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Introduction

A very natural and general question in maths:

How to approximate a function f by g ?

Or, given a function f and a function set G, how well can a function
g ∈ G approximate a function f ?
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Introduction

Typical case:

you want to simulate the output of some f ∈ F , but you only have
access to functions in G, which is limited

examples:

G is a set of polynomials, or trigonometrical polynomials, or...
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Introduction

In statistics, very common problem.

Given some function set F and a loss function L,

f = argminf∈F EX ,y [L(f (X ), y)]

And you give yourself a model (e.g linear model, neural network)
to approximate this optimal f
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Introduction

Thus natural to ask: what is the approximation error of f by G (wrt
∥.∥) ? Namely

inf
g∈G

∥f − g∥

More generally: given a function set F and an approximation
function set G,

how well can I expect to approximate any
function in F by the best function in G ?

-
What is the approximation error of F by G ?

=⇒ sup
f∈F

inf
g∈G

∥f − g∥
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The problematic

F ,G ⊂ [a,b]X

F G

inf
g∈G

∥f1 − g∥Lp(µ)

supf∈F infg∈G ∥f − g∥Lp(µ)

f1

→ Problematic: quantify the approximation error (lower bounds) of F
by G

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) , (1)

expressed as a function of complexity notions of both F and G
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Contributions (and outline)

A general lower bound
Lower bounds on the Lp(µ) approximation error of general sets F
by piecewise polynomial feed forward networks

⇒ Improving over known bounds in sup norm

⇒ New proof strategy, suited for the Lp norm (open question
by Devore et al. 2021 [2])
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Why Lp norm is difficult

There is a qualitative difference between the Lp norm, p < ∞, and the
sup norm:

Lp norm, p < ∞: ∥f − g∥Lp(µ) =
(∫

X |f (x)− g(x)|pdµ
)1/p

sup norm: ∥f − g∥∞ = supx∈X |f (x)− g(x)|
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Why Lp norm is difficult

”High” distance between f and g at a single point (|f (x)− g(x)| > ε):

=⇒ ∥f − g∥∞ > ε =⇒ supf∈F infg∈G ∥f − g∥∞ > ε

≠⇒ ∥f − g∥Lp > ε
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Why Lp norm is difficult

Existing lower bounds in sup norm [8, 7, 9, 6]
Lower bounds in Lp norm only in very specific cases [3, 4]

⇒ Hence our contribution : a lower bound of the
approximation error in Lp norm in a general setting
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Complexity measures

Our lower bound on supf∈F infg∈G ∥f − g∥Lp involves complexity
measures of F and G

Intuition: The more complex / richer is F the harder it is to
approximate. Conversely: the more complex / richer is G, the better

approximation ability
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Complexity measures: the packing number

An ε-packing (wrt norm ∥.∥) in
F is a subset {f1, . . . , fn} of
functions in F that are
pairwise at least ε-distant:

∥fi − fj∥ > ε ∀ i , j = 1, . . . ,n

The ε-packing number of F (wrt ∥.∥) is the (possibly infinite)
maximal cardinality of an ε-packing in F :

M(ε,F , ∥.∥) = sup{N ∈ N, there exists a packing of size n in F}
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Complexity measures: the fat-shattering dimension

For γ > 0, a set of points S = {x1, . . . , xn} ⊂ X is said to be
γ-fat-shattered by F if

∃r : S → R, ∀E ⊂ S, ∃f ∈ F st
{

f (x) ≥ r(x) + γ if x ∈ E
f (x) ≤ r(x)− γ otherwise.

(2)

The γ-fat-shattering dimension
of F fatγ(F ) is the maximal
cardinality of a subset of X
that is γ-fat-shattered by F

The pseudo-dimension of F , denoted Pdim(F ), would be the
0-fat-shattering dimension if we replace the loose inequality by a
strict in eq. (2)
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Main lower bound

M
(
ε,F , ∥ · ∥Lp(µ)

)
is the ε-packing number of F in the Lp(µ) norm.

Theorem (informal statement)

1 ≤ p < +∞
µ probability measure over X
F ,G ⊂ [a,b]X

fatγ(G) < +∞

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥

inf

{
ε > 0 : logM

(
3ε,F , ∥ · ∥Lp(µ)

)
≤ cp fat ε

32
(G) log2

(
2 fat ε

32
(G)

ε/(b − a)

)}
.

Proof: relies on Mendelson 2002 [5].
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Main lower bound: corollary

Assume logM(ε,F , ∥.∥Lp(µ)) grows at least polynomially with 1/ε,
i.e, there exists c0 > 0 and α > 0 st:

logM(ε,F , ∥.∥Lp(µ)) ≥ c0ε
−α

Then solving the equation in theorem 1 for ε yields

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ min
{
ε1,Pdim (G)−

1
α log−

2
α (Pdim (G))

}
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Application to neural networks

What if G is a set of function corresponding to a neural network ?

Informal presentation of neural networks:

A (feed-forward) neural
network is a parametrical
model
It is characterized by a number
of parameters W and a depth
(number of layers) L
To a fixed parameter θ ∈ RW ,
we can associate a function gθ

to the neural network

G :=
{

gθ, θ ∈ RW}
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Application to neural networks

G: space of functions implemented by a feed forward neural
network with W variable weights, L layers and ReLU activation
Assume logM

(
ε,F , ∥ · ∥Lp(µ)

)
≥ cε−α for all ε < ε0 for some

α, ε0, c > 0

Corollary

Under the above assumptions:

sup
f∈F

inf
g∈G

∥f − g∥Lp(µ) ≥ c1(LW )−
1
α log−

3
α (W ),

where the constant c1 is independent from W and L.
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Two examples

F Holder functions Monotonic functions
α d

s max(p(d − 1),d)
sup norm Feasible Infeasible
Lp norm same rate as sup norm Feasible

(does not depend on p) (rate depends on p)
Tight bound for ReLU for Heaviside

(upper bound in [9]) (upper bound in this article)
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