New higher-spin topological systems in 3D Strange higher-spins are wild quivers?

Nicolas Boulanger Service de Physique de l'Univers, champs et gravitation Université de Mons - UMONS

Work in collaboration with Victor Lekeu, [2012.11356] and with Victor Lekeu, Andrea Compoleoni, Zhenya Skuritsov (UMONS) [to appear suwon]

IDP, Tours 24 October 2023
(1) Introduction
(2) Higher dualisations of limearised gravity and Maxwell's
(3) First-order reformulation of the spin2_spin 3 systems
(4) Generalisations
(1) Introduction

- Fierz_Pauli programme \rightarrow all possible off-shell descriptions of spines massless field?
\rightarrow Interactions may not choose the most economical description

Higher-spin Gravity

Hidden symmetries of Gravity

Non-linear realisation of $e_{11} \times l_{1}$
Higher, or "erotic" descriptions

- Electric-magnetic duality, perhaps as fundamental as Lorentz symmetry.

In non-Abelian theory, relates strong and weak coupling regimes. [Long story: Hearyside, Dirac, ...]

- For spin- 2 (linearized), studied by P. West, Hull (2001). Previous attempts in the massive sase by Curtright \& Fround in 80's. Further studied in 2002, on-skell, by X. Bekaort \& N.B.
- First, review for spin (better, helicity) one.
- On-shell duality in electromagnetism in vacuum

Maxwell's equations $\partial^{\mu} F_{\mu \nu}=0$ ($-\mu_{0} J_{\nu}$ when sources) (Field equations)

$$
\partial_{[\mu} F_{\nu e]}=0
$$

(Bianche identities)

$$
F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}=2 \partial_{[\mu} A_{\nu]},
$$

Rewritten as

$$
* d * F_{[2]}=0 \quad \& \quad d F_{[2]}=0
$$

where $. F_{[2]}=\frac{1}{2} d x^{\mu} \wedge d x^{\nu} \quad F_{\mu \nu} \quad$ Faraday 2 -form , $d x^{\mu} \wedge d x^{\nu}=-d x^{\nu} \wedge d x^{\mu}$

- $d: \Omega^{p}(M) \rightarrow \Omega^{p+1}(M) \quad$ exterior derivative, $d^{2}=0$

$$
=d x^{\mu} \otimes d x^{\nu}-d x^{\nu} \otimes d x^{\mu}
$$

$\in T * M \otimes T^{*} M$

- *d*: $\Omega^{p+1}(M) \rightarrow \Omega^{p}(M) \quad$ co-differential

Hodge dual : * $\left(d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{p}}\right)=\frac{1}{(n-p)!} \in \epsilon_{1} \ldots \mu_{p} \nu_{1} \ldots \nu_{n-p} d x^{\nu_{1}} \wedge \ldots n d x^{\nu_{n-p}} \quad,\left.\quad x^{2}\right|_{\Omega^{p}}=(-)^{p(n-p)+1} I d / \Omega^{p}$
where $\epsilon^{\mu_{1} \cdots \mu_{p}} \nu_{1} \ldots \nu_{n-p}=\eta_{J_{1} e_{1}} \cdots \eta_{\nu_{n-p} e_{n-p}} \epsilon^{\mu_{1} \ldots \mu_{p} e_{1} \ldots e_{n-p}} \quad$ (in MinRearthin space M)
Duality :

$$
F_{[2]} \mapsto * F_{[2]}
$$

$$
\text { ie. } \quad\binom{\vec{E}}{\delta \vec{B}} \mapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\vec{E}}{e \vec{Z}}
$$

Bianchi identity \leftrightarrow Field equations

- On-shell dualety-for mass-less spin-2 field

Use condensed notation (X. Betaert \& N.B., 2002)
EI: $\operatorname{Tr} K \approx 0 \Leftrightarrow K^{\mu}{ }_{\alpha \mu \nu}=0 \quad$, where $K=d^{(1)} d^{(2)} h$,
BI: $T_{r_{12}} *_{1} K \equiv 0 \Leftrightarrow K_{[\mu \nu \mid e] \sigma} \equiv 0$,

EII: $d^{+} K \approx 0 \Leftrightarrow \partial^{\mu} K_{\mu v e \sigma} \approx 0$,
BII: $d K \equiv 0 \quad \Leftrightarrow \quad \partial_{[\mu} K_{\text {ve]la }} \equiv 0$.

- $K \equiv K_{[2,2]}=\frac{1}{4} d^{(1)} x^{\mu} d^{(1)} x^{\nu} d^{(2)} x^{\alpha} d^{(2)} x^{\beta} K_{\mu \nu / a \beta}$
- dual $d_{(i)}^{+} x^{\mu}$ s.t. $\left\{d^{(i)} x^{\mu}, d_{(i)}^{+} x^{\nu}\right\}=\eta^{\mu \nu}$,
- $d^{(i)}:=d^{(i)} x^{\mu} \frac{\partial}{\partial x^{\mu}}, \quad d_{(i)}^{+}:=d_{(i)}^{+} x^{\mu} \frac{\partial}{\partial x^{\mu}}$,
- $T_{r i j}=\eta_{\mu \nu} d_{(i)}^{+} x^{\mu} d_{(j)}^{+} x^{\nu}$

As operators: $\quad\left|K_{[2,2]}\right\rangle=\frac{1}{4} d^{(1)} x^{\mu} d^{(1)} x^{\nu} d^{(2)} x^{\alpha} d^{(2)} x^{\beta} K_{\mu \nu \mid \alpha \beta}|0\rangle$

$$
\begin{gathered}
d_{(i)}^{+} x^{\mu}|0\rangle \stackrel{!}{=} 0 \quad \text { destruction. } \\
{\left[d^{(i)} x^{\mu}, d^{(j)} x^{\nu}\right]_{\mathbb{Z}_{2}}=0,\left[d^{(i)} x^{\mu}, d_{(j)}^{+} x^{\nu}\right]_{\mathbb{Z}_{2}}=\delta_{j}^{i} \eta^{\mu \nu} .}
\end{gathered}
$$

Twisted_duality relations $K \longmapsto *_{1} K \quad, \quad *_{1} K \longmapsto-K$

$$
\vec{K}:=\binom{K}{*_{1} K} \longmapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{K}{*, K}=J \vec{k} \quad, \quad J=\pi / 2 \text { rotation. }
$$

$\longleftrightarrow\binom{E I}{E$ II }$\longleftrightarrow\binom{B I}{B I} \quad$ under duality.
Example, $n=5$:
BI: $\left.\begin{array}{c}T_{r 12} *_{1} K \equiv 0 \\ d K \equiv 0\end{array}\right\} \Rightarrow K_{[2,2]}=d^{(1)} d^{(z)} h_{[1,1]} \quad, \quad h \sim$ \square

$$
\mathcal{K}:=* K
$$

(ET): $\operatorname{Tr} K=0 \quad \Leftrightarrow \quad \operatorname{Tr} *_{1} \tilde{K}=0 \quad(\overrightarrow{B I}) \quad \Leftrightarrow \quad \tilde{K} \sim$ \square
(BI): $d^{+} K=0 \Leftrightarrow d \tilde{K}=0(\tilde{B} \tilde{I}) \Leftrightarrow \tilde{K} \sim \frac{\square}{\partial}, c \sim \square \square \tilde{h}$
(2) (Higher) dualisations of linearised gravity and Maxwell's: off- SHELL

An off-shell dualisation was initiated in 2001 by P. West, completed in 2003 by N.B., S. Cnockaert and M. Henneaux.
In [N.B., P.Cook, D. Ponomarev-2012] \Rightarrow Otker off-shell dualisations schemes proposed

