A general approximation lower bound in L^{p} norm, with applications to feed-forward neural networks

El Mehdi Achour¹ Armand Foucault¹ Sébastien Gerchinovitz^{2,1} François Malgouyres¹

> ¹Institut de Mathématiques de Toulouse ; UMR 5219 Université de Toulouse ; CNRS UPS IMT F-31062 Toulouse Cedex 9, France

²Institut de Recherche Technologique Saint Exupéry, Toulouse, France

JSS 2024 - IMT presented at NeurIPS 2022

Neural Network Approximation

Achour, Foucault, Gerchinovitz, Malgouyres

1/21

A very natural and general question in maths:

How to approximate a function f by g?

Or, given a function f and a function set G, how well can a function $g \in G$ approximate a function f?

Typical case:

you want to simulate the output of some $f \in F$, but you only have access to functions in *G*, which is limited

Typical case:

you want to simulate the output of some $f \in F$, but you only have access to functions in *G*, which is limited

examples:

G is a set of polynomials, or trigonometrical polynomials, or...

Achour, Foucault, Gerchinovitz, Malgouyres

• In statistics, very common problem.

Given some function set F and a loss function L, $f = argmin_{f \in F} E_{X,y} \left[L(f(X), y) \right]$

э

(日)

• In statistics, very common problem.

Given some function set F and a loss function L, $f = argmin_{f \in F} E_{X,y} [L(f(X), y)]$

• And you give yourself a model (e.g linear model, neural network) to *approximate* this optimal *f*

Introduction

• Thus natural to ask: what is the approximation error of f by G (wrt ||.||) ? Namely

$$\inf_{g\in G} \|f-g\|$$

Introduction

Thus natural to ask: what is the approximation error of f by G (wrt ||.||) ? Namely

$$\inf_{g\in G}\|f-g\|$$

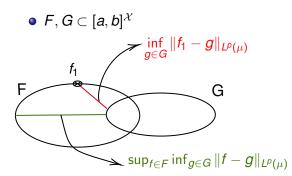
• More generally: given a function set *F* and an *approximation* function set *G*,

how well can I expect to approximate *any* function in *F* by *the best* function in *G*?

What is the approximation error of F by G ?

$$\implies \sup_{f \in F} \inf_{g \in G} \|f - g\|$$

The problematic



 \rightarrow **Problematic**: quantify the approximation error (lower bounds) of F by G

$$\sup_{f \in F} \inf_{g \in G} \|f - g\|_{L^p(\mu)}, \qquad (1)$$

イロト イポト イヨト イヨト

expressed as a function of complexity notions of both F and G

- A general lower bound
- Lower bounds on the L^ρ(μ) approximation error of general sets F by piecewise polynomial feed forward networks

 \Rightarrow Improving over known bounds in sup norm

 \Rightarrow New proof strategy, suited for the L^{p} norm (open question by Devore et al. 2021 [2])

There is a qualitative difference between the L^p norm, $p < \infty$, and the sup norm:

•
$$L^p$$
 norm, $p<\infty$: $\|f-g\|_{L^p(\mu)}=\left(\int_{\mathcal{X}}|f(x)-g(x)|^p\mathrm{d}\mu
ight)^{1/p}$

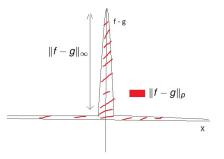
• sup norm:
$$\|f - g\|_{\infty} = \sup_{x \in \mathcal{X}} |f(x) - g(x)|$$

Why L^p norm is difficult

"High" distance between *f* and *g* at a single point $(|f(x) - g(x)| > \varepsilon)$:

•
$$\implies$$
 $\|f - g\|_{\infty} > \varepsilon \implies \sup_{f \in F} \inf_{g \in G} \|f - g\|_{\infty} > \varepsilon$

•
$$\Rightarrow$$
 $\|f - g\|_{L^p} > \varepsilon$



< ロ > < 同 > < 回 > < 回 >

- Existing lower bounds in *sup* norm [8, 7, 9, 6]
- Lower bounds in L^p norm only in very specific cases [3, 4]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Existing lower bounds in *sup* norm [8, 7, 9, 6]
- Lower bounds in L^p norm only in very specific cases [3, 4]

