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Convex optimization over measures

Setting

• X compact Riemannian d-manifold (torus, sphere), d ≥ 1

• M(X ) space of signed Borel measures on X
• Φ : X → Rn smooth filter/dictionnary, y ∈ Rn signal

F ∗ := min
µ∈M(X )

F (µ), F (µ) :=
1

2

∥∥∥∫ Φ(x)dµ(x)− y
∥∥∥2

2
+ λ‖µ‖TV

Goal: given ε > 0, find µ ∈M(X ) such that F (µ)− F ∗ ≤ ε

Global

Time complexity in Θ(ε−d).

• Frank-Wolfe

• (Bregman) Gradient Descent

• Bilevel Mean-Field Langevin

Local (with non-degeneracy)

Assuming F (µ0) ≤ F0, time

complexity in O(log(1/ε)).

• “Sliding” particles with GD...

• ...Wasserstein-Fisher-Rao GD

Classification of some algorithmic primitives
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Outline

1. Global: Bregman Gradient Descent

2. Local: Wasserstein Fisher-Rao Gradient Descent

3. The Min-Max case, joint work Guillaume Wang
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Convex optimization : ∞-dim analysis

Approach

Initialize and fix (xi )
m
i=1 uniformly (on a grid/random) and solve the

convex problem:

min
a∈Rm

Fm(a), Fm(a) :=
1

2

∥∥∥ m∑
i=1

aiΦ(xi )− y
∥∥∥2

2
+ λ‖a‖1

Infinite dimensional analysis

• Classical guarantees explode as m→∞, non-informative

• In contrast, ∞-dimensional analysis leads to:

• Classification of algorithms in terms of cvge rates;

• Exhibits practical non-asymptotic cvge rates before grid overfitting

Fix τ ∈ P(X ) a reference measure and let µ = aτ with a ∈ L1(τ):

F ∗ := min
a∈L1(τ)

F (a), F (a) :=
1

2

∥∥∥∫ a(x)Φ(x)dτ(x)− y
∥∥∥2

2
+ λ‖a‖L1(τ)
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Bregman Proximal Gradient Methods

Setting: Minimize F (a) = G (a) + H(a) = cvx smooth + cvx proxable.

Power-entropy Bregman divergences, for a, b ∈ L1(τ):

Dp(a, b) =

∫ (
η(a)− η(b)− η′(b)(a− b)

)
dτ, η(s) =


1

p(p − 1
sp, p ∈]1, 2]

s log(s)− s + 1, p = 1

Proximal Gradient Method (PGM)

Choose step-size η > 0 and initialization a1 ∈ dom(H). For k = 1, 2, . . .

ak+1 = arg min 〈a,G ′[ak ]〉L2(τ) + H(a) + η−1Dp(a, ak)

Accelerated Proximal Gradient Method (APGM)

Choose step-size η > 0 and a1 ∈ dom(H) and γ0 = 1. For k = 1, 2, . . .

1. bk = (1− γk)ak + γkck

2. ck+1 = arg min 〈c,G ′[bk ]〉L2(τ) + H(c) + η−1Dp(c, ck)

3. ak+1 = (1− γk)ak + γkck+1

4. γk+1 = 1
2
(
√
γ4
k + 4γ2

k − γ
2
k )
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Our starting point: known guaranties

Theorem1 (adapted)

For a small enough step-size η, if the iterates are bounded, it holds

F (ak)− F (a) ≤ 4

ηkβ︸︷︷︸
ξk

Dp(a, a1), ∀a ∈ L1(τ),∀k ≥ 1

where β = 1 for PGM and β = 2 for APGM.

• Problem: for sparse solutions Dp(a∗, a1) =∞ (in fact a∗ /∈ L1(τ))

• Workaround: use instead2,3

F (ak)− F ∗ ≤ inf
a∈L1(τ)

(
F (a)− F ∗

)
+ ξkDp(a, a1)

• Estimate the bound using a smoothing of a∗ as candidate

1Paul Tseng, (2010). Approximation accuracy, gradient methods, and error bound for structured convex optimization.