First, review the dualisation of [West, N.B.-Cnsckaert.Henneaux]
Perent action $\quad S\left[y^{a b c 1} d, \omega_{a b i c}\right]=\int d^{n} x\left(" \omega \omega^{\prime}+\partial_{a} \omega_{b c 1}{ }^{d} y^{a b c 1} d\right)$

$$
Z=\int D \omega \frac{D y}{\bar{\downarrow}} \exp \frac{i}{\hbar} S[\omega, y]
$$

enforces $\quad \omega_{a b i c}=\partial_{[a} e_{b] c}$
Field $\omega_{\text {abic }}$ ansuliary

$$
\frac{\delta S}{\delta \omega} \approx 0 \Rightarrow \omega_{a b i c} \sim \partial^{d} Y_{a b d i c}
$$

somi-clasical $S\left[e_{a b}\right]=$ Fierz-Pauli
with local Lorentz $\delta e_{a b}=\lambda_{a b}$

$$
S\left[y^{a b c 1} d\right]=\int d^{n} x\left(\begin{array}{ll}
\partial^{\bullet} y_{a b \cdot 1 c} & \partial_{d} y^{4} a b / c
\end{array}+\cdots\right)
$$

$$
\text { yabc| }_{e}=\frac{1}{(n-3)!} \varepsilon^{a b c d_{1} \ldots d_{n-3}} C d_{[n-3] \mid e}
$$

Gauge inv. $\delta_{\lambda} Y_{a b c 1} e=\delta_{[a}^{e} \lambda_{b c]} \Rightarrow \delta_{\lambda} C_{a[n-3] 1 b}=\varepsilon_{a[n-3] b c d} \lambda^{c d}$

$$
C_{[n-3,1]} \leadsto C_{a_{1} \ldots a_{n-3}, b}=C_{\left[a_{1} \ldots a_{n-3}\right], b} \quad \text { st. } \quad C_{\left[a_{1}, \ldots a_{n-3}, b\right]} \equiv 0
$$

ie. $C_{[n-3,1]} \sim \prod_{n-3}$ of $G L(n)$ appears in Minkouski spacetime $\mathbb{R}^{1, n-1}$
that propagates the d.e.f. of Fiun-Pauli's graviton $h_{a b}$ with $\eta^{b d} K_{a b, c d}(h)=0$.
We discussed: Hull's [2001] twisted on_shell duality
relating

$$
\left.K_{a_{1} \ldots a_{n-2},} b_{1} b_{2}(c):=\partial_{\left[a_{1}\right.} \partial^{\left[b_{1}\right.} C_{\left.a_{2} \ldots a_{n-2}\right]} b_{2}\right]
$$

to

$$
K_{a b,}{ }^{c d}(h):=-\frac{1}{2} \quad \partial_{[a} \partial c h^{d d_{b]}}
$$

via

$$
K_{[n-2,2]}(C)=*_{1} K_{[2,2]}(h)
$$

2.1) Higher dual of vector field in dimensions $4 \& 3$

Idea: A_{b} viewed as a $A_{[0,1]}$ bi-form

$$
\begin{aligned}
A_{[0,1]} \underset{\text { higher dualise }}{ } C_{[n-0-2,1]} & =C_{n=4} C_{[2,1]} \sim \\
& =h_{[1,1]} \sim
\end{aligned}
$$

- Starts from Maxwell and IBP: $S\left[A_{a}\right]=-\frac{1}{2} \int d^{n} x\left(\partial_{a} A_{b} \partial^{a} A^{b}-\partial_{a} A^{a} \partial_{b} A^{b}\right)$
- Parent action $S\left[y^{a b 1} c, P_{a,}{ }^{b}\right]=\int d^{n} x\left(P_{a i b} \partial_{c} y^{\text {carib }}-\frac{1}{2} P_{a i b} P^{a i b}+\frac{1}{2} P^{a l} a P_{b} b^{b}\right)$

$$
\cdot \frac{\delta S[y, P]}{\delta P_{a, b}} \approx 0 \Leftrightarrow P^{a a b} \approx \partial_{c} y^{c a, b}-\eta^{a b} \frac{1}{n-1} \partial_{c} y^{c d_{l}} d
$$

substitute to get

$$
S\left[y^{a_{c}}\right]=\int d^{n} x\left[\frac{1}{2} \partial_{c} y^{\text {alb }} \partial_{d} y_{a, b-\frac{1}{2(n-1)}}^{\partial_{a}} y_{b}^{a b 1}\right]
$$

- From

$$
S\left[y^{a b} c\right]=\int d^{n} x\left[\frac{1}{z} \partial_{c} y^{\text {alb }} \partial_{d} y_{a \mid b}^{d}-\frac{1}{2(n-1)} \partial_{a} y_{b a b}^{a b}\right]
$$

invariant under $\quad \delta y^{a b 1}{ }_{c}=\delta_{c}^{c a} \partial^{b]} \lambda+\partial_{d} \Psi^{a b d l_{c}}$,
one decomposes

$$
y_{a b 1}=x_{c}^{a b 1}+\delta_{c}^{[a} z^{b]}, \quad x_{b}^{a b)} \equiv 0
$$

irreducibly under $G l(x)$.
(A) Hedge-dualise in 4D : $x^{a b 1}{ }_{c} \stackrel{*_{1}}{\longleftrightarrow} T_{\text {abc }} \sim \underset{b}{a b 1}$ that gauge transforms as with $\quad\left\{\begin{array}{l}\delta \square=\sqrt{\square} \square{ }^{2} \square \\ \delta z_{a}=\partial_{a} \lambda+\partial^{b} A_{a b} \quad \text { for the vector }\end{array}\right.$

Perform some change of field variables and dualize $Z_{a} \leftrightarrow \tilde{A}_{a}$ to get

$$
S\left[T_{a b l c}, \tilde{A}_{a}\right]=\int d^{4} x\left[\mathscr{L}^{\text {curt. }}\left(T_{a b, c}\right)+\frac{1}{4} F^{a b}(\tilde{A}) F_{a b}(\tilde{A})+\frac{1}{2} \tilde{A}^{a} K_{a}^{\prime \prime}(T)\right]
$$

where $\quad K_{b[8]}^{a[8]}:=6 \partial^{[a} \partial_{b} T^{a a 3]}{ }_{b]}$ curvature, $K^{3 \prime}:=T_{r}{ }^{2} K$

The gauge invariances are the ones expected for a Curtright field and a vector.
The field equations give

$$
\begin{equation*}
-\partial_{a} F^{a b}(\tilde{A})+\frac{1}{2} K^{m b}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
K^{, a b 1}{ }_{c}+\delta_{c}^{c a} K^{3 b b]}-\frac{1}{2} \partial_{c} F^{a b}-\delta_{c}^{[a} \partial_{d} F^{b] d}=0 \tag{2}
\end{equation*}
$$

Take the trace of (2), combine with (1) to get the equations of motion and duality relation $d^{+} F_{[2]}=0=\operatorname{Tr}^{2} K_{[3,2]} \quad \& \quad \operatorname{Tr}_{r} K_{[3,2]}=d_{2} F_{[2,0]} \quad \Rightarrow$ no doubling
(B) Hodge-dualise in 3D
$S\left[y_{a b l}\right]$ with $y_{a b 1}{ }_{c}=\varepsilon^{a b d} h_{c d}+2 \delta_{c}^{c a} z^{b]}, \quad h_{a b}=h_{b a}$, giving an action $S\left[h_{a b}, z_{a}\right]$

$$
S\left[h_{a b}, z_{a}\right]=\int d^{3} x\left[-\frac{1}{2} \partial_{a} h_{b c} \partial^{a} \hbar^{b c}+\frac{1}{2} \partial_{a} h_{b c} \partial^{b} h^{a c}+\frac{1}{2} \varepsilon^{b c d} \partial^{a} h_{a b} F_{c d}(z)+\frac{1}{4} F^{a b}(z) F_{a b}(z)\right]
$$

invariant under $\delta h_{a b}=2 \partial_{(a} \epsilon_{b)}, \delta Z_{a}=\partial_{a} \lambda+\varepsilon_{a b c} \partial^{b} \epsilon_{]}^{e}$
mixing

