fact a^{*} ∉ L¹(τ))
- Workaround: use instead^{2,3}

$$F(a_k) - F^* \leq \inf_{a \in L^1(\tau)} \left(F(a) - F^* \right) + \xi_k D_p(a, a_1)$$

• Estimate the bound using a smoothing of a* as candidate

¹Paul Tseng, (2010). Approximation accuracy, gradient methods, and error bound for structured convex optimization.

² Jacobs, Léger, Li, Osher (2018). Solving large-scale optimization problems with a convergence rate

³Chizat (2021). Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures

Main results

Theorem: convergence rates¹ [C. 2021]

The convergence rate is $F(a_k) - F^* = O(\cdot)$ with \cdot as follows:

	PGM	APGM
p = 1	$\log(k)k^{-1}$	$\log(k)k^{-2}$
p > 1	$k^{-\frac{q}{(p-1)d+q}}$	$k^{-\frac{2q}{(p-1)d+q}}$

(a) Convergence rates

	Φ Lip.	∇Φ Lip.
$G'[\mu^*] > 0$	q = 1	<i>q</i> = 2
$G'[\mu^*]=0$	<i>q</i> = 2	<i>q</i> = 4

(b) Value of q (highest that applies)

- rates are tight up to log factors (lower bounds on explicit instances)
- $G'[\mu^*] = 0$ means the penalization H is inactive
- for p = 2 this is the rate of ISTA and FISTA (cursed!)
- for signed problems and p = 1: use hyperbolic entropy

$$\eta(s) = s \cdot \operatorname{arcsinh}(s) - \sqrt{s^2 + 1} + 1$$

• Comparable to Frank-Wolfe, but can be generically accelerated

¹Chizat (2021). Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures.

Numerics

In pratice: these are the non-asymptotic rates (before overfitting the grid)

Observed vs. theoretical rates on a non-degenerate sparse 2D deconvolution problem

 \rightarrow *p* = 1 (APGM with hyperbolic entropy) is one order of magnitude faster than *p* = 2 (FISTA) on a large range of accuracies!

1. Global: Bregman Gradient Descent

2. Local: Wasserstein Fisher-Rao Gradient Descent

3. The Min-Max case, joint work Guillaume Wang

Re-parameterization with weighted particles

Nonnegative case

$$\min_{\mu \in \mathcal{M}_{+}(\mathcal{X})} F(\mu), \qquad F(\mu) \coloneqq \frac{1}{2} \left\| \int \Phi(\theta) \, \mathrm{d}\mu(\theta) - y \right\|_{2}^{2} + \lambda \mu(\mathcal{X})$$

Particle formulation

- Take $m \in \mathbb{N}$ particles with weight/position $(a_i, x_i) \in \mathbb{R}_+ imes \mathcal{X}$
- Parameterize $\mu_{\theta} = \frac{1}{m} \sum_{i=1}^{m} a_i \delta_{x_i}$ with $\theta = (a_i, x_i)_{i=1}^{m}$
- Find the minimizer (in θ and m) of

$$F_m(heta) \coloneqq rac{1}{2} \Big(rac{1}{m} \sum_{i=1}^m a_i \Phi(x_i) - y\Big)^2 + rac{\lambda}{m} \sum_{i=1}^m a_i$$

 \rightsquigarrow convex in (a_i) , non-convex in (x_i)

Re-parameterization with weighted particles

Nonnegative case

$$\min_{\mu \in \mathcal{M}_{+}(\mathcal{X})} F(\mu), \qquad F(\mu) \coloneqq \frac{1}{2} \left\| \int \Phi(\theta) \, \mathrm{d}\mu(\theta) - y \right\|_{2}^{2} + \lambda \mu(\mathcal{X})$$

Particle formulation

- Take $m \in \mathbb{N}$ particles with weight/position $(a_i, x_i) \in \mathbb{R}_+ imes \mathcal{X}$
- Parameterize $\mu_{\theta} = \frac{1}{m} \sum_{i=1}^{m} a_i \delta_{x_i}$ with $\theta = (a_i, x_i)_{i=1}^{m}$
- Find the minimizer (in θ and m) of

$$F_m(heta) \coloneqq rac{1}{2} \Big(rac{1}{m} \sum_{i=1}^m a_i \Phi(x_i) - y\Big)^2 + rac{\lambda}{m} \sum_{i=1}^m a_i$$

 \rightsquigarrow convex in (a_i), non-convex in (x_i)

