

Variational autoencoder with weighted samples for high-dimensional non-parametric adaptive importance sampling

Julien Demange-Chryst, PhD student julien.demange-chryst@onera.fr

Co-authors: Jérôme Morio¹, François Bachoc², Timothé Krauth^{1,3}

¹ DTIS, ONERA, Université de Toulouse, 31000 Toulouse France, ²Institut de Mathématiques de Toulouse, University Toulouse III, ³ Zurich University of Applied Sciences, Centre for Aviation

Outline

- [Presentation of the context](#page-2-0)
- [Dimensionality reduction](#page-16-0)
- [Variational autoencoder with weighted samples](#page-30-0)
- [Numerical tests](#page-49-0)
- [Conclusion and perspectives](#page-69-0)

Outline

1 [Presentation of the context](#page-2-0) [Uncertainty quantification](#page-3-0) [Reliability analysis](#page-6-0)

- 2 [Dimensionality reduction](#page-16-0)
- 3 [Variational autoencoder with weighted samples](#page-30-0)
- 4 [Numerical tests](#page-49-0)
- **5** [Conclusion and perspectives](#page-69-0)

Context Uncertainty quantification

Numerical code ψ : $\mathbb{X} \subseteq \mathbb{R}^d \longrightarrow \mathbb{R}$

Characteristics of the numerical code ψ :

- black-box model
- deterministic
- expensive to evaluate \rightarrow cost of an algorithm: number of calls to ψ

Context Uncertainty quantification

InputStream	InputStream	Superical code
$X = (X_1, \ldots, X_d)^\top \sim f_X$	Number	$\psi : X \subseteq \mathbb{R}^d \longrightarrow$

Characteristics of the random vector X:

- \bullet $f_{\mathbf{X}}$ *d*-dimensional continuous distribution
- *fx* fully known
- potentially with dependent components

Characteristics of the numerical code ψ :

- black-box model
- deterministic

^d −→ **R**

• expensive to evaluate \hookrightarrow cost of an algorithm: number of calls to ψ

Context Uncertainty quantification

Uncertainty propagation

Inputs $\bm{X} = \left(X_1, \ldots, X_d\right)^\top \sim f_{\bm{X}}$

Numerical code ψ : $\mathbb{X} \subseteq \mathbb{R}^d \longrightarrow \mathbb{R}$

Output
$Y = \psi(X) \in \mathbb{R}$

Characteristics of the random vector X:

- \bullet $f_{\mathbf{X}}$ *d*-dimensional continuous distribution
- *fx* fully known
- potentially with dependent components

Characteristics of the numerical code ψ :

- black-box model
- deterministic
- expensive to evaluate \hookrightarrow cost of an algorithm: number of calls to ψ

Context Reliability analysis

Crude Monte Carlo method and alternatives

Classical crude Monte Carlo method:

$$
\widehat{\rho}_{t,N}^{\text{MC}} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1} \left(\psi\left(\mathbf{X}^{(n)}\right) > t \right) \text{ with } \left(\mathbf{X}^{(n)}\right)_{n \in \llbracket 1,N \rrbracket} \sim f_{\mathbf{X}}
$$

✘ if *p^t* ≈ 10[−]*^a* , we need *N* ≈ 10*^a*+2 to have an error of 10%

Crude Monte Carlo method and alternatives

Classical crude Monte Carlo method:

$$
\widehat{\rho}_{t,N}^{\text{MC}} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}\left(\psi\left(\mathbf{X}^{(n)}\right) > t\right) \text{ with } \left(\mathbf{X}^{(n)}\right)_{n \in \llbracket 1,N \rrbracket} \sim f_{\mathbf{X}}
$$

✘ if *p^t* ≈ 10[−]*^a* , we need *N* ≈ 10*^a*+2 to have an error of 10%

Other existing methods:

- deterministic methods such as FORM/SORM [\[HL74,](#page-74-0) [Bre84\]](#page-72-0)
- subset sampling [\[CDMFG12\]](#page-72-1)
- importance sampling [\[Buc04\]](#page-72-2)

Importance sampling

Principle of importance sampling

Consider an auxiliary sampling distribution \boldsymbol{g} to draw more samples in \mathcal{F}_t than $f_{\mathbf{X}}$

Importance sampling

Principle of importance sampling

Consider an auxiliary sampling distribution \boldsymbol{g} to draw more samples in \mathcal{F}_t than $f_{\mathbf{X}}$

Rewriting p_t according to g :

$$
p_{t}=\mathbb{E}_{\text{f}_{\mathsf{X}}}\left[\mathbb{1}\left(\psi\left(\mathsf{X}\right)>t\right)\right]=\mathbb{E}_{\text{g}}\left[\mathbb{1}\left(\psi\left(\mathsf{X}\right)>t\right)\frac{\text{f}_{\mathsf{X}}\left(\mathsf{X}\right)}{\text{g}\left(\mathsf{X}\right)}\right]
$$

Importance sampling

Principle of importance sampling

Consider an auxiliary sampling distribution \boldsymbol{g} to draw more samples in \mathcal{F}_t than $f_{\mathbf{X}}$