- Dualise the vector Z_{a} in 3D to a scalar. After a field redefinition, one finds

$$
\begin{aligned}
S\left[h_{a b}, \phi\right]=\int d^{3} x[& -\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{b c}
\end{aligned}+\frac{1}{2} \partial_{a} h \partial^{a} h-\partial_{a} h \partial_{b} h^{a b}+\partial_{a} h^{a b} \partial^{c} h_{b c} .
$$

As consequence of field equations:

$$
\square \phi \approx 0 \approx R(k) \quad \& \quad R_{a b}(h) \approx \partial_{a} \partial_{b} \phi
$$

Field equations for propagation \& duality relation $=$ no doubling
2.2) Higher dualisations of Maxwells in 3D

- Maxwell in 3D ~ massless scalar in 3D: 1 propagating d.O.f.
- Start from the dual action obtained by the second higher dualisation of scalar theory,
ie. the first higher dualisation of Maxwell's vector reviewed above

$$
S\left[h_{a b}, z_{a}\right]=\int d^{3} x\left[-\frac{1}{2} \partial_{a} h_{b c} \partial a h^{b c}+\frac{1}{2} \partial_{a} h_{b c} \partial^{b} h_{a c}+\frac{1}{2} \varepsilon^{b c d} \partial^{a} h_{a b} F_{c d}(z)+\frac{1}{4} F^{a b}(z) F_{a b}(z)\right]
$$

We perform the higher dualivation D of $h_{a b}$ via parent action $S\left[G_{a, b c}, D_{a} b_{1}{ }^{i d}, A_{a}\right]$, eliminate the auxiliary field $G_{a i b c}$ to obtain $S\left[D_{a b 1}{ }^{d}, A_{2}\right]$. As before, $\widetilde{D}^{a i j j}:=-\frac{1}{2} \varepsilon^{a b c} D_{b c_{1}}{ }^{i j j}$.
 s.t. U_{a} enters the action only via $F_{a b}(U)=2 \partial_{[a} U_{b]}$. Dualise U_{a} in ss to a scalar σ that one adds $t_{o} f_{a b} \longrightarrow h_{a b}$ traceful.

The final action is invariant under

$$
\{\begin{array}{l}
\delta \phi_{a b c}=3 \partial_{(a} \xi_{b c)} \\
\delta h_{a b}=2 \partial_{(a} \epsilon_{b)}+2 \varepsilon_{p q(a} \partial^{p} \xi_{b}{ }_{b)} \\
\delta A_{a}=\frac{3}{2} \partial_{a} \xi+\varepsilon_{a b c} \partial^{b} \epsilon^{c}
\end{array} \quad \text { Rem }: \delta(\underbrace{\phi_{a b c}-\frac{2}{3} \eta_{(a b} A_{c)}}_{\varphi_{a b c}})=3 \partial_{(a} \hat{\xi}_{b c)}-\frac{2}{3} \eta_{c a b} \varepsilon_{c) p q} \partial^{p} \in q \text {. }
$$

Field equations : seemingly to many propagating d.o.f. since one finds that

- $\bar{R}^{a b 1}{ }_{a b} \approx 0$ where $\tilde{R}_{a b_{1}}{ }^{c d}=K_{a b_{1}}{ }^{c d}(h)-2\left(\varepsilon_{a b m} \partial^{[c} \Psi^{d] m}+\varepsilon^{c d m} \partial_{\varepsilon a} \Psi_{b j m}\right), \Psi_{b}^{a}:=\partial_{b} \phi^{a}-\partial^{c} \phi^{a}{ }_{b c}$ \longrightarrow Riemann - like curvature for $h_{a b}$.
- $\partial_{a} \tilde{F}^{a b} \approx 0$ where $\tilde{F}_{a b}:=F_{0 b}(A)+\partial_{[a} \phi_{b] c}^{c}+\varepsilon_{a b c}\left(\partial_{d} k^{c d}-\partial c h\right)$ fieldstrength for A_{a}

However, combining the field equation, one finds the duality relations

$$
\begin{aligned}
K_{\text {abicdief }}(\phi) & \approx-\frac{8}{21} \varepsilon_{e f q} \partial^{9} \widetilde{R} a b i c d \\
\tilde{R}^{a b_{1}}{ }_{c d} & \approx \frac{7}{4} \varepsilon_{c d m} \partial^{m} \tilde{F}^{a b}
\end{aligned}
$$

$$
\Rightarrow K_{\text {abicdief }}(\phi) \approx-\frac{2}{3} \varepsilon_{\text {cop }} \varepsilon_{e f q} a^{p} \partial q \tilde{F}_{a b},
$$

All the duality relations and E.M come out of the action.
2.3) Higher dualisation of the graviton in 3D

Gravity in 3D is topological. Dual formulation thereof by higher dualisation \rightarrow higher spin

$$
\text { - } \begin{aligned}
S\left[G_{a \mid b c}, D_{a b 1}{ }^{c d}\right]=\int d^{3} x\left[\left.-\frac{1}{2} G_{a \mid b c} G^{a i b c}+\frac{1}{2} G_{a \mid c}^{c} G^{a \mid b} b-G_{a 1}{ }^{a b} G_{b, c}^{c}+G_{a 1^{a b}} G^{c \mid} \right\rvert\, c b+G^{d}{ }_{1 b c} \partial^{a} D_{a d 1}{ }^{b c}\right] \\
G_{a \mid b c}=G_{a \mid c b}, D_{a b 1}^{c d}=-D_{b a 1}{ }^{c d}=-D_{b a 1}{ }^{d c}
\end{aligned}
$$

Gange-invarvant under

$$
\begin{aligned}
& \delta G^{a} \mid b c=2 \partial^{a} \partial_{c b} \epsilon_{c)}, \delta D_{a b 1}{ }^{c d}=\varepsilon_{a b p} \partial^{P} v^{c d}+2 \eta^{c d} \partial_{[a} \epsilon_{b]}+4 \delta_{[a}^{c c} \partial_{b]} \epsilon^{d)} \\
& \frac{\delta S}{\delta D} \approx 0 \Rightarrow G_{a \mid b c} \approx \partial_{a} h_{b c} \quad \text { with } h_{a b}=h_{b a} \quad \text { symmetric } \\
& \longrightarrow S\left[\partial_{a} k_{b c}, D_{a b 1}{ }^{c d}\right]=\int d^{3} x\left[-\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{b c}+\frac{1}{2} \partial_{a} h \partial^{a} h-\partial_{a} h^{a b} \partial_{b} h+\partial_{a} h^{a b} \partial^{c} h_{b c}\right] \\
& \text { Fierz-Pamlic } \\
& \cdot \frac{\delta S}{\delta G_{a \mid b c}} \approx 0 \Rightarrow G_{a \mid b c} \approx \partial^{d} D_{d a i b c}+\partial D=G_{a b c}(\partial D)
\end{aligned}
$$

$\longrightarrow \quad S\left[G_{a, b c}(\partial D), D_{a b_{1}}{ }^{\text {d }}\right]=: S\left[D_{a b_{i}}{ }^{d d}\right] \quad$ Dual action

$$
D_{a b}{ }^{p q}=: \varepsilon_{a b m} \tilde{D}^{m 1 p q}, \quad \tilde{D}^{a i c d}=\tilde{\varphi}^{a c d}+2 \varepsilon^{a b(c} Z_{b 1}^{d)}, Z_{a 1}^{a} \equiv 0
$$

Gl(3) decomposition

- Further decompose under so (3):

$$
\tilde{D}^{a \mid b c} \sim \square \otimes(\square \oplus \bullet) \simeq \square \square \square \oplus \square \oplus \square \quad \in \text { So(3) }
$$