2Jacobs, Léger, Li, Osher (2018). Solving large-scale optimization problems with a convergence rate

3Chizat (2021).Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures
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Main results

Theorem: convergence rates1 [C. 2021]

The convergence rate is F (ak)− F ∗ = O(·) with · as follows:

PGM APGM

p = 1 log(k)k−1 log(k)k−2

p > 1 k
− q

(p−1)d+q k
− 2q

(p−1)d+q

(a) Convergence rates

Φ Lip. ∇Φ Lip.

G ′[µ∗] > 0 q = 1 q = 2

G ′[µ∗] = 0 q = 2 q = 4

(b) Value of q (highest that applies)

• rates are tight up to log factors (lower bounds on explicit instances)

• G ′[µ∗] = 0 means the penalization H is inactive

• for p = 2 this is the rate of ISTA and FISTA (cursed!)

• for signed problems and p = 1: use hyperbolic entropy

η(s) = s · arcsinh(s)−
√

s2 + 1 + 1

• Comparable to Frank-Wolfe, but can be generically accelerated

1Chizat (2021). Convergence Rates of Gradient Methods for Convex Optimization in the Space of Measures.
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Numerics

In pratice: these are the non-asymptotic rates (before overfitting the grid)

Observed vs. theoretical rates on a non-degenerate sparse 2D

deconvolution problem

 p = 1 (APGM with hyperbolic entropy) is one order of magnitude faster

than p = 2 (FISTA) on a large range of accuracies!
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Outline

1. Global: Bregman Gradient Descent

2. Local: Wasserstein Fisher-Rao Gradient Descent

3. The Min-Max case, joint work Guillaume Wang
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Re-parameterization with weighted particles

Nonnegative case

min
µ∈M+(X )

F (µ), F (µ) :=
1

2

∥∥∥∫ Φ(θ)dµ(θ)− y
∥∥∥2

2
+ λµ(X )

Particle formulation

• Take m ∈ N particles with weight/position (ai , xi ) ∈ R+ ×X
• Parameterize µθ = 1

m

∑m
i=1 aiδxi with θ = (ai , xi )

m
i=1

• Find the minimizer (in θ and m) of

Fm(θ) :=
1

2

( 1

m

m∑
i=1

aiΦ(xi )− y
)2

+
λ

m

m∑
i=1

ai

 convex in (ai ), non-convex in (xi )

Signed case

• Give sign to particles: θ = (ai , xi , σi )
m
i=1 with σi = {+1,−1}.

• Equivalent to the unsigned case with X̃ = two copies of X
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Wasserstein-Fisher-Rao (aka Conic Particle) Gradient Flow

Algorithm in continuous time (C. 2019)

• Initialize with (ai (0), xi (0))mi=1 (potentially warm start)

• Compute (θ(t))t≥0 by following
d

dt
ai (t) = − 4m · ai (t)∇aiFm(θ(t))

d

dt
xi (t) = −α ·m

ai (t)
∇xiFm(θ(t))

Why multiplicative updates for weights?

Initializing with θ(0) = (a0, x0)

⇔
Initializing with θ(0) = ((a0/2, x0), (a0/2, x0))

Discrete time version (see paper)

• Entropic mirror descent on (ai )

• Gradient descent update on (xi ) 9/21



Sparsity and optimality

Assumption 1 (Uniqueness)

There exists a unique minimizer which is sparse: µ∗ =
∑m∗

i=1 a
∗
i δx∗i .

Let V [µ] ∈ C3(X ) be the first variation of F at µ, characterized by

F (µ+ εν) = F (µ) + ε

∫
X
V [µ](x)dν(x) + o(ε), ∀ν ∈M(X ) admiss.

Proposition (Optimality conditions)

The first variation of F at µ∗ satisfies

V [µ∗] ≥ 0 and spt(µ∗) = {x∗1 , . . . , x∗m∗} ⊂ {V [µ∗] = 0}.