Rewriting p_t according to g :

$$
p_{t}=\mathbb{E}_{\mathsf{f_X}}\left[\mathbb{1}\left(\psi\left(\mathsf{X}\right)>t\right)\right]=\mathbb{E}_{\mathcal{g}}\left[\mathbb{1}\left(\psi\left(\mathsf{X}\right)>t\right)\frac{\mathsf{f_X}\left(\mathsf{X}\right)}{\mathcal{g}\left(\mathsf{X}\right)}\right]
$$

Importance sampling estimator of *p^t* :

$$
\widehat{\rho}_{t,N}^{\mathrm{IS}}=\frac{1}{N}\sum_{n=1}^{N}\mathbb{1}\left(\psi\left(\mathbf{X}^{(n)}\right)>t\right)\frac{f_{\mathbf{X}}\left(\mathbf{X}^{(n)}\right)}{g\left(\mathbf{X}^{(n)}\right)}
$$

 $\mathsf{with} \, \big(\mathsf{X}^{(n)} \big)_{n \in \llbracket 1,N \rrbracket} \sim g$

Importance sampling

Principle of importance sampling

Consider an auxiliary sampling distribution \boldsymbol{g} to draw more samples in \mathcal{F}_t than $f_{\mathbf{X}}$

ONERA

THE FRENCH AFROSPACE LAP

ÉPUBLIQUE

Francisco

Rewriting *p^t* according to *g*:

$$
p_{t}=\mathbb{E}_{\mathsf{f}_{\mathsf{X}}}\left[\mathbb{1}\left(\psi\left(\mathsf{X}\right)>t\right)\right]=\mathbb{E}_{\mathcal{B}}\left[\mathbb{1}\left(\psi\left(\mathsf{X}\right)>t\right)\frac{\mathsf{f}_{\mathsf{X}}\left(\mathsf{X}\right)}{\mathcal{g}\left(\mathsf{X}\right)}\right]
$$

Optimal IS auxiliary distribution [\[Buc04\]](#page-72-2):

$$
g_{\text{opt}}(\mathbf{x}) = \frac{\mathbb{1}(\psi(\mathbf{x}) > t) f_{\mathbf{X}}(\mathbf{x})}{p_t} = f_{\mathbf{X}|\mathbf{X} \in \mathcal{F}_t}(\mathbf{x})
$$

 \implies in practice, g_{opt} is approximated

Importance Sampling

Approximation of the optimal auxiliary distribution

Question: How do we approximate g_{opt} ?

- within a parametric family (ex: Gaussian [\[RK04\]](#page-76-0), Gaussian mixture [\[GPS19\]](#page-74-1))
- by a non-parametric model (ex: kernel smoothing) [\[Zha96,](#page-77-0) [Mor11,](#page-75-0) [FCIM23\]](#page-73-0)

Importance Sampling

Approximation of the optimal auxiliary distribution

Question: How do we approximate g_{opt} ?

- within a parametric family (ex: Gaussian [\[RK04\]](#page-76-0), Gaussian mixture [\[GPS19\]](#page-74-1))
- by a non-parametric model (ex: kernel smoothing) [\[Zha96,](#page-77-0) [Mor11,](#page-75-0) [FCIM23\]](#page-73-0)

Importance Sampling

Approximation of the optimal auxiliary distribution

Question: How do we approximate g_{opt} ?

- within a parametric family (ex: Gaussian [\[RK04\]](#page-76-0), Gaussian mixture [\[GPS19\]](#page-74-1))
- by a non-parametric model (ex: kernel smoothing) [\[Zha96,](#page-77-0) [Mor11,](#page-75-0) [FCIM23\]](#page-73-0)

Outline

[Presentation of the context](#page-2-0)

2 [Dimensionality reduction](#page-16-0) [General principle](#page-17-0) [Variational autoencoder](#page-21-0)

3 [Variational autoencoder with weighted samples](#page-30-0)

[Numerical tests](#page-49-0)

5 [Conclusion and perspectives](#page-69-0)

Introduction

Principle of dimensionality reduction

Reduce the number of features to describe and represent high dimensional data

Introduction

Principle of dimensionality reduction

Reduce the number of features to describe and represent high dimensional data

Methods to do so:

- selection: select a reduced number of existing features
- extraction: create a reduced number of new features based on the existing ones

Introduction

Principle of dimensionality reduction

Reduce the number of features to describe and represent high dimensional data

Examples:

- PCA [\[WEG87\]](#page-77-1): encoder and decoder are linear transformations of the input data
- autoencoder $[MRG+87]$ $[MRG+87]$: encoder and decoder neural networks

Introduction

Principle of dimensionality reduction

Reduce the number of features to describe and represent high dimensional data

In that setting:

- \vee encoding data into a lower dimensional latent space
- ✘ bad generation properties

General presentation

A **variational autoencoder** (VAE) [\[KW14\]](#page-74-2) can be seen as a regularised autoencoder

General presentation

A **variational autoencoder** (VAE) [\[KW14\]](#page-74-2) can be seen as a regularised autoencoder

• an input data is encoded as a distribution

$$
g_{\boldsymbol{\phi}}\left(.|\mathbf{x}\right) = E_{\boldsymbol{\phi}}\left(\mathbf{x}\right) = \mathcal{N}_{d_z}\left(\boldsymbol{\mu}^{\boldsymbol{\phi}}_{\mathbf{x}}, \boldsymbol{\Sigma}^{\boldsymbol{\phi}}_{\mathbf{x}}\right)
$$

