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Approximation problem

Motivations
• Feed-forward neural networks are ubiquitous in artificial intelligence applications,
that often involve estimating an (unknown) function

• Understanding the fundamental properties of their approximating properties is
thus paramount

• Approximating functions in Lp norm can be done even in some cases when the
sup norm approximation is intractable, especially in discontinuous settings

Problem statement
Let F be a space of functions with values within a finite range [a, b]
Let G be a space of functions implemented by a feed-forward neural network
Question: what is the order of magnitude, and in particular, a lower bound, of the
Lp approximation error

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ)

in terms of complexity measures of both F and G ?

Earlier works

Sup norm approximation
Several papers establish lower bounds and upper bounds on the sup norm approxi-
mation error

sup
f∈F

inf
g∈G

∥f − g∥∞,

for specific function spaces F . Their methods rely on the VC-dimension theory, see
for instance Yarotsky [2018].

Lp norm approximation
A few lower bounds in Lp norm, p finite, exist for special classes of feed-forward
neural networks (shallow networks, quantized networks...), see for instance Siegel
and Xu [2021] or Petersen and Voigtlaender [2018].

Open qestion
Our main result solves an open question by DeVore et al. [2021]: “What is missing
vis-à-vis Problem 8.13 is what the best bounds are and how we prove lower bounds
for approximation rates in Lp(Ω), p ̸= ∞.”
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A general lower bound

Main result

The following result, involving complexity measures such as the log-packing number
and the pseudo-dimension, relies on a key inequality by Mendelson [2002].
In the sequel, we denote respectively logM(ε,F , ∥ · ∥Lp(µ)) and Pdim(F ) the log-
packing number and the pseudo-dimension of F . We let 1 ≤ p < +∞.

Theorem 1. Let F ,G be two spaces of functions defined over a set X endowed with a
probability measure µ, with values within a finite range [a, b].
Assume the following two conditions are satisfied:

(i) Pdim(G) < +∞
(ii) logM(ε,F , ∥ · ∥Lp(µ)) ≥ cε−α for some c,α, ε0 > 0, and all ε ≤ ε0.

Then,

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ min
{
ε1, c1Pdim(G)−

1
α log−

2
α(Pdim(G))

}
,

for some constants c1, ε1 > 0 independent from ε.

Application to feed-forward neural networks

Combining the above theorem with a known bound on the pseudo-dimension of
feed-forward neural networks, we obtain the following corollary (see the paper for
a more general statement with piecewise-polynomial activation).

Corollary 1. Let G be a space of functions implemented by a feed-forward neural net-
work with fixed architecture, W variable weights, L layers and the ReLU activation.
If logM(ε,F , ∥ · ∥Lp(µ)) ≥ cε−α for some c,α, ε0 > 0, and all ε ≤ ε0, then

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ c2(LW )−
1
α log−

3
α(W ),

for all W ≥ Wmin, where c2,Wmin are positive constants independent fromW and L.

Two examples

• If F is the unit Hölder ball over [0, 1]d with smoothness parameter s > 0,
sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ c3W
−2s

d log−
3s
d (W ).

This lower bound matches the upper bound, up to the logarithmic factor.
• If F is the set of functions [0, 1]d → [0, 1] that are non decreasing (non decreasing
along any line parallel to an axis), we show that the Lp approximation of F is
feasible , while the sup norm approximation is impossible. This illustrates the
qualitative difference between Lp, p < +∞, and sup norm approximation.

Conclusion and future works

Conclusion
We derive a general lower bound on the approximation error in any Lp(µ) norm,
p < +∞, for non-quantized networks of arbitrary depth and general sets F , which
was known as a difficult problem (DeVore et al. [2021]).

Future works
Our work focuses on the approximation with neural networks with piecewise poly-
nomial activation. Neural networks with other types of activations is left for future
work.