Signed case

- Give sign to particles: $\theta = (a_i, x_i, \sigma_i)_{i=1}^m$ with $\sigma_i = \{+1, -1\}$.
- Equivalent to the unsigned case with $\tilde{\mathcal{X}} =$ two copies of \mathcal{X}

Wasserstein-Fisher-Rao (aka Conic Particle) Gradient Flow

Algorithm in continuous time (C. 2019)

- Initialize with $(a_i(0), x_i(0))_{i=1}^m$ (potentially warm start)
- Compute $(\theta(t))_{t\geq 0}$ by following

$$\left\{egin{aligned} &rac{d}{dt}a_i(t)=-4m\cdot a_i(t)
abla_{a_i}F_m(heta(t))\ &rac{d}{dt}x_i(t)=-rac{lpha\cdot m}{a_i(t)}
abla_{ imes_i}F_m(heta(t)) \end{aligned}
ight.$$

Why multiplicative updates for weights? Initializing with $\theta(0) = (a_0, x_0)$ \Leftrightarrow Initializing with $\theta(0) = ((a_0/2, x_0), (a_0/2, x_0))$

Discrete time version (see paper)

- Entropic mirror descent on (a_i)
- Gradient descent update on (x_i) 9/21

Sparsity and optimality

Assumption 1 (Uniqueness)

There exists a unique minimizer which is sparse: $\mu^* = \sum_{i=1}^{m^*} a_i^* \delta_{x_i^*}$.

Let $V[\mu] \in C^3(\mathcal{X})$ be the first variation of F at μ , characterized by $F(\mu + \epsilon \nu) = F(\mu) + \epsilon \int_{\mathcal{X}} V[\mu](x) d\nu(x) + o(\epsilon), \quad \forall \nu \in \mathcal{M}(\mathcal{X}) \text{ admiss.}$

Proposition (Optimality conditions)

The first variation of F at μ^* satisfies $V[\mu^*] \ge 0$ and $\operatorname{spt}(\mu^*) = \{x_1^*, \dots, x_{m^*}^*\} \subset \{V[\mu^*] = 0\}.$

Kernels and Non-degeneracy assumption

Definition (Interaction kernels)

Global interaction kernel $K \in S_+(m^*(d+1))$ (convention $\nabla_0 \phi = 2\phi$):

$$\mathcal{K}_{(i,j),(i',j')} = \langle \sqrt{a_i^*} \nabla_j \phi(\mathbf{x}_i^*, \cdot), \sqrt{a_{i'}^*} \nabla_{j'} \phi(\mathbf{x}_{i'}^*, \cdot) \rangle_{L^2}$$

Local interaction kernel $H = \operatorname{diag}(H_i)_{i=1}^{m^*} \in \mathcal{S}_+(m^*d)$ with

 $H_i := \nabla^2 V[\mu^*](x_i^*)$

Definition (Non-degeneracy)

We say that *F* is **non-degenerate** iff:

- K ≻ 0
- arg min $V[\mu^*] = \{x_1^*, \dots, x_{m^*}^*\}$
- $H_i \succ 0, i \in \{1, ..., m^*\}$

 \rightsquigarrow Can be guaranteed a priori under spikes separation & noise level conditions^{2,3}

¹Duval and Peyré, 2015. Exact Support Recovery for Sparse Spikes Deconvolution ²Poon, Keriven, Peyré, 2018. Support Localization [...]

Non-degeneracy vs. stability

Wasserstein-Fisher-Rao metric¹

Define, for $\mu, \nu \in \mathcal{M}_+(\mathcal{X})$:

$$\mathrm{WFR}_2^2(\mu,\nu) := \min_{\gamma} \mathrm{KL}(\gamma_1|\mu) + \mathrm{KL}(\gamma_2|\nu) + \iint_{\mathcal{X}^2} c(x,y) \,\mathrm{d}\gamma(x,y)$$

where $\gamma \in \mathcal{M}_+(\mathcal{X} \times \mathcal{X})$ has marginals γ_1, γ_2 and $c(x, y) \approx \operatorname{dist}(x, y)^2 / \alpha^2$

Theorem⁴ : quadratic growth (C., 2019) If *F* is non-degenerate then $\exists F_0 > F^*$ such that if $F(\mu) \le F_0$ then $\operatorname{WFR}_2^2(\mu, \mu^*) \lesssim F(\mu) - F^* \lesssim \operatorname{WFR}_2^2(\mu, \mu^*)$

- All results are uniform in m (hold even with $m = \infty$)
- WFR geometry appropriate for non-degenerate sparse problems

²Chizat (2019). Sparse optimization on measures with over-parameterized gradient descent.