General presentation

A **variational autoencoder** (VAE) [\[KW14\]](#page-74-2) can be seen as a regularised autoencoder

- an input data is encoded as a distribution
	- $g_{\boldsymbol{\phi}}$ (.|x) = $E_{\boldsymbol{\phi}}$ (x) = \mathcal{N}_{d_z} ($\boldsymbol{\mu}_{\mathbf{x}}^{\boldsymbol{\phi}}, \boldsymbol{\Sigma}_{\mathbf{x}}^{\boldsymbol{\phi}}$)
- a latent point is decoded as a distribution

$$
g_{\theta}\left(.|\mathsf{z}\right)=D_{\theta}\left(\mathsf{z}\right)=\mathcal{N}_d\left(\boldsymbol{\mu}_{\mathsf{z}}^{\theta},\boldsymbol{\Sigma}_{\mathsf{z}}^{\theta}\right)
$$

General presentation

A **variational autoencoder** (VAE) [\[KW14\]](#page-74-2) can be seen as a regularised autoencoder

• an input data is encoded as a distribution $g_{\boldsymbol{\phi}}$ (.|x) = $E_{\boldsymbol{\phi}}$ (x) = \mathcal{N}_{d_z} ($\boldsymbol{\mu}_{\mathbf{x}}^{\boldsymbol{\phi}}, \boldsymbol{\Sigma}_{\mathbf{x}}^{\boldsymbol{\phi}}$)

• a latent point is decoded as a distribution

 $g_{\boldsymbol{\theta}}\left(.|\mathsf{z}\right) = D_{\boldsymbol{\theta}}\left(\mathsf{z}\right) = \mathcal{N}_d\left(\boldsymbol{\mu}^{\boldsymbol{\theta}}_z,\boldsymbol{\Sigma}^{\boldsymbol{\theta}}_z\right)$

Loss function:

$$
\underset{\boldsymbol{\phi}, \boldsymbol{\theta}}{\arg \max} \ \underset{\log\text{-likelihood}}{\underbrace{\mathbb{E}_{f_{\boldsymbol{X}}}\left[\mathbb{E}_{g_{\boldsymbol{\phi}}(.|\boldsymbol{X})}\left(\log\left(g_{\boldsymbol{\theta}}\left(\boldsymbol{X}|\boldsymbol{Z}\right)\right)\right)\right]}_{\text{log-likelihood}} - ...
$$

General presentation

A **variational autoencoder** (VAE) [\[KW14\]](#page-74-2) can be seen as a regularised autoencoder

Add a regularisation term to a prior *p* to:

- bring continuity and completeness to the latent space
- \vee have good generation properties!

$$
\underbrace{\text{Loss function:}}_{\phi,\theta} \underbrace{\mathbb{E}_{f_{\mathbf{X}}}\left[\mathbb{E}_{g_{\phi}(.|\mathbf{X})}\left(\log\left(g_{\theta}\left(\mathbf{X}|\mathbf{Z}\right)\right)\right)\right]}_{\text{log-likelihood}} - \underbrace{\mathbb{E}_{f_{\mathbf{X}}}\left[D_{\text{KL}}\left(g_{\phi}\left(.|\mathbf{X}\right)\|\rho\right)\right]}_{\text{regularisation}} =: \text{ELBO}\left(\phi,\theta\right)
$$

where *ELBO* refers to *Evidence Lower BOund*

A new method for density approximation

New point generation procedure:

- ¹ draw a point z ∼ *p* from the prior *p*
- **2** draw a point $x \sim g_{\theta}(.|z)$

A new method for density approximation

New point generation procedure:

- ¹ draw a point z ∼ *p* from the prior *p*
- **2** draw a point $\mathbf{x} \sim g_{\theta}$ (*:*|z)

As a result, a **variational autoencoder** returns a distribution on **R** *^d* of PDF:

$$
g_{\theta}\left(\mathbf{x}\right)=\int g_{\theta}\left(\mathbf{x},\mathbf{z}\right)d\mathbf{z}=\int g_{\theta}\left(\mathbf{x}|\mathbf{z}\right)p\left(\mathbf{z}\right)d\mathbf{z}
$$

A new method for density approximation

New point generation procedure:

- ¹ draw a point z ∼ *p* from the prior *p*
- **2** draw a point $x \sim g_{\theta}(.|z)$

As a result, a **variational autoencoder** returns a distribution on **R** *^d* of PDF:

$$
g_{\theta}\left(\mathbf{x}\right)=\int g_{\theta}\left(\mathbf{x},\mathbf{z}\right)d\mathbf{z}=\int g_{\theta}\left(\mathbf{x}|\mathbf{z}\right)p\left(\mathbf{z}\right)d\mathbf{z}
$$

Even if it is theoretically a parametric model parameterised by θ , it more looks like a non-parametric model and it is:

- \vee flexible, since it is an infinite mixture of distributions $g_{\theta}(\mathbf{x}|\mathbf{z})$
- \vee robust in high dimension, because of the dimensionality reduction

A new method for density approximation

New point generation procedure:

- ¹ draw a point z ∼ *p* from the prior *p*
- **2** draw a point $x \sim g_{\theta}(.|z)$

As a result, a **variational autoencoder** returns a distribution on **R** *^d* of PDF:

$$
g_{\theta}\left(\mathbf{x}\right)=\int g_{\theta}\left(\mathbf{x},\mathbf{z}\right)d\mathbf{z}=\int g_{\theta}\left(\mathbf{x}|\mathbf{z}\right)p\left(\mathbf{z}\right)d\mathbf{z}
$$

Question Can we perform density estimation with a VAE in a context of importance sampling?