- A linear combination of the two vectors can be dualised to a scalar, in 3D.
- Combining the scalar with $\square \rightarrow$ traceful $h_{a b} \sim \square \in \operatorname{Gl}(3)$
- Traceless rank-3 with remaing vector \longrightarrow traceful $\varphi_{a b c} \sim \square \square G l(3)$
- Final spectrum : $\left\{\varphi_{a b c}, h_{a b}\right\}$.
- Gauge transformations :

$$
\left\{\begin{array}{l}
\left.\delta \varphi_{a b c}=3 \partial_{(a} \hat{\xi} b c\right)-\frac{2}{3} \varepsilon_{(a}^{p q} \eta_{b c} \partial_{p} \epsilon_{q}, \\
\delta h_{a b}=2 \partial_{(a} \epsilon_{b)}+2 \varepsilon_{p q(a} \partial^{p \hat{\xi}}{ }_{b)},
\end{array}\right.
$$

- Action :

$$
\begin{aligned}
S\left[\varphi_{a b c}, h_{a b}\right]=\frac{1}{2} \int d^{3} x & {\left[-\partial_{a} \varphi_{k c d} \partial^{2} \varphi^{k d}+\partial^{a} \varphi^{b} \partial^{c} \varphi_{a b c}+\partial_{a} \varphi^{a b c} \partial^{d} \varphi_{b c d}-\frac{1}{7} \partial_{a} \varphi_{b} \partial^{0} \varphi^{b}-\frac{31}{28} \partial_{a} \varphi^{a} \partial^{b} \varphi_{b}\right.} \\
& +\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{b c}+\frac{1}{14} \partial_{a} h \partial^{a} h-\frac{3}{7} \partial^{a} h_{a b} \partial_{c} h^{b c}-\frac{1}{7} \partial^{a} h \partial_{c} h_{a}^{c} \\
& \left.+\frac{10}{7} \varepsilon_{a p q} \partial^{b} h_{b}^{a} \partial^{P} \varphi^{9}-2 \varepsilon_{a p q} \partial^{b} h^{a c} \partial^{P} \varphi^{q} b_{b c}\right]
\end{aligned}
$$

- Gauge transformations entangled
- "Wrong" relative kinetic term
2.4) Relation with the triplet spin-2

The action $S\left[h_{a b}, z_{a}\right]$ derived above is a member of the 1-parameter fancily

$$
\begin{gathered}
S\left[h_{a b}, A_{a}\right]=\frac{1}{2} \int d^{3} x\left[-\partial_{a} h_{b c} \partial^{a} h^{b c}+(\alpha+2) \partial \cdot h_{a} \partial \cdot h^{a}-(\alpha+1) \partial^{a} h\left(2 \partial \cdot h_{a}-\partial_{a} h\right)\right. \\
\left.-\frac{\alpha}{2} F_{a b}(A) F^{a b}(A)-\alpha \varepsilon_{a b c} \partial \cdot h^{a} F^{b c}(A)\right]
\end{gathered}
$$

invariant under

$$
\delta h_{a b}=2 \partial_{(a} \epsilon_{b)} \quad, \quad \delta A_{a}=\partial_{a} \lambda+\varepsilon_{a b c} \partial^{b} \epsilon^{c}
$$

The case obtained by off-shell dualisation corresponds to $\alpha=-1$.

- As above, one dualises the vector $A_{a} \rightarrow \varphi$ scalar in 3D:

$$
\begin{gathered}
S\left[h_{a b}, \varphi\right]=\frac{1}{2} \int d^{3} x\left[-\partial_{a} h_{b c} \partial^{a} h^{b c}+2 \partial \cdot h_{a} \partial \cdot h^{a}-(\alpha+1) \partial^{a} h\left(2 \partial \cdot h_{a}-\partial_{a} h\right)\right. \\
\left.-4 \alpha\left(\partial_{a} \varphi \partial^{a} \varphi-\varphi \partial^{a} \partial^{b} h_{a b}\right)\right]
\end{gathered}
$$

$$
\begin{gather*}
S\left[h_{a b}, \varphi\right]=\frac{1}{2} \int d^{3} x\left[-\partial_{a} h_{b c} \partial^{a} h^{b c}+2 \partial \cdot h_{a} \partial \cdot h^{a}-(\alpha+1) \partial^{a} h\left(2 \partial \cdot h_{a}-\partial_{a} h\right)\right. \\
\left.-4 \alpha\left(\partial_{a} \varphi \partial^{a} \varphi-\varphi \partial^{a} \partial^{b} h_{a b}\right)\right] \tag{*}
\end{gather*}
$$

Invariant under $\delta h_{a b}=2 \partial_{(a} \epsilon_{b)}, \quad \delta \varphi=-\partial^{a} \epsilon_{a}$

This is equivalent, when $\alpha=1$, to the triplet system

$$
S\left[h_{a b}, C_{a}, D\right]=\int d^{n} x\left[-\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{b c}+2 c^{a} \partial_{0} h_{a}+2 \partial \cdot C D+\partial_{a} \partial \partial^{a} D-c^{a} C_{a}\right]
$$

Invariant under $\delta \hbar_{a b}=2 \partial_{(a} \epsilon_{b)}, \delta C_{a}=\square \epsilon_{a}, \delta D=\partial . \epsilon$

The field C_{a} is auxiliary, its e.o.m. give $C_{a}=\partial \cdot h_{a}-\partial_{a} D$.

Substituting insiole the triplet action $S\left[h_{a b}, C_{a}, D\right]$ reproduces the action (*)
for $n=3, \quad \alpha=-1$ and $D=-\varphi$
2.5) Spin 3 /Spin 2 system

The action shown above

$$
\begin{aligned}
S\left[\varphi_{a b c}, h_{a b}\right]=\frac{1}{2} \int d^{3} x & {\left[-\partial_{a} \varphi_{k c d} \partial^{\circ} \varphi^{k e d}+\partial^{a} \varphi^{b} \partial^{c} \varphi_{a b c}+\partial_{a} \varphi^{a b c} \partial^{d} \varphi_{b c d}-\frac{1}{7} \partial_{a} \varphi_{b} \partial^{\circ} \varphi^{b}-\frac{31}{28} \partial_{a} \varphi^{a} \partial^{b} \varphi_{b}\right.} \\
& +\frac{1}{2} \partial_{a} h_{b c} \partial^{a} h^{b c}+\frac{1}{14} \partial_{a} h \partial^{a} h-\frac{3}{7} \partial^{a} h_{a b} \partial_{c} h^{b c}-\frac{1}{7} \partial^{a} h \partial_{c} h_{a}^{c} \\
& \left.+\frac{10}{7} \varepsilon_{a p q} \partial^{b} h_{b}^{a} \partial^{p} \varphi^{q}-2 \varepsilon_{a p q} \partial^{b} h^{a c} \partial^{P} \varphi^{q} b_{b c}\right]
\end{aligned}
$$

imariant under $\left.\left.\left.\delta \varphi_{a b c}=3 \partial_{(a} \hat{\xi}_{b c}\right)-\frac{2}{3} \varepsilon_{(a}{ }^{p q} \eta_{b c}\right) \partial_{p} \epsilon_{q}, \quad \delta h_{a b}=2 \partial_{(a} \epsilon_{b)}+2 \varepsilon_{p q(a} \partial^{p} \hat{\xi}_{b}\right)$ is a member of the family

$$
\begin{aligned}
S\left[\varphi_{a b c}, h_{a b}\right]=\frac{1}{2} \int d^{3} x & {\left[a_{0} \partial_{a} \varphi_{k d} \partial^{\circ} \varphi^{k d}+a_{1} \partial^{a \varphi b} \partial^{c} \varphi_{a b c}+a_{2} \partial_{a} \varphi^{a b c} \partial^{d} \varphi_{b c d}+\alpha_{3} \partial_{a} \varphi_{b} \partial^{\circ} \varphi^{b}+a_{4} \partial_{a} \varphi^{a} \partial^{b} \varphi_{b}\right.} \\
& +b_{0} \partial_{a} h_{b c} \partial^{a} h^{b c}+b_{1} \partial_{a} h \partial^{a} h+b_{2} \partial^{a} h_{a b} \partial_{c} h^{b c}+b_{3} \partial a h \partial_{c} h_{a}^{c} \\
& \left.+c_{1} \varepsilon_{a p q} \partial^{b} h_{b}^{a} \partial^{p} \varphi^{q}+c_{2} \varepsilon_{a p q} \partial^{b} h^{a c} \partial^{p} \varphi_{b c}\right]
\end{aligned}
$$

invariant under

$$
\left.\left.\delta \varphi_{a b c}=3 \partial_{(a} \hat{\xi}_{b c}\right)-3 x \varepsilon_{(a}{ }^{p q} \eta_{b c} \partial_{p} \epsilon_{q}, \quad \delta h_{a b}=2 \partial_{(a} \epsilon_{b)}-2 z \varepsilon_{p q(a} \partial^{p} \hat{\xi}_{b}\right)
$$

- We find that $z=0$ iff $x=0$.