¹Liero, Mielke, Savaré (2015). Kondratyev, Monsaingeon, Vorotnikov (2015). Chizat, Peyré, Schmitzer, Vialard (2015).

Rewriting WFR gradient flow using the first-variation V gives:

$$\begin{cases} \frac{d}{dt}a_i(t) = -4a_i(t)V[\mu_t](x_i(t))\\ \frac{d}{dt}x_i(t) = -\alpha\nabla V[\mu_t](x_i(t)) \end{cases}$$

where $\mu_t \coloneqq \frac{1}{m} \sum_{i=1}^m a_i(t) \delta_{x_i(t)} \in \mathcal{M}_+(\mathcal{X}).$

Proposition (Dynamics in the space of measures)

The curve $(\mu_t)_t$ solves (distributionally) the PDE:

$$\partial_t \mu_t = \underbrace{\alpha \nabla \cdot \left(\mu_t \nabla V[\mu_t]\right)}_{\text{Drift}} - \underbrace{4\mu_t V[\mu_t]}_{\text{Reaction}}$$

This is the gradient flow of F under the metric WFR.

Energy dissipation

Energy dissipation It holds $\frac{d}{dt}F(\mu_t) = -\|\nabla_{WFR}F(\mu_t)\|^2$ with the squared-norm of WFR gradient:

$$\|\nabla_{\rm WFR} F(\mu)\|^2 := \int_{\mathcal{X}} (\alpha \|\nabla V[\mu](x)\|^2 + 4|V[\mu](x)|^2) \, d\mu(x)$$

Theorem : PL inequality¹ C. 2019)

If F is non-degenerate then $\exists F_0 > F^*$ such that if $F(\mu) < F_0$ then

 $\|\nabla_{\mathrm{WFR}}F[\mu]\|^2 \gtrsim F(\mu) - F^*$

Corollary

If F is non-degenerate then $\exists C_0, C_1 > 0$ independent of m such that

$$F(\mu_0) - F^* \leq C_0 \quad \Rightarrow \quad F(\mu_t) - F^* \leq C_0 e^{-C_1 t}$$

- Overall time complexity $O(m^2 n \log(1/\epsilon))$
- PL inequality and growth are related in finite dimension²

¹Chizat (2019). Sparse optimization on measures with over-parameterized gradient descent.

²Rebjock, Boumal (2023). Fast convergence to non-isolated minima [...]

Decompose μ into local moments in small balls B_i around each x_i^* :

- local biases $b_i \in \mathbb{R}^{d+1}$
- local covariances $\Sigma_i \in \mathbb{R}^{d \times d}$

Local Taylor expansion of F around μ^* $F(\mu) - F^* \approx \underbrace{\frac{1}{2}b^{\mathsf{T}}(K+H)b}_{\text{Bias term (local+global)}} + \underbrace{\sum_{i=1}^{m^*} a_i \operatorname{tr}(\Sigma_i H_i)}_{\text{Variance term (local)}} + \underbrace{\int_{\mathcal{X} \setminus (\bigcup B_i)} V[\mu^*] \, \mathrm{d}\mu}_{\text{Mass sent to 0}}$ 1. Global: Bregman Gradient Descent

2. Local: Wasserstein Fisher-Rao Gradient Descent

3. The Min-Max case, joint work Guillaume Wang

Continuous strategy spaces \mathcal{X}, \mathcal{Y} , pay-off function $f \in C^3(\mathcal{X} \times \mathcal{Y})$.

Mixed Nash equilibrium of continuous games

$$\min_{\mu \in \mathcal{P}(\mathcal{X})} \max_{\nu \in \mathcal{P}(\mathcal{Y})} \left\{ F(\mu, \nu) \coloneqq \int_{\mathcal{X} \times \mathcal{Y}} f(x, y) \, \mathrm{d}\mu(x) \, \mathrm{d}\nu(y) \right\}$$

Continuous strategy spaces \mathcal{X}, \mathcal{Y} , pay-off function $f \in C^3(\mathcal{X} \times \mathcal{Y})$.