Outline

[Presentation of the context](#page-2-0)

[Dimensionality reduction](#page-16-0)

3 [Variational autoencoder with weighted samples](#page-30-0) New loss function *w*[ELBO for the VAE](#page-31-0) [Variational autoencoder for importance sampling](#page-43-0)

[Numerical tests](#page-49-0)

5 [Conclusion and perspectives](#page-69-0)

Mathematical details

Goal: Approximate a target distribution with a distribution parameterised by a VAE

IS case: Approximate g with data distributed according to f_X [\[DCBMK24\]](#page-73-1)

Mathematical details

Goal: Approximate a target distribution with a distribution parameterised by a VAE

IS case: Approximate g with data distributed according to f_X [\[DCBMK24\]](#page-73-1) **1** minimise $D_{\text{KL}}(g||g_{\theta}) = \mathbb{E}_{g}[\log(g(\mathbf{X})) - \log(g_{\theta}(\mathbf{X}))]$ according to θ

Mathematical details

Goal: Approximate a target distribution with a distribution parameterised by a VAE

IS case: Approximate g with data distributed according to f_X [\[DCBMK24\]](#page-73-1)

 \min minimise $D_{\text{KL}}(g||g_{\theta}) = \mathbb{E}_{g}[\log(g(\mathbf{X})) - \log(g_{\theta}(\mathbf{X}))]$ according to θ

2 note that it is equivalent to maximise the log-likelihood \mathbb{E}_{g} [log ($g_{\theta}(X)$)] according to θ

Mathematical details

Goal: Approximate a target distribution with a distribution parameterised by a VAE

IS case: Approximate g with data distributed according to f_X [\[DCBMK24\]](#page-73-1)

- $\text{minimize } D_{\text{KL}}(g||g_{\theta}) = \mathbb{E}_{g}[\log(g(\mathbf{X})) \log(g_{\theta}(\mathbf{X}))]$ according to θ
- **2** note that it is equivalent to maximise the log-likelihood \mathbb{E}_{g} [log ($g_{\theta}(\mathbf{X})$)] according to θ
- **3** rewrite the log-likelihood as an expectation over $f_{\mathbf{X}}$ as $\mathbb{E}_{f_{\mathbf{X}}}\left[\frac{g(\mathbf{X})}{f_{\mathbf{X}}(\mathbf{X})}\right]$ $\frac{g(X)}{f_X(X)}$ log $(g_{\theta}(X))$ (IS trick)

Mathematical details

Goal: Approximate a target distribution with a distribution parameterised by a VAE

IS case: Approximate g with data distributed according to f_X [\[DCBMK24\]](#page-73-1)

- \liminf $D_{\text{KL}}(g||g_{\theta}) = \mathbb{E}_{g}[\log(g(\mathbf{X})) \log(g_{\theta}(\mathbf{X}))]$ according to θ
- **2** note that it is equivalent to maximise the log-likelihood \mathbb{E}_{g} [log (g_{θ} (**X**))] according to θ
- **g** rewrite the log-likelihood as an expectation over $f_{\mathbf{X}}$ as $\mathbb{E}_{f_{\mathbf{X}}}\left[\frac{g(\mathbf{X})}{f_{\mathbf{X}}(\mathbf{X})}\right]$ $\frac{g(\mathsf{X})}{f_{\mathsf{X}}(\mathsf{X})}$ log $(g_{\boldsymbol{\theta}}(\mathsf{X}))$ (IS trick)
- ⁴ compute a lower bound of the weighted log-likelihood using the latent variable *z*:

$$
\mathbb{E}_{\mathsf{f_X}}\left[\frac{g\left(\boldsymbol{X}\right)}{\mathsf{f_X}\left(\boldsymbol{X}\right)}\log\left(g_{\boldsymbol{\theta}}\left(\boldsymbol{X}\right)\right)\right]\geq\underbrace{\mathbb{E}_{\mathsf{f_X}}\left[\frac{g\left(\boldsymbol{X}\right)}{\mathsf{f_X}\left(\boldsymbol{X}\right)}\mathbb{E}_{g_{\boldsymbol{\phi}}(.|\boldsymbol{X})}\left[\log\left(g_{\boldsymbol{\theta}}\left(\boldsymbol{X}|\boldsymbol{Z}\right)\right)\right]\right]-\mathbb{E}_{\mathsf{f_X}}\left[\frac{g\left(\boldsymbol{X}\right)}{\mathsf{f_X}\left(\boldsymbol{X}\right)}D_{\text{KL}}\left(g_{\boldsymbol{\phi}}\left(.|\boldsymbol{X}\right)\|\rho\right)\right]}_{\boldsymbol{X}}
$$

loss function of a VAE with weighted samples: wELBO(ϕ , θ)

