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Dynamic Treatment Regimes Expert Knowledge

Assistance of a qualified professional in order to :
e Improve environmental modelling

DYNAMIC e Incorporate observed mechanisms

TREATMENT e Highlight revelent decisions
REGIMES

Input

How to Integrate Expert Knowledge
into Reinforcement L.earning?

e Treatment history

MODEL PREPARATION MODEL TRAINING MODEL VALIDATION

MODELS (SARSA, O-LEARNING, INCORPORATING PRIOR
[ 0..) J [ MEDICAL OBSERVATION J [ SUPERVISED LEARNING J

"The goal of the RL approach 15 to derive optimal DTR directly f?’OWL the data" [1] MIMIC-I] Constraint the Q-value Adding decision rule for imitation

learning

Mathematical Framework { LEARNING PARAMETERS J [ ADDING EXPLORATION [ MULTIPLE POLICIES J

MIMIC-1II Adding H, hypothesis Near-optimal set-valued policies

[ TRANSFERT LEARNING J [ SUPERVISED LEARNING J

Adding constraint for imitation
t € [0,7] : discrete time space learning

[ HUMAIN IN THE LOOP J

Interactive Shaping
- Learning from categorical feedback

S : State space and s, € S denotes the states of an agent at time ¢ T TN T e e

A : Action space and g, € A denotes the chosen action of an agent at time ¢
{A(s)|s € S} : the non-empty measurable subspace of A Constrained Q-Values [2]
One admissible history h, of H, is h, = (sg, ag, - .., 8,1, 8_1, S,)

Possible treatments for a; 1

(T)sc[0, : the transition matrix of conditional probability transition of S given H X A

(R):e[0.7 : the reward function of H,; in R

e

and

A policy 7 = (1), is a sequence of conditional distribution of A given H, Relevant Treatments
such that Vz € [0,7], VA, € H,: determined by prior medical

(A(s) | h) =1 observations

(& o)
The long term cumulative reward at stage ¢ is defined as G, = Z ykRHkH

=0 Sti1, @ + Bonus
with ¥ € [0,1] is the discounted factor. Q(st+1,a¢41)

Near-Optimal Set-Valued Policies [3,4]

An optimal policy 7* is a sequence of conditional distribution such as the and Preference Learning

long term cumulated reward is maximized :

n*(s) = argmax E’[G,| S, = s]

T
N-Near-Equivalent Q-values N-Near-Equivalent Set of Policies
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Action-Value function : g,(s,a) = E_[G,| S, = s, A, = d] oY o ,:..,Qf J

-3 — -
n*(s,a) = argmax [k _q,(s, a)
T Preference Learning based on
Medical Knowledge

Fitted-Q Iteration

Optimal DTR

Pseudo-Algorithm: Fitted Q-Iteration

Inputs: A set of training offline data consists of patients admissible histories #, and their associated " Near—equivalent actions can capture considerations such that

indexed reward r,, t = 0,...,7, and a regression algorithm. . . . . ey
side-etfects, less invasives treatments, local availability....

Initialization: Let # = 7 + 1 and 0, be a function equal to zero everywhere on S X A. e Preference Learning incorporates clinical judgments in order to

: . . rank treatments lines
Iterations : Repeat computation until = 0

1.t « t — 1 (Backward)

2. O, is fitted with a regression algorithm though the following recursive equation : TSy
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Possibles treatments for a; 1

d;

Q(8t+1,at+1) + Penalty

ds

Q(3t+17 at+1) + Penalty

ds

/I

Q(S¢+1,0a:11) + Bonus

d4

Q(St_|_1, CLt_|_1) + Bonus

Irrelevant Treatments and
Relevant Treatments
determined by observed
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N-Near Equivalent Q-values
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N-Near Equivalent Set of Policies

Preference Learning based on
Medical Knowledge

Optimal DTR




