

GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH Integration of Medical Knowledge into Reinforcement Learning for Dynamic Treatment Regimes Sophia YAZZOURH Nicolas SAVY, Philippe SAINT-PIERRE, Michael KOSOROK

Dynamic Treatment Regimes

Expert Knowledge

Assistance of a qualified professional in order to :

- Improve environmental modelling
- Incorporate observed mechanisms
- Highlight revelent decisions

"The goal of the RL approach is to derive optimal DTR directly from the data" [1] Mathematical Framework

Environment

- $t \in [0,\tau]$: discrete time space
- S: State space and $s_t \in S$ denotes the states of an agent at time t
- A : Action space and $a_t \in A$ denotes the chosen action of an agent at time t
- $\{\mathbb{A}(s) \mid s \in \mathbb{S}\}$: the non-empty measurable subspace of \mathbb{A}
- One admissible history h_t of \mathbb{H}_t is $h_t = (s_0, a_0, \dots, s_{t-1}, a_{t-1}, s_t)$

Decision Process

 $(T_t)_{t \in [0,\tau]}$: the transition matrix of conditional probability transition of S given $\mathbb{H} \times \mathbb{A}$ $(R_t)_{t \in [0,\tau]}$: the reward function of \mathbb{H}_{t+1} in \mathbb{R}

How to Integrate Expert Knowledge into Reinforcement Learning?

Policy

A policy $\pi = (\pi_t)_{t \in \tau}$ is a sequence of conditional distribution of A given \mathbb{H}_t such that $\forall t \in [0,\tau], \forall h_t \in \mathbb{H}_t$: $\pi_t(\mathbb{A}(s_t) \,|\, h_t) = 1$

Cumulative Reward

The long term cumulative reward at stage *t* is defined as $G_t = \sum \gamma^k R_{t+k+1}$ with $\gamma \in [0,1]$ is the discounted factor.

Optimal Policy

An optimal policy π^* is a sequence of conditional distribution such as the long term cumulated reward is maximized :

 $\pi^*(s) = \operatorname{argmax} \mathbb{E}_{\nu}^{\pi}[G_t | S_t = s]$

Q-Value Based

Action-Value function : $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$

<u>Near-Optimal Set-Valued Policies [3,4]</u> and Preference Learning

$\pi^*(s, a) = \operatorname{argmax} \mathbb{E}_{\pi} q_{\pi}(s, a)$

Fitted-Q Iteration

Pseudo-Algorithm: Fitted Q-Iteration

Inputs: A set of training offline data consists of patients admissible histories h_t and their associated indexed reward r_t , $t = 0, ..., \tau$, and a regression algorithm.

```
Initialization: Let t = \tau + 1 and \hat{Q}_t be a function equal to zero everywhere on \mathbb{S} \times \mathbb{A}.
```

```
<u>Iterations</u> : Repeat computation until t = 0
```

1. $t \leftarrow t - 1$ (Backward) 2. Q_t is fitted with a regression algorithm though the following recursive equation : $Q_t(s_t, a_t) = r_t + \max_{a_{t+1}} \hat{Q}_{t+1}(s_{t+1}, a_{t+1})$

<u>Output:</u> Given the sequential estimates of $\{\hat{Q}_0,\ldots,\hat{Q}_{ au}\}$, the sequential optimal policies $\{\hat{\pi}_0,\ldots,\hat{\pi}_{ au}\}$ can be determined.

• Near-equivalent actions can capture considerations such that side-effects, less invasives treatments, local availability.... • Preference Learning incorporates clinical judgments in order to rank treatments lines

References

[1] Kosorok, M. R., & Moodie, E. E. (Eds.). (2015). Adaptive treatment strategies in practice: planning trials and analyzing data for personalized medicine. Society for Industrial and Applied Mathematics.

[2] Gaweda, A. E., Muezzinoglu, M. K., Aronoff, G. R., Jacobs, A. A., Zurada, J. M., & Brier, M. E. (2005, December). Incorporating prior knowledge into Q-learning for drug delivery individualization. In Fourth International Conference on Machine Learning and Applications (ICMLA'05) (pp. 6-pp).

Research, 17(1), 7378-7405.

HEALTH YOUR IS OUR PPIORITY

Dedicated Doctor who Works Around the Clock

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

EMERGENCY SERVICES

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt.

COMPLETE MEDICINE

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt.

LABORATORIUM TEST

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt.

A hello@reallygreatsite.com

Possibles treatments for a_{t+1}

Irrelevant Treatments and Relevant Treatments determined by observed mechanisms

 a_{t-1}

N-Near Equivalent Q-values

 $\left\{ \begin{array}{c} \hat{Q}_{0}^{1}, \hat{Q}_{1}^{1}, \dots, \hat{Q}_{\tau}^{1} \\ \hat{Q}_{0}^{2}, \hat{Q}_{1}^{2}, \dots, \hat{Q}_{\tau}^{2} \\ \hat{Q}_{0}^{2}, \hat{Q}_{1}^{1}, \dots, \hat{Q}_{\tau}^{2} \\ \dots \\ \hat{Q}_{0}^{N}, \hat{Q}_{1}^{N}, \dots, \hat{Q}_{\tau}^{N} \end{array} \right\}$

N-Near Equivalent Set of Policies

Preference Learning based on Medical Knowledge