In that case, $c_{1}=0=c_{2}$.

The action is the sum or difference of Fronsdal and Fierz-Pauli actions
ζ We reject that case, hence $x \neq 0$ and $z \neq 0$

- For the traceless part $\hat{\varphi}_{a b c}$ to appear in the action,
a_{0}, a_{1}, a_{2} and c_{2} cont all vanish
and as a result we find the $b_{0} \neq 0$.
- Finally, the parameters are fixed uniquely in terms of z and $\gamma=\operatorname{sign}\left(b_{0}\right)$
in the case $a_{0}=-1$ that one reaches by rescaling $\varphi_{a b c}$.

Que parameter and one sign: $\quad x=-\frac{2 \gamma z}{9\left(3 \gamma z^{2}-2\right)}, \quad \gamma= \pm 1$.

For $\gamma=+1, \quad z= \pm \sqrt{\frac{2}{3}}$ rejected since it amounts to removing the piece $\partial_{(a} \epsilon_{b)}$ in $\delta h_{a b}$.
Rem: :

- There is an isolated point where $a_{0}=0$.

By rescaling $\varphi_{a b c}$ sa that $a_{2}=-1$, all the other coefficients are fixed uniquely.

- One shows that these systems are not equiralant to any known indecompasable (triplet. like) systems.
- The original system obtained by higher dualisation of the Fwerz-Pauli action is recovered for

$$
\gamma=+1, z=-1 \Rightarrow x=\frac{2}{9} .
$$

(3) First-order reformulation of the $\operatorname{spin} 2$-spin 3 systems \& Deformations
3.1) In flat space

A theorem [M.Gnigorier, K. Mkrtchyan, E.Skurtsov 2005] states that all tapolagieal systems in 3D are equivalent to Chern-Simons-like models.

We find that, with the Lorentz-valued one-forms ($\left.e^{a}, \omega^{a}, E^{a a}, \Omega^{a a}\right)$, the action

$$
S=\int_{\mu_{3}}\left[\omega_{a}\left(d e^{a}-\frac{1}{2} \varepsilon^{a p q} h_{p} \omega_{q}\right)+2 z \omega_{a} h_{b} \Omega^{a b}+\frac{2 z}{3 x} \Omega_{a a}\left(d E^{a a}+\frac{2}{3} \varepsilon^{a b c} h_{b} \Omega_{c}^{a}\right)\right]
$$

invariant under

$$
x=-\frac{2 \gamma z}{9\left(3 \gamma z^{2}-2\right)}
$$

$$
\begin{array}{ll}
\delta e^{a}=d \epsilon^{a}-\varepsilon^{a b c} h_{b} \tilde{n}_{c}+2 z h_{b} \tilde{\alpha}^{a b}, & \delta \omega^{a}=d \tilde{\Lambda}^{a}, \\
\delta E^{a a}=d \xi^{a a}+\frac{4}{3} h_{b} \varepsilon^{a b c} \tilde{\alpha}_{c}^{a}-3 x\left(h^{a} \tilde{\Lambda}^{a}-\frac{1}{3} \eta^{a a} h^{b} \tilde{\Lambda}_{b}\right), & \delta \Omega^{a a}=d \tilde{\alpha}^{a a}
\end{array}
$$

－This action exactly reproduces the $2^{\text {nd }}$ order action $S\left[k_{a b}, \varphi_{a b c}\right]$
presented above upon（i）eliminating the auxiliary fields（ $\omega^{a}, \Omega^{a a}$ ）．
（ii）fining the Lorentz ganges where $e_{[a, b]} \stackrel{(*)}{=} 0$ \＆$\left.E_{a, b c}\right|_{\text {茴 }} \stackrel{(*)}{=} 0$
－Recall

$$
\begin{aligned}
& \delta e_{a, b}=\partial_{a} \epsilon_{b}-\Lambda_{a b}+2 z \tilde{\alpha}_{a b} \\
& \delta E_{a, b c}=\partial_{a} \xi_{b c}-\alpha_{b c, a}+x\left(\eta_{b c} \tilde{\Lambda}_{a}-3 \eta_{a(b} \tilde{\Lambda}_{c)}\right)
\end{aligned}
$$

where

$$
\tilde{\alpha}_{a b}:=\frac{1}{2} \varepsilon_{a p q} \alpha_{b} p, q, \quad \tilde{\Lambda}_{a}:=\frac{1}{2} \varepsilon_{a b c} \Lambda^{b c}, \alpha_{b c, a} \sim \text { 卉c }
$$

－The residual gage transformations are $\quad \alpha_{a, b c}^{\text {res．}}=\left.\partial_{a} \xi_{b c}\right|_{\text {圆a }}, \Lambda_{a b}^{\text {res }}=\partial_{[a} \epsilon_{b]}$

In this gauge，the fields $\varphi_{a b c}:=3 E_{(a, b c)}$ and $h_{a b}=2 e_{(a, b)}$ transform as

$$
\left.\delta \varphi_{a b c}=3 \partial_{(a} \hat{\xi}_{b c)}-3 x \varepsilon_{(a}^{p q} \eta_{b c)} \partial_{p} \epsilon_{q}, \quad \delta h_{a b}=2 \partial_{(a} \epsilon_{b)}-2 z \varepsilon_{p q(a} \partial^{p} \hat{\xi}_{b}\right)
$$

- One can express the action as

$$
\begin{aligned}
S=\int_{M_{3}}\left[\omega_{a} R^{a}(e)+e_{a} R^{a}(\omega)+\frac{2 z}{3 x}\left(\Omega_{a b} R^{a b}(E)+E_{a b} R^{a b}(\Omega)\right]\right.
\end{aligned}
$$

where $R^{a}(e):=d e^{a}-\varepsilon^{a p q} h_{p} \omega_{q}+2 z h_{b} \Omega^{a b}, \quad R^{a}(\omega):=d \omega^{a}$,

$$
R^{a a}(E):=d E^{a a}+\frac{4}{3} h_{p} \varepsilon^{p q^{a}} \Omega_{q}^{a}-3 x\left(h^{a} \omega^{a}-\frac{1}{3} \eta^{a a} h^{b} \omega_{b}\right) \quad, \quad R^{a a}(\Omega)=d \Omega^{a a} \text {. }
$$

3.2) There is no non-Abclian extension (alas)

Search for

$$
\begin{aligned}
& \quad S\left[e^{a}, \omega^{a}, E^{a b}, \Omega^{a b}\right]=\int_{M_{3}} \operatorname{Tr}\left(A d A+\frac{1}{3} A^{3}\right), \\
& \\
& \text { - } A=\omega^{a} J_{a}+\left(h^{a}+e^{a}\right) P_{a}+\frac{1}{2} \Omega^{a b} J_{a b}+E^{a b} P_{a b}, \\
& \\
& \text { - } \operatorname{Tr}\left(J_{a} P_{b}\right)=\eta_{a b} \quad \cdot \operatorname{Tr}\left(J_{a b} P_{c d}\right)=\frac{z}{3 x}\left(\eta_{a c} \eta_{b d}+\eta_{a d} \eta_{b c}-\frac{2}{3} \eta_{a b} \eta_{c d}\right) .
\end{aligned}
$$