 \Rightarrow Hence our contribution : a lower bound of the approximation error in L^{p} norm in a general setting

4 **A** N A **B** N A **B** N

 Our lower bound on sup_{f∈F} inf_{g∈G} ||f − g||_{L^p} involves complexity measures of F and G

< 日 > < 同 > < 回 > < 回 > < 回 > <

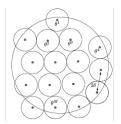
 Our lower bound on sup_{f∈F} inf_{g∈G} ||f − g||_{L^p} involves complexity measures of F and G

Intuition: The more complex / richer is *F* the harder it is to approximate. Conversely: the more complex / richer is *G*, the better approximation ability

Complexity measures: the packing number

An ε-packing (*wrt* norm ||.||) in
 F is a subset {*f*₁,..., *f_n*} of
 functions in *F* that are
 pairwise at least ε-distant:

$$\|f_i - f_j\| > \varepsilon \qquad \forall i, j = 1, \ldots, n$$



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 The ε-packing number of F (wrt ||.||) is the (possibly infinite) maximal cardinality of an ε-packing in F:

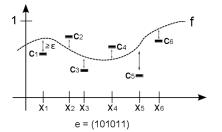
 $M(\varepsilon, F, \|.\|) = \sup\{N \in \mathbb{N}, \text{there exists a packing of size } n \text{ in } F\}$

Complexity measures: the fat-shattering dimension

• For $\gamma > 0$, a set of points $S = \{x_1, \dots, x_n\} \subset \mathcal{X}$ is said to be γ -fat-shattered by F if

$$\exists r: S \to \mathbb{R}, \forall E \subset S, \exists f \in F \text{ st } \begin{cases} f(x) \ge r(x) + \gamma & \text{if } x \in E \\ f(x) \le r(x) - \gamma & \text{otherwise.} \end{cases}$$
(2)

 The γ-fat-shattering dimension of *F* fat_γ(*F*) is the maximal cardinality of a subset of *X* that is γ-fat-shattered by *F*

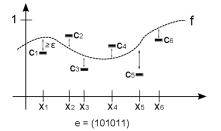


Complexity measures: the fat-shattering dimension

• For $\gamma > 0$, a set of points $S = \{x_1, \dots, x_n\} \subset \mathcal{X}$ is said to be γ -fat-shattered by F if

$$\exists r: S \to \mathbb{R}, \forall E \subset S, \exists f \in F \text{ st } \begin{cases} f(x) \ge r(x) + \gamma & \text{if } x \in E \\ f(x) \le r(x) - \gamma & \text{otherwise.} \end{cases}$$
(2)

 The γ-fat-shattering dimension of *F* fat_γ(*F*) is the maximal cardinality of a subset of *X* that is γ-fat-shattered by *F*



• The *pseudo-dimension* of *F*, denoted *Pdim*(*F*), would be the 0-fat-shattering dimension if we replace the loose inequality by a strict in eq. (2)

Achour, Foucault, Gerchinovitz, Malgouyres

Main lower bound

 $M(\varepsilon, F, \|\cdot\|_{L^{p}(\mu)})$ is the ε -packing number of F in the $L^{p}(\mu)$ norm.

Theorem (informal statement)

• $1 \le p < +\infty$

- μ probability measure over \mathcal{X}
- $F, G \subset [a, b]^{\mathcal{X}}$
- fat $_{\gamma}({\it G})<+\infty$

$$\begin{split} \sup_{f\in F} \inf_{g\in G} \|f-g\|_{L^p(\mu)} \geq \\ \inf \left\{ \varepsilon > 0 : \log M\big(3\varepsilon, F, \|\cdot\|_{L^p(\mu)}\big) \leq c_p \operatorname{fat}_{\frac{\varepsilon}{32}}(G) \log^2\!\left(\frac{2\operatorname{fat}_{\frac{\varepsilon}{32}}(G)}{\varepsilon/(b-a)}\right) \right\}. \end{split}$$

Proof: relies on Mendelson 2002 [5].