10/21



Kernels and Non-degeneracy assumption

Definition (Interaction kernels)

Global interaction kernel K ∈ S+(m∗(d + 1)) (convention ∇0φ = 2φ):

K(i,j),(i ′,j′) = 〈
√

a∗i ∇jφ(x∗i , ·),
√
a∗i ′∇j′φ(x∗i ′ , ·)〉L2

Local interaction kernel H = diag(Hi )
m∗

i=1 ∈ S+(m∗d) with

Hi := ∇2V [µ∗](x∗i )

Definition (Non-degeneracy)

We say that F is non-degenerate iff:

• K � 0

• arg minV [µ∗] = {x∗1 , . . . , x∗m∗}
• Hi � 0, i ∈ {1, . . . ,m∗}

 Can be guaranteed a priori

under spikes separation & noise

level conditions2,3

1Duval and Peyré, 2015.Exact Support Recovery for Sparse Spikes Deconvolution

2Poon, Keriven, Peyré, 2018. Support Localization [...]
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Non-degeneracy vs. stability

Wasserstein-Fisher-Rao metric1

Define, for µ, ν ∈M+(X ):

WFR2
2(µ, ν) := min

γ
KL(γ1|µ) + KL(γ2|ν) +

∫∫
X 2

c(x , y)dγ(x , y)

where γ ∈M+(X × X ) has marginals γ1, γ2 and c(x , y) ≈ dist(x , y)2/α2

Theorem4 : quadratic growth (C., 2019)

If F is non-degenerate then ∃F0 > F ∗ such that if F (µ) ≤ F0 then

WFR2
2(µ, µ∗) . F (µ)− F ∗ .WFR2

2(µ, µ∗)

• All results are uniform in m (hold even with m =∞)

• WFR geometry appropriate for non-degenerate sparse problems

1Liero, Mielke, Savaré (2015). Kondratyev, Monsaingeon, Vorotnikov (2015). Chizat, Peyré, Schmitzer, Vialard (2015).

2Chizat (2019). Sparse optimization on measures with over-parameterized gradient descent.
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Back to dynamics

Rewriting WFR gradient flow using the first-variation V gives:
d

dt
ai (t) = −4ai (t)V [µt ](xi (t))

d

dt
xi (t) = −α∇V [µt ](xi (t))

where µt := 1
m

∑m
i=1 ai (t)δxi (t) ∈M+(X ).

Proposition (Dynamics in the space of measures)

The curve (µt)t solves (distributionally) the PDE:

∂tµt = α∇ ·
(
µt∇V [µt ]

)︸ ︷︷ ︸
Drift

− 4µtV [µt ]︸ ︷︷ ︸
Reaction

This is the gradient flow of F under the metric WFR.
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Energy dissipation

Energy dissipation It holds d
dtF (µt) = −‖∇WFRF (µt)‖2 with the

squared-norm of WFR gradient:

‖∇WFRF (µ)‖2 :=

∫
X

(
α‖∇V [µ](x)‖2 + 4|V [µ](x)|2

)
dµ(x)

Theorem : PL inequality1 C. 2019)

If F is non-degenerate then ∃F0 > F ∗ such that if F (µ) < F0 then

‖∇WFRF [µ]‖2 & F (µ)− F ∗

Corollary

If F is non-degenerate then ∃C0,C1 > 0 independent of m such that

F (µ0)− F ∗ ≤ C0 ⇒ F (µt)− F ∗ ≤ C0e
−C1t .

• Overall time complexity O(m2n log(1/ε))

• PL inequality and growth are related in finite dimension2

1Chizat (2019). Sparse optimization on measures with over-parameterized gradient descent.

2Rebjock, Boumal (2023). Fast convergence to non-isolated minima [...]
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Proof idea and local expansion

Decompose µ into local moments in

small balls Bi around each x∗i :

• local biases bi ∈ Rd+1

• local covariances Σi ∈ Rd×d

Local Taylor expansion of F around µ∗

F (µ)− F ∗ ≈ 1

2
bᵀ(K + H)b︸ ︷︷ ︸

Bias term (local+global)

+
m∗∑
i=1

ai tr(ΣiHi )︸ ︷︷ ︸
Variance term (local)

+

∫
X\(∪Bi )

V [µ∗]dµ︸ ︷︷ ︸
Mass sent to 0

15/21



Outline

1. Global: Bregman Gradient Descent

2. Local: Wasserstein Fisher-Rao Gradient Descent

3. The Min-Max case, joint work Guillaume Wang
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Bilinear minmax problem

Continuous strategy spaces X ,Y, pay-off function f ∈ C3(X × Y).