Initial data for a possible non-Abelian algebra: $\left[P_{a}, J_{b}\right]=-\varepsilon_{a b c} P^{c}-3 x P_{a b}, \quad\left[P_{a}, P_{b}\right]=0=\left[P_{a}, P_{b e}\right]$,

$$
\left[P_{a}, J_{b c}\right]=2 z\left(\eta_{a(b} P_{c)}-\frac{1}{3} \eta_{b c} P_{a}\right)+\frac{4}{3} \varepsilon_{a(b}{ }^{m} P_{c) m}
$$

General Ansatz for the other commutators \longrightarrow No solution for Jacolvidentitios (20 identities to be checked)
3.3) Extension to $(A) d S_{3}$

$$
\nabla^{2} V^{a}=-\sigma h^{a} h_{b} V^{b} \quad, \quad \sigma=+1 \text { for } A d S_{3}, \sigma=-1 \text { for } d S_{3} \text {. }
$$

We can keep the action in the same form ($*$) as above

$$
S=\int_{M_{3}}\left[\omega_{a} R^{a}(e)+e_{a} R^{a}(\omega)+\frac{2 z}{3 x}\left(\Omega_{a b} R^{a b}(E)+E_{a b} R^{a b}(\Omega)\right] \quad\right. \text { (*) }
$$

for the deformed curvatures

$$
\begin{aligned}
R^{a}(e)= & \nabla e^{a}+\lambda x_{1} \varepsilon^{a b c} h_{b} e_{c}+x_{2} \varepsilon^{a b c} h_{b} \omega_{c}+\lambda x_{3} h_{b} E^{a b}+x_{4} h_{b} \Omega^{a b} \\
R^{a}(\omega)= & \nabla \omega^{a}+\lambda^{2} x_{5} \varepsilon^{a b c} h_{b} e_{c}+\lambda x_{6} \varepsilon^{a b c} h_{b} \omega_{c}+\lambda^{2} x_{7} h_{b} E^{a b}+\lambda x_{8} h_{b} \Omega^{a b} \\
R^{a a}(E)= & \nabla E^{a a}+\lambda x_{9}\left(h^{a} e^{a}-\frac{1}{3} \eta^{a a} h^{b} e_{b}\right)+x_{10}\left(h^{a} \omega^{a}-\frac{1}{3} \eta^{a a} h^{b} \omega_{b}\right) \\
& +\lambda x_{11} h_{b} \varepsilon^{a b c} E_{c}^{a}+x_{12} h_{b} \varepsilon^{a b c} \Omega_{c}{ }^{a} \\
R^{a a}(\Omega)= & \nabla \Omega^{a a}+\lambda^{2} x_{13}\left(h^{a} e^{a}-\frac{1}{3} \eta^{a a} h^{b} e_{b}\right)+\lambda x_{14}\left(h^{a} \omega^{a}-\frac{1}{3} \eta^{a a} h^{b} \omega_{b}\right) \\
& +\lambda^{2} x_{15} h_{b} \varepsilon^{a b c} E_{c}{ }^{a}+\lambda x_{16} h_{b} \varepsilon^{a b c} \Omega_{c}{ }^{a} .
\end{aligned}
$$

The corresponding gauge transformations being

$$
\begin{aligned}
\delta\binom{\lambda e^{a}}{\omega^{a}} & =\nabla\binom{\lambda \xi^{a}}{\tilde{\Lambda}^{a}}+\lambda A \varepsilon^{a b c} h_{b}\binom{\lambda \xi_{c}}{\tilde{\Lambda}_{c}}+\lambda B h_{b}\binom{\lambda \xi^{a b}}{\tilde{\alpha}^{a b}}, \\
\delta\binom{\lambda E^{a a}}{\Omega^{a a}} & =\nabla\binom{\lambda \xi^{a a}}{\tilde{\alpha}^{a a}}+\lambda C\left(h^{a} \delta_{b}^{a}-\frac{1}{3} \eta^{a a} h_{b}\right)\binom{\lambda \xi^{b}}{\tilde{\Lambda}^{b}}+\lambda D \varepsilon^{a b c} h_{b}\binom{\lambda \xi_{c}{ }^{a}}{\tilde{\alpha}_{c}{ }^{a}},
\end{aligned}
$$

with the numerical matrices explicitly given by

$$
A=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{5} & x_{6}
\end{array}\right), \quad B=\left(\begin{array}{l}
x_{3}
\end{array} x_{4}, \quad C=\left(\begin{array}{cc}
x_{9} & x_{10} \\
x_{7} & x_{8}
\end{array}\right), \quad D=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{15} & x_{14}
\end{array}\right),\right.
$$

The requirement of gauge invariance of the curvatures gives sixteen quadratic equations on the parameters x_{i}. In matrix form, they read

$$
\begin{aligned}
A^{2}-\frac{5}{6} B C & =\sigma I, \\
\frac{1}{2} D^{2}+C B & =2 \sigma I, \\
-\frac{3}{2} D C+C A & =0, \\
-\frac{3}{2} B D+A B & =0 .
\end{aligned}
$$

A particularly simple solution is given by

$$
A=\left(\begin{array}{cc}
0 & 1 \\
\frac{9 \sigma}{4} & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 1 \\
\frac{3 \sigma}{2} & 0
\end{array}\right)=C, \quad D=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

(It's not the only one)
Field rede functions and flat limit
The redefined fields $\quad\binom{\lambda e^{a}}{\omega^{a}}=M\binom{\lambda e^{\prime a}}{\omega^{\prime a}}, \quad\binom{\lambda E^{a a}}{\Omega^{a a}}=N\binom{\lambda E^{\prime a a}}{\Omega^{\circ a a}}$
with redefined gouge parameters $\binom{\lambda \xi^{a}}{\tilde{\Lambda}^{a}}=M\binom{\lambda y^{\prime a}}{\tilde{\Lambda}^{\prime a}}, \quad\binom{\lambda \xi^{a a}}{\tilde{\alpha}^{a a}}=N\binom{\lambda \xi^{\prime a a}}{\tilde{\alpha}^{\text {moa }}}$
where $M, N \in G L(Z, R)$
will be related by the same transformation laws, with $A^{\prime}=M^{-1} A M, B^{\prime}=M^{-1} B N, \quad C^{\prime}=N^{-1} C M, \quad D^{\prime}=N^{-1} D N$
\hookrightarrow Two solutions of \square related by $G l(2, R) \times G l(2, R)$ are regarded as equivalent. Also, if (A, B, C, D) is a solution, then so is $(-A,-B,-C,-D)$.

Classification of the solutions

- Using $G L(2, \mathbb{R}) \times G L(2, \mathbb{R})$, the matrices (A, B, C, D) can be brought to one of $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right),\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ or $\left(\begin{array}{cc}\mu & -\nu \\ \nu & \mu\end{array}\right)$ all in $\operatorname{Mat}(2, \mathbb{R})$.
- A detailed analysis shows that there are two general classes of solutions:

1. The 4 matrices are real diagonal. This requires $\sigma=1, A d S_{3}$ background
2. The 4 matrices are all antisymmetric $(\mu=0)$.
\measuredangle This requires $\sigma=-1, d S_{3}$ background

In the flat case where formally $\sigma=0$, we recover our previous results.