Density estimation with a VAE and weigthed samples

Mathematical details

IS case: Approximate g with data distributed according to $f_{\mathbf{X}}$ [\[DCBMK24\]](#page-73-0)

- \bullet minimise $D_{KL}(g||g_{\theta}) = \mathbb{E}_{g}$ [log $(g_{\theta}(\mathbf{X})) \log(g_{\theta}(\mathbf{X}))$] according to θ
- **2** note that it is equivalent to maximise the log-likelihood \mathbb{E}_{g} [log ($g_{\theta}(\mathbf{X})$)] according to θ
- **a** rewrite the log-likelihood as an expectation over $f_{\mathbf{X}}$ as $\mathbb{E}_{f_{\mathbf{X}}}\left[\frac{g(\mathbf{X})}{f_{\mathbf{X}}(\mathbf{X})}\right]$ $\frac{g(\mathbf{X})}{f_{\mathbf{X}}(\mathbf{X})}$ log $(g_{\boldsymbol{\theta}}(\mathbf{X}))$ (IS trick)
- ⁴ compute a lower bound of the weighted log-likelihood using the latent variable *z*:

$$
\mathbb{E}_{f_{\mathbf{X}}}\left[\frac{g\left(\mathbf{X}\right)}{f_{\mathbf{X}}\left(\mathbf{X}\right)}\log\left(g_{\theta}\left(\mathbf{X}\right)\right)\right]\geq\underbrace{\mathbb{E}_{f_{\mathbf{X}}}\left[\frac{g\left(\mathbf{X}\right)}{f_{\mathbf{X}}\left(\mathbf{X}\right)}\mathbb{E}_{g_{\phi}(.|\mathbf{X})}\left[\log\left(g_{\theta}\left(\mathbf{X}|\mathbf{Z}\right)\right)\right]\right]-\mathbb{E}_{f_{\mathbf{X}}}\left[\frac{g\left(\mathbf{X}\right)}{f_{\mathbf{X}}\left(\mathbf{X}\right)}D_{\textrm{KL}}\left(g_{\phi}\left(.|\mathbf{X}\right)\|\rho\right)\right]}_{\mathbf{X}\sim\mathcal{X}}
$$

loss function of a VAE with weighted samples: wELBO(ϕ , θ)

We can perform density estimation with weighted samples in an importance sampling context with a VAE by maximising wELBO (ϕ, θ)

Statement

Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions

Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions

☞ Choice of a flexible prior: VampPrior [\[TW18\]](#page-76-0)

To **add flexibility** to the resulting distribution g_{θ} , we consider a flexible prior distribution

$$
\rho_{\lambda,\phi}^{\text{VP}}\left(\mathsf{z}\right)=\frac{1}{K}\sum_{k=1}^{K}\mathsf{g}_{\boldsymbol{\phi}}\left(\mathsf{z}\left|\text{VP}_{\boldsymbol{\lambda}}\left(\mathbf{e}_{k}^{K}\right)\right.\right)
$$

- e_{k}^{K} are the vector of the canonical basis of $\mathbb{R}^{\mathcal{K}}$
- $\mathsf{VP}_{\pmb{\lambda}} : \mathbb{R}^{\mathcal{K}} \to \mathbb{R}^{d}$ is a neural network

Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions

☞ Choice of a flexible prior: VampPrior [\[TW18\]](#page-76-0) To **add flexibility** to the resulting distribution g_{θ} , we consider a flexible prior distribution

- ✔ approximation the optimal prior *p* ∗
- \blacktriangleright depends on ϕ ⇒ collaborative work between E_{ϕ} and VP_λ
- \triangleright adapts itself to the data during the training \Longrightarrow can be multimodal

Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions

☞ Choice of a flexible prior: VampPrior [\[TW18\]](#page-76-0) To **add flexibility** to the resulting distribution g_{θ} , we consider a flexible prior distribution

✔ approximation the optimal prior *p* ∗

 \blacktriangleright depends on ϕ ⇒ collaborative work between E_{ϕ} and VP_λ

adapts itself to the data during the training \implies can be multimodal

Introduction of $p_{\lambda,\phi}^{\vee P}$ into the loss function:

$$
\underbrace{\mathbb{E}_{f_{\mathbf{X}}}\left[\frac{g\left(\mathbf{X}\right)}{f_{\mathbf{X}}\left(\mathbf{X}\right)}\mathbb{E}_{g_{\boldsymbol{\phi}}(.|\mathbf{X})}\left(\log\left(g_{\boldsymbol{\theta}}\left(\mathbf{X}|\mathbf{Z}\right)\right)\right)\right]}_{\text{log-likelihood}}-\underbrace{\mathbb{E}_{f_{\mathbf{X}}}\left[\frac{g\left(\mathbf{X}\right)}{f_{\mathbf{X}}\left(\mathbf{X}\right)}D_{\text{KL}}\left(g_{\boldsymbol{\phi}}(.|\mathbf{X})\right\|\right]P_{\lambda,\boldsymbol{\phi}}^{VP}\right]}_{\text{regularisation term}}
$$

Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions

☞ Pre-training procedure [\[DCBMK24\]](#page-73-0)

The **posterior collapse** phenomenon can badly affect the performances of the VAE