Mixed Nash equilibrium of continuous games

min
µ∈P(X )

max
ν∈P(Y)

{
F (µ, ν) :=

∫
X×Y

f (x , y)dµ(x)dν(y)
}

Why bilinear?

• Applications to robust training of 2-layer Neural Networks

• Contains all difficulties of general convex-concave objectives

• In particular, explicit (or continuous-time) fixed-grid methods do not

converge for bilinear games  need implicit steps

Parameterize µ =
∑m

i=1 aiδxi and ν =
∑m

i=1 biδyi with a, b ∈ ∆m−1

16/21
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Conic Particle Proximal Point (CPPP)

(θµk+1, θ
ν
k+1) = arg min

θµ=(ai ,xi )mi=1

argmaxθν=(bi ,yi )mi=1
Fm(θµ, θν)

+
1

η
KL(a|a(k)) +

1

αη

∑
i

ai (k)dist(xi , xi (k))2

+
1

η
KL(b|b(k)) +

1

αη

∑
i

bi (k)dist(yi , yi (k))2

Theorem : Local convergence1

If F admits a unique sparse, non-degenerate saddle (µ∗, ν∗) and given

α > 0, there exists Ci > 0 (independent of m) such that

η < C0, ∆(θµ(0), θν(0)) ≤ C1 ⇒ ∆(θµ(t), θν(t)) ≤ C2e
−C3η

2t

where ∆ denotes the primal-dual gap.

 In practice: replace proximal point by extra-gradient
 Continuous-time does not converge in general

1Wang, Chizat (2022). An Exponentially Converging Particle Method for Mixed Nash Equilibria [...].
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Surprising behavior

Implicit, fixed positions Implicit, everything moves

Explicit, fixed positions Explicit, everything moves
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Local analysis

The ODE z ′(t) = M(z(t)− z∗) satisfies ‖z(t)− z∗‖2 = Θ̃(et·sa(M)).

Spectral Abscissa (local convergence rate)

sa(M) := max
λ∈Spectrum(M)

Real(λ) ≤ 0

Generic game f (x , y) ∈ C3(Rd × Rd) with saddle z∗ = (x∗, y∗).

M =

[
−∇2

xx f −∇2
xy f

∇2
xy f
> ∇2

yy f

]
(z∗) = −

[
∇2

xx f 0

0 ∇2
yy f

]
︸ ︷︷ ︸

S (psd)

+

[
0 −∇2

xy f

∇2
xy f
> 0

]
︸ ︷︷ ︸

A (antisym.)

• If A = 0, then sa(M) = −minEigenVal(S)

• If f is µ-strongly convex/concave, then sa(M) ≤ −µ
• in bilinear games, S = 0 and sa(M) = 0

 What is sa(M) in general?
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Local convergence rate

A remark (Partial curvature suffices)

Let S 6= 0 a psd matrix. Then for almost any A, sa(M) < 0.

Theorem: Mean curvature matters, not min curvature1

Let S a psd matrix. If ∇2
xy f (z∗) (the interaction part) is nonsingular, has

distinct eigenvalues and its singular vectors are uniformly distributed,

then for Mα = A + αS it holds

E
[
sa(Mα)

]
= −α tr(S)

d︸ ︷︷ ︸
Average of eigenvalues

+O(α3) + αε(d)

where |ε(d)| ≤ 2
√

log(d)/(tr(S)/‖S‖F ) is small if S ’s spectrum is not

sparse.

 In the ‘particle’ case, the convergence rate is generically Θ(α2η)

1Wang, Chizat (2023). Local Convergence of Gradient Methods for Min-Max Games under Partial Curvature.
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Conclusion

Last remarks

• Theory suggests the following building blocks:

• Global: APGM with hyperbolic entropy

• Local: WFR gradient descent (can be accelerated as well)

• Not discussed:

• Role of noise and Mean-Field Langevin dynamics

• Using a single algorithm instead of two
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