Mixed Nash equilibrium of continuous games

$$\min_{\mu \in \mathcal{P}(\mathcal{X})} \max_{\nu \in \mathcal{P}(\mathcal{Y})} \left\{ F(\mu, \nu) \coloneqq \int_{\mathcal{X} \times \mathcal{Y}} f(x, y) \, \mathrm{d}\mu(x) \, \mathrm{d}\nu(y) \right\}$$

Why bilinear?

- Applications to robust training of 2-layer Neural Networks
- Contains all difficulties of general convex-concave objectives
- In particular, explicit (or continuous-time) fixed-grid methods do not converge for bilinear games → need implicit steps

Parameterize $\mu = \sum_{i=1}^{m} a_i \delta_{x_i}$ and $\nu = \sum_{i=1}^{m} b_i \delta_{y_i}$ with $a, b \in \Delta^{m-1}$

Conic Particle Proximal Point (CPPP)

$$\begin{aligned} (\theta_{k+1}^{\mu}, \theta_{k+1}^{\nu}) &= \operatorname*{arg\,min}_{\theta^{\mu} = (a_i, x_i)_{i=1}^m} \operatorname{argmax}_{\theta^{\nu} = (b_i, y_i)_{i=1}^m} F_m(\theta^{\mu}, \theta^{\nu}) \\ &+ \frac{1}{\eta} \operatorname{KL}(a|a(k)) + \frac{1}{\alpha \eta} \sum_i a_i(k) \operatorname{dist}(x_i, x_i(k))^2 \\ &+ \frac{1}{\eta} \operatorname{KL}(b|b(k)) + \frac{1}{\alpha \eta} \sum_i b_i(k) \operatorname{dist}(y_i, y_i(k))^2 \end{aligned}$$

¹Wang, Chizat (2022). An Exponentially Converging Particle Method for Mixed Nash Equilibria [...].

Conic Particle Proximal Point (CPPP)

$$\begin{aligned} (\theta_{k+1}^{\mu}, \theta_{k+1}^{\nu}) &= \operatorname*{arg\,min}_{\theta^{\mu} = (a_i, x_i)_{i=1}^{m}} \operatorname{argmax}_{\theta^{\nu} = (b_i, y_i)_{i=1}^{m}} F_m(\theta^{\mu}, \theta^{\nu}) \\ &+ \frac{1}{\eta} \operatorname{KL}(a|a(k)) + \frac{1}{\alpha \eta} \sum_i a_i(k) \operatorname{dist}(x_i, x_i(k))^2 \\ &+ \frac{1}{\eta} \operatorname{KL}(b|b(k)) + \frac{1}{\alpha \eta} \sum_i b_i(k) \operatorname{dist}(y_i, y_i(k))^2 \end{aligned}$$

Theorem : Local convergence¹

If *F* admits a unique *sparse*, non-degenerate saddle (μ^*, ν^*) and given $\alpha > 0$, there exists $C_i > 0$ (independent of *m*) such that

 $\eta < C_0, \ \Delta(\theta^{\mu}(0), \theta^{\nu}(0)) \leq C_1 \quad \Rightarrow \quad \Delta(\theta^{\mu}(t), \theta^{\nu}(t)) \leq C_2 e^{-C_3 \eta^2 t}$

where Δ denotes the primal-dual gap.

 \rightsquigarrow In practice: replace proximal point by extra-gradient \rightsquigarrow Continuous-time does not converge *in general*

¹Wang, Chizat (2022). An Exponentially Converging Particle Method for Mixed Nash Equilibria [...].

Surprising behavior

Implicit, fixed positions

Implicit, everything moves

Explicit, fixed positions

Explicit, everything moves

Local analysis

The ODE $z'(t) = M(z(t) - z^*)$ satisfies $||z(t) - z^*||_2 = \tilde{\Theta}(e^{t \cdot \operatorname{sa}(M)})$.

Spectral Abscissa (local convergence rate)

$$\operatorname{sa}(M) \coloneqq \max_{\lambda \in \operatorname{Spectrum}(M)} \operatorname{Real}(\lambda) \leq 0$$

Local analysis

The ODE $z'(t) = M(z(t) - z^*)$ satisfies $||z(t) - z^*||_2 = \tilde{\Theta}(e^{t \cdot \operatorname{sa}(M)})$.