- ✘ over-regularisation of the VAE, bad reconstruction of the data
- ✘ unimodal resulting distribution
- ✘ stuck in a local optimum during the training of the VAE

Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions

☞ Pre-training procedure [\[DCBMK24\]](#page-73-0)

The **posterior collapse** phenomenon can badly affect the performances of the VAE

- ✘ over-regularisation of the VAE, bad reconstruction of the data
- ✘ unimodal resulting distribution
- ✘ stuck in a local optimum during the training of the VAE

Our remedy: new pre-training procedure to find "good" starting points $\bm{\phi}^{(0)}, \bm{\theta}^{(0)}$ and $\bm{\lambda}^{(0)}$

- **1** initialise the weights λ by supervised learning
- **2** initialise the weights ϕ and θ by unsupervised learning
- ³ main training of the VAE

Compute the PDF values of the resulting distribution

<u>Question</u>: How can we have access to the PDF values of $g_{\theta} \left(x \right) = \int g_{\theta} \left(x \middle| z \right) \rho \left(z \right) dz?$

Compute the PDF values of the resulting distribution

<u>Question</u>: How can we have access to the PDF values of $g_{\theta} \left(x \right) = \int g_{\theta} \left(x \middle| z \right) \rho \left(z \right) dz?$

- **Existing procedure [\[WBD19\]](#page-77-0): pointwise estimation** g_{θ} **(x) of the PDF values of** g_{θ}
	- \times the convenient statistical properties of $\hat{\rho}_{t,N}^{\text{IS}}$, unbiasedness and convergence, are no longer quaranteed longer guaranteed

Compute the PDF values of the resulting distribution

<u>Question</u>: How can we have access to the PDF values of $g_{\theta} \left(x \right) = \int g_{\theta} \left(x \middle| z \right) \rho \left(z \right) dz?$

- **Existing procedure [\[WBD19\]](#page-77-0): pointwise estimation** g_{θ} **(x) of the PDF values of** g_{θ}
	- \times the convenient statistical properties of $\hat{\rho}_{t,N}^{\text{IS}}$, unbiasedness and convergence, are no longer quaranteed longer guaranteed

☞ Our procedure [\[DCBMK24\]](#page-73-0): we propose no longer to estimate only the PDF values of g_{θ} pointwise, but to **approximate the whole distribution** g_{θ} by the mixture:

$$
g^{M}_{\theta}\left(.\right)=\frac{1}{M}\sum_{m=1}^{M}g_{\theta}\left(. \left| \mathbf{Z}^{(m)}\right.\right) \text{ with }\left(\mathbf{Z}^{(m)}\right)_{m\in\llbracket 1,M\rrbracket}\in\mathcal{Z}^{M}\sim p \quad \text{i.i.d.}
$$

 \blacktriangleright It is possible to compute exactly the PDF values of g_{θ}^M !

Methodology

IS goal: approximate $g_{\text{opt}}(x) \propto \mathbb{1}(\psi(x) > t) f_{\text{X}}(x)$ with data distributed according to f_{X}

Methodology

IS goal: approximate $g_{\text{opt}}(x) \propto \mathbb{1}(\psi(x) > t) f_{\text{X}}(x)$ with data distributed according to f_{X}

Methodology [\[DCBMK24\]](#page-73-0):

1 train a VAE by maximising

 $\text{wELBO}\left(\boldsymbol{\phi},\boldsymbol{\theta},\boldsymbol{\lambda}\right)=\mathbb{E}_{\mathsf{f_{\boldsymbol{\chi}}}}\left[\mathbb{1}\left(\boldsymbol{\phi}\left(\boldsymbol{\mathsf{X}}\right)>t\right)\mathbb{E}_{\mathcal{g_{\boldsymbol{\phi}}}(.|\boldsymbol{\mathsf{X}})}\left[\log\left(\mathcal{g_{\boldsymbol{\theta}}}\left(\boldsymbol{\mathsf{X}}\vert\boldsymbol{\mathsf{Z}}\right)\right)\right]\right]-\mathbb{E}_{\mathsf{f_{\boldsymbol{\chi}}}}\left[\mathbb{1}\left(\boldsymbol{\phi}\left(\boldsymbol{\mathsf{X}}\right)>t\right)D_{\mathsf{KL}}\left(\mathcal$

- $_2$ compute the resulting approximating distribution g_{θ}^M
- $_{\bm{s}}$ draw a *N*-sample according to $_{\bm{\mathcal{B}}}^M$
- $\boldsymbol{\hat{\theta}}$ estimate the failure probability with the importance sampling estimator $\widehat{p}^{\text{IS}}_{t,N}$

Methodology

IS goal: approximate $g_{\text{opt}}(x) \propto \mathbb{1}(\psi(x) > t) f_{\text{X}}(x)$ with data distributed according to f_{X}

Methodology [\[DCBMK24\]](#page-73-0):