1. When the 4 matrices are diagonal, the fields $\left(e^{a}, E^{a a}\right)$ and $\left(\omega^{a}, \Omega^{a a}\right)$
form truro decoupled systems, each noted ($f^{a}, F^{a a}$), with gauge
transformations $\quad\left\{\begin{array}{l}\delta f^{a}=\nabla \epsilon^{a}+\lambda a \varepsilon^{a b c} h_{b} \epsilon_{c}+\lambda b h_{b} \epsilon^{a b}, \\ \delta F^{a a}=\nabla \epsilon^{a a}+\lambda c\left(h^{a} \delta_{b}^{a}-\frac{1}{3} \eta^{a a} h_{b}\right) \epsilon^{b}+\lambda d \varepsilon^{a b c} h_{b} \epsilon_{c}^{a},\end{array}\right.$

$$
(a, b, c, d) \in \mathbb{R}^{4} \text { constrained by } \quad \begin{aligned}
& a^{2}-\frac{5}{6} b c=\sigma, \frac{1}{2} d^{2}+b c=2 \sigma, \\
& -\frac{3}{2} d c+c a=0,-\frac{3}{2} b d+a b=0 .
\end{aligned}
$$

There exist solutions only in $\mathrm{AolS}_{3}(\sigma=1)$.
\leftrightarrow There is a solution where the spin-2 and spin-3 sectors of the system (f^{a}, para $^{\text {a. }}$) do not mix : $a=1, b=0=c, d= \pm 2$ m free limit of single $S L(3, R) C S$ $\hookrightarrow A$ more interesting solution mixes the two sectors (spin 2 and spin 3): $b \neq 0, c \neq 0$.

$$
a=\frac{3}{2}, b=1, c=\frac{3}{2}, d=1
$$

When the 2 systems $\left(f_{(i)}^{a}, F_{(i)}^{a a}\right) \quad i=1,2$ are considered simultaneously,
($\left.e^{a}, E^{a a}\right) \&\left(\omega^{a}, \Omega^{a a}\right)$, we can combine the 2 solutions above.

Using the freedom $(a, b, c, d) \mapsto(-a,-b,-c,-d)$, there remain

- 2 solutions where the 2 systems mix span 2 \& spin 3 :

$$
A_{1}=\frac{3}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & \eta
\end{array}\right), B_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & \eta
\end{array}\right), C_{1}=\frac{3}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & \eta
\end{array}\right), D_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & \eta
\end{array}\right), \quad \eta= \pm 1, \quad \sigma=+1,
$$

and

- 4 solutions when only one system, say ($e^{a}, E^{a a}$), mixes $\operatorname{spin} 2$ \& spin 3 .

$$
A_{2}=\left(\begin{array}{cc}
3 / 2 & 0 \\
0 & \eta_{1}
\end{array}\right), B_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), C_{2}=\left(\begin{array}{cc}
3 / 2 & 0 \\
0 & 0
\end{array}\right), D_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 2 \eta_{2}
\end{array}\right), \eta_{i}= \pm 1, \quad \sigma=+1 .
$$

(we exclude the cases where $B=0=C$)
2. Antisymmetric case The other solutions for the system of coustrointo for the matrices (A, B, C, D) are

$$
A_{3}=\frac{3}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), B_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad C_{3}=\frac{3}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad D_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \sigma=-1 m 0 d S_{3} .
$$

Cal: 1.\& 2. fully classify the solutions of the system of constraints on (A, B, C, D)

Rem: Using $(M, N) \in G L(2, R)$, the solution $\left(A_{1}, B_{1}, C_{1}, D_{1}\right)$ with $\eta=-1$ in $A d S_{3}$ and the solution $\left(A_{3}, B_{3}, C_{3}, D_{3}\right)$ in $d S_{3}$ can be brought in a unified form

$$
A_{0}=\left(\begin{array}{cc}
0 & 1 \\
\frac{9 \sigma}{4} & 0
\end{array}\right), \quad B_{0}=\left(\begin{array}{cc}
0 & 1 \\
\frac{3 \sigma}{2} & 0
\end{array}\right)=C_{0}, \quad D_{0}=\left(\begin{array}{ll}
0 & 1 \\
\sigma & 0
\end{array}\right) \quad \text { where } \quad \sigma= \pm 1 \text {. }
$$

[This form dos not cover the case $\eta=+1$ of $\left(A_{1}, B_{1}, C_{1}, D_{1}\right)$, or $\left(A_{2}, B_{2}, C_{2}, D_{2}\right)$]

Actions in (A)dS 3_{3}

$$
S\left[e^{a}, E^{a a}, \omega^{a}, \Omega^{a a}\right]=\frac{1}{2 \lambda} \int_{M_{3}}\left[\left(\begin{array}{ll}
\lambda e_{a} \omega_{a}
\end{array}\right) G\binom{\lambda R^{a}(e)}{R^{a}(\omega)}+\left(\lambda E_{a a} \Omega_{a a}\right) H\binom{\lambda R^{a a}(E)}{R^{a a}(\Omega)}\right]
$$

where G \& H non-degenerate and symmetric

- Gauge-invariance of S implies $\quad A^{\top} G-G A=0, G B+C^{\top} H=0, D^{\top} H-H D=0$,
where $G^{3}=M^{\top} G M$ and $H^{\prime}=N^{\top} H N$ equivalent to (G, H).
(A) In the solutions for (A, B, C, D) where they are all diagonal, $G \& H$ can also be taken diagonal.
A.1) When the system $\left(f^{a}, F^{a a}\right)$ does nat mix spin 2 \& spin 3 , we get

$$
\begin{array}{r}
S\left[f^{a}, F^{a a}\right]=\frac{1}{2} \int_{M_{3}}\left(f_{a} R^{a}(f) \pm F_{a a} R^{a a}(F)\right) \text { with } R^{a}(f)=\nabla f^{a}+\lambda \varepsilon^{a b c} h_{b} f_{c}, \\
R^{a a}(F)=\nabla F^{a a} \pm 2 \lambda \varepsilon^{a b c} h_{b} F_{c}^{a}
\end{array}
$$

A.2) When the system $\left(f^{a}, F^{a a}\right)$ does mix spin $2 \& \operatorname{spin} 3$, we get

$$
S\left[f^{a}, F^{a a}\right]=\frac{1}{2} \int_{M_{3}}\left(f_{a} R^{a}(f)-\frac{2}{3} \quad F_{a a} R^{a a}(F)\right)
$$

with

$$
\begin{aligned}
R^{a}(f) & =\nabla f^{a}+\frac{3}{2} \lambda \varepsilon^{a b c} h_{b} f_{c}+\lambda h_{b} F^{a b}, \\
R^{a a}(F) & =\nabla F^{a a}+\frac{3}{2} \lambda\left(h^{a} \delta_{b}^{a}-\frac{1}{3} \eta^{a a} h_{b}\right) f^{b}+\lambda \varepsilon^{a b c} h_{b} F_{c}^{a} .
\end{aligned}
$$

- Putting the two systems $\left(f_{(i)}^{a}, F_{(i)}^{a a}\right.$, together, we find

$$
G_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 6
\end{array}\right) \quad, \quad H_{1}=-\frac{2}{3}\left(\begin{array}{ll}
1 & 0 \\
0 & 6
\end{array}\right) \quad \text { for } \quad\left(A_{1}, B_{1}, C_{1}, D_{1}\right)
$$

where $\tau= \pm 1$ and both signs of η,
and $G_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & \tau_{1}\end{array}\right), H_{2}=\left(\begin{array}{cc}-\frac{2}{3} & 0 \\ 0 & \tau_{2}\end{array}\right)$ for $\left(A_{2}, B_{2}, C_{2}, D_{2}\right), \quad z_{i}= \pm 1$.
Rem : Exatic kinetic terms e de and $w d w$.
(B) In the case where $\left(A_{3}, B_{3}, C_{3}, D_{3}\right)$ are antisymmetric, only in $d S_{3}$, one uses the $G L(2, \mathbb{R}) \times G L(2, \mathbb{R})$ gauge

$$
A_{0}=\left(\begin{array}{cc}
0 & 1 \\
\frac{9 \sigma}{4} & 0
\end{array}\right), \quad B_{0}=\left(\begin{array}{cc}
0 & 1 \\
\frac{3 \sigma}{2} & 0
\end{array}\right)=C_{0}, \quad D_{0}=\left(\begin{array}{cc}
0 & 1 \\
\sigma & 0
\end{array}\right)
$$

and find $G_{0}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=-H_{0}$. This brings $e R(\omega), \omega R(e), E R(\Omega)$ and $\Omega R(E)$.