Spectral Abscissa (local convergence rate)

$$\operatorname{sa}(M) \coloneqq \max_{\lambda \in \operatorname{Spectrum}(M)} \operatorname{Real}(\lambda) \leq 0$$

Generic game $f(x, y) \in C^3(\mathbb{R}^d \times \mathbb{R}^d)$ with saddle $z^* = (x^*, y^*)$.

$$M = \begin{bmatrix} -\nabla_{xx}^{2}f & -\nabla_{xy}^{2}f \\ \nabla_{xy}^{2}f^{\top} & \nabla_{yy}^{2}f \end{bmatrix} (z^{*}) = -\underbrace{\begin{bmatrix} \nabla_{xx}^{2}f & 0 \\ 0 & \nabla_{yy}^{2}f \end{bmatrix}}_{S \text{ (psd)}} + \underbrace{\begin{bmatrix} 0 & -\nabla_{xy}^{2}f \\ \nabla_{xy}^{2}f^{\top} & 0 \end{bmatrix}}_{A \text{ (antisym.)}}$$

Local analysis

The ODE $z'(t) = M(z(t) - z^*)$ satisfies $||z(t) - z^*||_2 = \tilde{\Theta}(e^{t \cdot \operatorname{sa}(M)})$.

Spectral Abscissa (local convergence rate)

$$\operatorname{sa}(M) \coloneqq \max_{\lambda \in \operatorname{Spectrum}(M)} \operatorname{Real}(\lambda) \leq 0$$

Generic game $f(x, y) \in C^3(\mathbb{R}^d \times \mathbb{R}^d)$ with saddle $z^* = (x^*, y^*)$.

$$M = \begin{bmatrix} -\nabla_{xx}^{2}f & -\nabla_{xy}^{2}f \\ \nabla_{xy}^{2}f^{\top} & \nabla_{yy}^{2}f \end{bmatrix} (z^{*}) = -\underbrace{\begin{bmatrix} \nabla_{xx}^{2}f & 0 \\ 0 & \nabla_{yy}^{2}f \end{bmatrix}}_{S \text{ (psd)}} + \underbrace{\begin{bmatrix} 0 & -\nabla_{xy}^{2}f \\ \nabla_{xy}^{2}f^{\top} & 0 \end{bmatrix}}_{A \text{ (antisym.)}}$$

• If A = 0, then $sa(M) = -min \operatorname{EigenVal}(S)$

- If f is μ -strongly convex/concave, then $\operatorname{sa}(M) \leq -\mu$
- in bilinear games, S = 0 and sa(M) = 0
- \rightsquigarrow What is sa(M) in general?

Local convergence rate

A remark (Partial curvature suffices)

Let $S \neq 0$ a psd matrix. Then for almost any A, sa(M) < 0.

¹Wang, Chizat (2023). Local Convergence of Gradient Methods for Min-Max Games under Partial Curvature.

Local convergence rate

A remark (Partial curvature suffices)

Let $S \neq 0$ a psd matrix. Then for almost any A, sa(M) < 0.

Theorem: Mean curvature matters, not min curvature¹

Let S a psd matrix. If $\nabla_{xy}^2 f(z^*)$ (the interaction part) is nonsingular, has distinct eigenvalues and its singular vectors are uniformly distributed, then for $M_{\alpha} = A + \alpha S$ it holds

$$\mathbf{E}[\operatorname{sa}(M_{\alpha})] = \underbrace{-\frac{\alpha \operatorname{tr}(S)}{d}}_{\operatorname{Average of eigenvalues}} + O(\alpha^{3}) + \alpha \epsilon(d)$$

where $|\epsilon(d)| \le 2\sqrt{\log(d)}/(\operatorname{tr}(S)/||S||_F)$ is small if S's spectrum is not sparse.

 \rightarrow In the 'particle' case, the convergence rate is generically $\Theta(\alpha^2 \eta)$

¹Wang, Chizat (2023). Local Convergence of Gradient Methods for Min-Max Games under Partial Curvature.

Conclusion

Last remarks

- Theory suggests the following building blocks:
 - Global: APGM with hyperbolic entropy
 - Local: WFR gradient descent (can be accelerated as well)
- Not discussed:
 - Role of noise and Mean-Field Langevin dynamics
 - Using a single algorithm instead of two

Based on the following papers:

- I C. (2021). Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures.
- II C. (2019). Sparse Optimization on Measures with Over-parameterized Gradient Descent.
- III Wang, C. (2022). An Exponentially Converging Particle Method for Mixed Nash Equilibria [...]. and Wang, C. (2023). Local Convergence of Gradient Methods for Min-Max Games under Partial Curvature