1 train a VAE by maximising

 $\text{wELBO}\left(\boldsymbol{\phi},\boldsymbol{\theta},\boldsymbol{\lambda}\right)=\mathbb{E}_{\mathsf{f_{X}}}\left[\mathbb{1}\left(\phi\left(\mathbf{X}\right)>t\right)\mathbb{E}_{\mathcal{G}\phi\left(\cdot\mid\mathbf{X}\right)}\left[\log\left(\mathcal{g}_{\boldsymbol{\theta}}\left(\mathbf{X}\vert\mathbf{Z}\right)\right)\right]\right]-\mathbb{E}_{\mathsf{f_{X}}}\left[\mathbb{1}\left(\phi\left(\mathbf{X}\right)>t\right)D_{\mathsf{KL}}\left(\mathcal{g}_{\boldsymbol{\phi}}\left(\cdot\vert\mathbf{X}\right)\Vert\rho_{\boldsymbol{\lambda},\$

- \bullet compute the resulting approximating distribution g_{θ}^M
- \bullet draw a *N*-sample according to $g_{\bm{\theta}}^M$
- \bullet estimate the failure probability with the importance sampling estimator $\widehat{\rho}_{t,N}^{\text{IS}}$

Theorem ([\[DCBMK24\]](#page-73-0))

The estimator $\widehat{p}_{t,N}^{IS}$ *with* g_{θ}^M as the auxiliary distribution is unbiased and convergent

Outline

- [Presentation of the context](#page-2-0)
- **[Dimensionality reduction](#page-16-0)**
- [Variational autoencoder with weighted samples](#page-30-0)
- **[Numerical tests](#page-49-0)** [First simple example](#page-50-0) [Adaptive IS with a VAE for rare event estimation](#page-54-0) [Four-branches problem in dimension](#page-65-0) 100

5 [Conclusion and perspectives](#page-69-0)

Estimation of the failure probability on a simple test case in dimension 10

Problem setting:

- Black-box model: ∀x ∈ **R** ¹⁰*;* (x) = |*x*1|
- failure threshold: $t = 1.5$
- input distribution: $f_{\mathbf{X}} = \mathcal{N}_{10} (\mathbf{0}_{10}, \mathbf{I}_{10})$
- \hookrightarrow *p*^t ≈ 1.336 × 10⁻¹

Estimation of the failure probability on a simple test case in dimension 10

Problem setting:

- Black-box model: ∀x ∈ **R** ¹⁰*;* (x) = |*x*1|
- failure threshold: $t = 1.5$
- input distribution: $f_{\mathbf{X}} = \mathcal{N}_{10} (\mathbf{0}_{10}, \mathbf{I}_{10})$ \hookrightarrow *p*^{*t*} ≈ 1.336 × 10⁻¹

Estimation of the failure probability:

Table: Theoretical error Monte Carlo: $C.o.V. (\widehat{p}_{t,N}^{\text{MC}}) = 2.546\%$

ONERA ÉPURLIQUE si
Egelité
Freternité THE FRENCH AEROSPACE LAB

Parameters of the algorithm:

- dimension of the latent space: $d_z = 2$
- VampPrior components: $K = 75$
- $N = 10^4$
- $M = 10^3$

Estimation of the failure probability on a simple test case in dimension 100

Problem setting:

- Black-box model: ∀x ∈ **R** ¹⁰⁰*;* (x) = |*x*1|
- failure threshold: $t = 1.5$
- input distribution: $f_{\mathbf{X}} = \mathcal{N}_{100} (0_{100}, I_{100})$
- \hookrightarrow *p*^t ≈ 1.336 × 10⁻¹

Parameters of the algorithm:

- dimension of the latent space: $d_z = 2$
- VampPrior components: $K = 75$
- $N = 10^4$
- $M = 10^3$

Estimation of the failure probability on a simple test case in dimension 100

Problem setting:

- Black-box model: ∀x ∈ **R** ¹⁰⁰*;* (x) = |*x*1|
- failure threshold: $t = 1.5$
- input distribution: $f_{\mathbf{X}} = \mathcal{N}_{100} (0_{100}, I_{100})$ \hookrightarrow *p*^{*t*} ≈ 1.336 × 10⁻¹

Estimation of the failure probability:

Table: Theoretical error Monte Carlo: $C.o.V. (\widehat{p}_{t,N}^{\text{MC}}) = 2.546\%$

Parameters of the algorithm:

- dimension of the latent space: $d_z = 2$
- VampPrior components: $K = 75$
- $N = 10^4$
- $M = 10^3$

How to estimate a rare event probability with a VAE?

 \triangledown The VAE found both modes in dimension 10 and 100, and the estimation error is small $**×**$ **Fine...... but** $p_t ≈ 1.336 × 10⁻¹$ **is not the probability of a rare event**

How to estimate a rare event probability with a VAE?

Question: how to deal with rare event probabilities?

How to estimate a rare event probability with a VAE?

Question: how to deal with rare event probabilities? **Solution**: use an adaptive IS algorithm \implies the cross-entropy algorithm $IRK04$

- ☞ Existing CE algorithms can use as the auxiliary distribution:
	- Gaussian distributions
	- Gaussian mixture distributions
	- non-parametric models
	- Mixture of von Mises-Fisher-Nakagami (vMFNM) distributions

How to estimate a rare event probability with a VAE?