Flat limits of the fired equations
We showed that some solutions of the quadratic matnix-valued equations

$$
A^{2}-\frac{5}{6} B C=\sigma \mathbb{1}_{2}, \quad D^{2}+2 C B=4 \sigma \mathbb{1}_{2}, \quad C A-\frac{3}{2} D C=0, A B-\frac{3}{2} B D=0
$$

for the 16 parameters x_{i} are in the $G l(2, \mathbb{R}) \times G l(2, R)$ orbit
of the following simple solution for bath $\sigma= \pm 1$

$$
A_{0}=\left(\begin{array}{cc}
0 & 1 \\
\frac{9 \sigma}{4} & 0
\end{array}\right), \quad B_{0}=\left(\begin{array}{cc}
0 & 1 \\
\frac{3 \sigma}{2} & 0
\end{array}\right)=C_{0}, \quad D_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

In order to recover the flat limit, must

1) act with some appropriate $(M, N)_{\gamma, z}$
2) send $\lambda \rightarrow 0$.

Matrices $(M, N)_{r, z}$ are

$$
M=\left(\begin{array}{cc}
\frac{3}{\sqrt{2}} \Delta & z \\
-\frac{9 \sigma}{4} z & \frac{3}{\sqrt{2}} \Delta
\end{array}\right), \quad N=\left(\begin{array}{cc}
0 & 1 \\
\frac{3 \sigma}{4} & 0
\end{array}\right) .
$$

where Δ is the square root

$$
\Delta=\sqrt{\gamma \sigma\left(2 \gamma z^{2}-1\right)}
$$

Because the numerical matrices (A, B, C, D) are real and $\gamma= \pm 1$, extensions from flat to $(A) d S_{3}$ depend on values of z and r.

- If $\gamma=+1$, we have $\Delta=\sqrt{\sigma z^{2}\left(2 z^{2}-1\right)}$: the model can be extended to dS when $z^{2}<1 / 2$, to AdS for $z^{2}>1 / 2$, and to both when $z^{2}=1 / 2$. In particular, the original action of [1] corresponds to $z=-1$ and therefore can only be continued to AdS, not to CS.
- If $\gamma=-1$, we have $\Delta=\sqrt{\sigma z^{2}\left(2 z^{2}+1\right)}$; these models can only be deformed to AdS.

Flat limits of the actions

$$
\text { - } \left.\quad S\left[e^{a}, \omega^{a}, E^{a a}, \Omega^{a a}\right]=\frac{1}{2 \lambda} \int_{(A) d S_{3}}\left[\begin{array}{cc}
\left(\lambda e_{a}\right. & \omega_{a}
\end{array}\right) G\binom{\lambda R^{a}(e)}{R^{a}(\omega)}+\left(\lambda E_{a a}, \Omega_{a a}\right) H\binom{\lambda R^{a a}(E)}{R^{a a}(\Omega)}\right]
$$

The terms $e R(\omega), \omega R(e), E R(\Omega)$ and $\Omega R(E)$ come with λ^{0}.
The terms $\omega R(w)$ and $\Omega R(\Omega)$ come with λ^{-1} and diverge when $\lambda \rightarrow 0$
\Rightarrow should set $G_{22}=0=H_{22}$.
The terms $e R(e)$ and $E R(E) \longrightarrow 0$ when $\lambda \rightarrow 0$.

To recover $\quad S=\int_{M_{3}}\left[\omega_{a} R^{a}(e)+e_{a} R^{a}(\omega)+\frac{2 z}{3 x}\left(\Omega_{a b} R^{a b}(E)+E_{a b} R^{a b}(\Omega)\right]\right.$

$$
x=-\frac{2 \gamma z}{9\left(3 \gamma z^{2}-2\right)}
$$

in the flat limit, one should have $G_{12}=G_{21}=1, H_{12}=H_{21}=\frac{22}{3 x}$,
on top of the constraints on (G, H) fran gauge invariance.

- Remarkably, this selects only the following values for $x z$:

$$
x z \in\left\{-\frac{2}{3},-\frac{2}{15}, \frac{2}{45}, \frac{2}{9}\right\} .
$$

Of these values, only $x z=\frac{2}{9}$ is passible for bath signs of σ.

The other 3 values of $x z$ admit $\sigma=1$ only, ie. $A d S_{3}$.

- The higher dual of Frozz-Pomli has $x z=-\frac{2}{9}$, hence cannot be deformed to $(A) d S_{3}$.
- The value $x z=\frac{2}{9}$ can be reached from the case $\left(A_{0}, B_{0}, C_{0}, D_{0}, G_{0}, H_{0}\right)$ by acting with $M=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right), N=-z\left(\begin{array}{cc}3 / 2 & 0 \\ 0 & 2\end{array}\right)$

The other 3 values for $x z$ are in the orbit of the hybrid system

$$
\begin{aligned}
& A_{2}=\left(\begin{array}{cc}
3 / 2 & 0 \\
0 & \eta_{1}
\end{array}\right), B_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), c_{2}=\left(\begin{array}{cc}
3 / 2 & 0 \\
0 & 0
\end{array}\right), D_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 2 \eta_{2}
\end{array}\right), \eta_{i}= \pm 1, \quad \sigma=+1 . \\
& G_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & c_{1}
\end{array}\right), \quad H_{2}=\left(\begin{array}{cc}
2 / 3 & 0 \\
0 & \tau_{2}
\end{array}\right) \quad \text { with } \sigma_{1}=-1 \text { and } \tau_{2}=+1 .
\end{aligned}
$$

Conclusion: The one-parameter family of actions in flat space only admits deformations to $(A) d S_{3}$ for critical values of the product $x z$, $x=-\frac{2 \gamma z}{9\left(3 \gamma z^{2}-2\right)}$.
(4) Relation with quivers

Use spinier notation instead of vector so $(1,2)$. The one -forms can be grouped in

$$
\Phi(y, x)=\sum_{N, i} \frac{1}{N!} y_{\alpha_{1}} \cdots y_{\alpha_{N}} \Phi_{i}^{\alpha_{1} \cdot \alpha_{N}}(x)
$$

$\left(e^{\alpha \alpha}, \omega^{\alpha \alpha}, E^{\alpha(\psi)}, \Omega^{\alpha(\psi)}\right)$ in our case.

Field equations

$$
\nabla \Phi=Q \Phi
$$

where

$$
Q=\alpha(N) h^{\alpha \alpha \alpha} y_{\alpha} y_{\alpha}+\beta(N) h^{\alpha \alpha} \partial_{\alpha} \partial_{\alpha}+\gamma(N) h^{\alpha \alpha} y_{\alpha} \partial_{\alpha}
$$

For a topological system, $D=\nabla-Q$ is nilputent. This imposes constraints on

$$
\alpha_{N}: V_{N-2} \rightarrow V_{N}, \quad \beta_{N}: V_{N+2} \rightarrow V_{N} \quad, \quad \gamma_{N}: V_{N} \rightarrow V_{N}
$$

Moreover, redefinitions $\Phi_{N} \rightarrow A_{N} \Phi_{N}$ by automorphisms.

Quiver

In $A d S$, one can use $G l_{2} \times G l_{2}$
to reach $\alpha_{N+2}=\beta_{N}=\gamma_{N}=\gamma_{N+2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. It corresponds to $\left(A_{0}, B_{0}, C_{0}, D_{0}\right)$.

In flat space, $\beta_{N}=\gamma_{N}=\gamma_{N+2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $\alpha_{N+2}=q\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \quad 1$-parameter.

- Constraints from nilpotency of D.

Conclusions

- Strange heigher-spin systems in flat space are associated with wild quivers
- Classification of finite-dimensional representations of Paincaré algebra unknown (to us)
- Interactions were stredied in the simplest spin 2-spin 3 system

