

IIDEA : Interactive Inference for Differential Expression Analyses Nicolas Enjalbert-Courrech, Pierre Neuvial

nicolas.enjalbert-courrech@math.univ-tlse.fr, pierre.neuvial@math.cnrs.fr
https://shiny-iidea-sanssouci.apps.math.cnrs.fr/

Motivation: volcano plots

Differential gene expression studies aim at identifying genes whose mean expression level differs significantly between two known populations. **Post hoc inference** provides statistical guarantees on arbitrary gene selections, e.g. based on both statistical significance and effect size, as e.g. in **volcano plots** [1]:

Review of existing post hoc inference methods

		Adaptivity to:		Time
Method	R Package	dependence	$\pi_0(*)$	complexity(**)
Simes $[1, 3]$	cherry	NO	NO	quadratic
ARI[6]	ARI	NO	YES	linear
permutation ARI $[5]$	pARI	YES	YES	quadratic
Adaptive Simes $[4, 3]$	sanssouci	YES	YES	linear

(*) proportion of null genes; (**) for calculating the post hoc bound

(2) R/shiny app for interactive differential expression analysis

To make post hoc inference more widely used, we combine (1) a powerful permutationbased post hoc method [4] with (2) an R/shiny app for interactive user selections.

(1) Permutation method

Adaptive Simes, our calibration method based on permutation for two-sample tests, adapts to the dependency structure of data [3, 4].

IIDEA: Interactive Inference for Differential Expression Analyses

Complexity: $O(mB(n + \log(m)))$ in time and O(m(B+n)) in space.

Statistical performance Adaptive Simes yields valid and sharp bounds: 0%

This interactive shiny application is developed by Nicolas Enjalbert-Courrech and Pierre Neuvial for the R package sansSouci. It implements permutation-based post hoc inference bounds for differential gene expression analysis, see dedicated vignette. The source code for this app is freely available. For any question, please file an issue.

How many permutations?

The number B of permutations at the calibration step induces a tradeoff between the precision of post hoc bounds, and time complexity:

References

[1] Goeman & Solari, Stat. Sci. 2011

- [2] Ebrahimpoor & Goeman. Brief. Bioinf. 2021
- [3] Blanchard, Neuvial, Roquain. Ann. Stat. 2020
- 4] Enjalbert-Courrech & Neuvial. *Bioinformatics* (minor revision), 2022. doi:10.1101/2022.03.08.483449
- [5] Andreella *et. al.* arXiv:2012.00368
- [6] Rosenblatt et. al. Neuroimage 2018
- [7] Blain, Thirion, Neuvial. *Neuroimage* 2022
- [8] Davenport, Thirion, Neuvial. FDP control in multivariate linear models using the bootstrap. In preparation, 2022.

Acknowledgements

- ANR-16-CE40-0019 (SansSouci)
- Fondation Catalyses at Université Paul Sabatier

The default in IIDEA is set to B = 1000.

Conclusion

- Currently implemented in IIDEA:
 - interactive volcano plot
 - powerful **post hoc** guarantees
 - **linear** computation of post hoc bounds
 - no programming skills required
 - **input data**: gene expression matrix or a matrix of *p*-values and fold changes (no adaptivity)

- Mission for Transversal and Interdisciplinary Initiatives (MITI) at CNRS (DDisc project).
- the SansSouci team!

Perspective

Features yet to be implemented in IIDEA:

- RNA-seq data analysis (counting data)
 non-parametric calibration using notip [7]
 mutliple contrasts in multivariate linear models using the bootstrap [8]
- parallelization of calibration
- use of promises for concurrent users