(日)

Assume log M(ε, F, ||.||_{L^p(μ)}) grows at least polynomially with 1/ε, i.e, there exists c₀ > 0 and α > 0 st:

$$\log M(\varepsilon, F, \|.\|_{L^p(\mu)}) \geq c_0 \varepsilon^{-\alpha}$$

• Then solving the equation in theorem 1 for ε yields

$$\sup_{f \in F} \inf_{g \in G} \|f - g\|_{L^{p}(\mu)} \geq \min\left\{\varepsilon_{1}, \textit{Pdim}(G)^{-\frac{1}{\alpha}} \log^{-\frac{2}{\alpha}}(\textit{Pdim}(G))\right\}$$

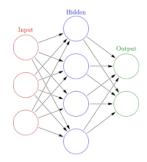
4 **A** N A **B** N A **B** N

Application to neural networks

What if G is a set of function corresponding to a neural network ?

Informal presentation of neural networks:

- A (feed-forward) neural network is a parametrical model
- It is characterized by a number of parameters W and a depth (number of layers) L
- To a fixed parameter θ ∈ ℝ^W, we can associate a function g_θ to the neural network



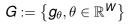
A D A D A D A

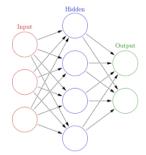
Application to neural networks

What if G is a set of function corresponding to a neural network ?

Informal presentation of neural networks:

- A (feed-forward) neural network is a parametrical model
- It is characterized by a number of parameters W and a depth (number of layers) L
- To a fixed parameter θ ∈ ℝ^W, we can associate a function g_θ to the neural network





Application to neural networks

- G: space of functions implemented by a feed forward neural network with W variable weights, L layers and ReLU activation
- Assume log M (ε, F, || · ||_{L^p(μ)}) ≥ cε^{-α} for all ε < ε₀ for some α, ε₀, c > 0

Corollary

Under the above assumptions:

$$\sup_{f\in F}\inf_{g\in G}\|f-g\|_{L^p(\mu)}\geq c_1(LW)^{-\frac{1}{\alpha}}\log^{-\frac{3}{\alpha}}(W),$$

where the constant c_1 is independent from W and L.

・ロト ・ 四ト ・ ヨト ・ ヨト

F	Holder functions	Monotonic functions
α	$\frac{d}{s}$	$\max(p(d-1),d)$
sup norm	Feasible	Infeasible
L ^p norm	same rate as sup norm	Feasible
	(does not depend on <i>p</i>)	(rate depends on <i>p</i>)
Tight bound	for ReLU	for Heaviside
	(upper bound in [9])	(upper bound in this article)

Э.

・ロト ・ 四ト ・ ヨト ・ ヨト

Thank you! [1]

- El Mehdi Achour, Armand Foucault, Sébastien Gerchinovitz, and François Malgouyres. A general approximation lower bound in L^p norm, with applications to feed-forward neural networks, 2022.
- [2] Ronald DeVore, Boris Hanin, and Guergana Petrova. Neural network approximation. <u>Acta Numerica</u>, 30:327–444, 2021.
- [3] Ronald A DeVore, Ralph Howard, and Charles Micchelli. Optimal nonlinear approximation. <u>Manuscripta mathematica</u>, 63(4):469–478, 1989.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Bibliography II

- [4] Vitaly E. Maiorov, Ron Meir, and Joel Ratsaby. On the approximation of functional classes equipped with a uniform measure using ridge functions. <u>Journal of Approximation Theory</u>, 99:95–111, 1999.
- [5] Shahar Mendelson. Rademacher averages and phase transitions in glivenko-cantelli classes. <u>IEEE Transactions on Information</u> <u>Theory</u>, 48, 2002.
- [6] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of relu networks in terms of width and depth. <u>Journal de Mathématiques Pures et Appliquées</u>, 157:101–135, feb 2022.
- [7] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. <u>Neural Networks</u>, 94:103–114, 2017.

(日)

- [8] Dmitry Yarotsky. Optimal approximation of continuous functions by very deep relu networks. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors, <u>Proceedings of the 31st Conference</u> <u>On Learning Theory</u>, volume 75 of <u>Proceedings of Machine</u> Learning Research, pages 639–649, 2018.
- [9] Dmitry Yarotsky and Anton Zhevnerchuk. The phase diagram of approximation rates for deep neural networks. <u>Advances in neural information processing systems</u>, 33:13005–13015, 2020.