Question: how to deal with rare event probabilities? **Solution**: use an adaptive IS algorithm \implies the cross-entropy algorithm $IRK04$

- ☞ Existing CE algorithms can use as the auxiliary distribution:
	- Gaussian distributions
	- Gaussian mixture distributions
	- non-parametric models
	- Mixture of von Mises-Fisher-Nakagami (vMFNM) distributions

☞ Our improvement: **CE-VAE** algorithm

New CE algorithm using a distribution parameterised by a VAE as the auxiliary distribution

4-branch problem in dimension 100

Problem setting:

- "4-branch" in dimension $d = 100$
- failure threshold: $t = 3.5$
- input distribution: $f_{\mathbf{X}} = \mathcal{N}_{100} (\mathbf{0}_{100}, \mathbf{I}_{100})$
	- \hookrightarrow *p*^t ≈ 9.3 × 10⁻⁴

4-branch problem in dimension 100

Problem setting:

- "4-branch" in dimension $d = 100$
- failure threshold: $t = 3.5$
- input distribution: $f_{\mathbf{X}} = \mathcal{N}_{100} (0_{100}, I_{100})$
	- \hookrightarrow *p*_t ≈ 9.3 × 10⁻⁴

Comparison with the CE algorithm using as the auxiliary distribution:

- a mixture of *n* ∈ {3*;* 4*;* 5} vMFNM distributions (CE-vMFNMn) [\[PGS19\]](#page-76-2)
- a standard VAE without both VampPrior and the pre-training procedure (CE-stdVAE)

4-branch problem in dimension 100

The CE-VAE algorithm:

- \triangleright requires less iterations to converge
- \triangleright has the smallest estimation error
- \vee doesn't require any prior knowledge on the form of the failure domain
- \triangleright major beneficial impact of both VampPrior and the pre-training procedure

4-branch problem in dimension 100

Jun 18th, 2024 J. Demange-Chryst *VAE with weighted samples for AIS* **15/16**

Outline

- [Presentation of the context](#page-2-0)
- 2 [Dimensionality reduction](#page-16-0)
- 3 [Variational autoencoder with weighted samples](#page-30-0)
- **[Numerical tests](#page-49-0)**
- **5** [Conclusion and perspectives](#page-69-0)

Conclusion and perspectives

What is new?

- \vee adaptation of the VAE framework to approximate a target distribution with weighted samples
- \vee able to learn a multimodal target distribution without any prior knowledge on it
- \vee procedure can be applied to any kind of importance sampling (reliability analysis, generation)

Conclusion and perspectives

What is new?

- adaptation of the VAE framework to approximate a target distribution with weighted samples
- \vee able to learn a multimodal target distribution without any prior knowledge on it
- procedure can be applied to any kind of importance sampling (reliability analysis, generation)

Improvements and perspectives:

- $\hat{\mathbb{C}}$ apply numerical tricks to prevent the weight degeneracy phenomenon in very high dimension
- $\hat{\mathbb{S}}$ improve the ability of the method to learn multimodal target distributions, in particular in a non-reliability context
- $\hat{\mathbb{S}}$ extend the procedure to the estimation of reliability-oriented sensitivity indices based on [\[PD19\]](#page-75-0) or on [\[DCBM23\]](#page-73-1)
- [Published paper](https://openreview.net/forum?id=nzG9KGssSe) [\[DCBMK24\]](#page-73-0) and [codes](https://github.com/Julien6431/Importance-Sampling-VAE) to reproduce the results are available online!

References

[Bre84] Karl Breitung. Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, 110(3):357–366, 1984. [Buc04] James Bucklew. Introduction to rare event simulation. Springer Science & Business Media, 2004. [BVV⁺15] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

[CDMFG12] Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud Guyader. Sequential monte carlo for rare event estimation. Statistics and computing, 22(3):795–808, 2012.

[DCBM23] Julien Demange-Chryst, François Bachoc, and Jérôme Morio. Shapley effect estimation in reliability-oriented sensitivity analysis with correlated inputs by importance sampling. International Journal for Uncertainty Quantification, 13(3), 2023.

[DCBMK24] Julien Demange-Chryst, Francois Bachoc, Jérôme Morio, and Timothé Krauth.

> Variational autoencoder with weighted samples for high-dimensional non-parametric adaptive importance sampling.

Transactions on Machine Learning Research, 2024.

[FCIM23] Elias Fekhari, Vincent Chabridon, Bertrand Iooss, and Joseph Muré. Bernstein adaptive nonparametric conditional sampling: a new method for rare event probability estimation.

In International Conference on Application of Statistics and Probability in Civil Engineering, 2023.

[GPS19] Sebastian Geyer, Iason Papaioannou, and Daniel Straub. Cross entropy-based importance sampling using Gaussian densities revisited. Structural Safety, 76:15–27, 2019. [HJ16] Matthew D Hoffman and Matthew J Johnson. ELBO surgery: yet another way to carve up the variational evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS, volume 1, 2016. [HL74] Abraham M Hasofer and Niels C Lind. Exact and invariant second-moment code format. Journal of the Engineering Mechanics division, 100(1):111–121, 1974. [KW14] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. Article accepted in the 2nd International Conference on Learning Representations 2014, 2014.

[Mor11] Jérôme Morio.

Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position.

Reliability engineering & system safety, 96(1):178–183, 2011.

[MRG⁺87] James L McClelland, David E Rumelhart, PDP Research Group, et al. Parallel distributed processing, volume 2: Explorations in the microstructure of cognitions: Psychological model volume 2.

MIT press, 1987.

[MSJ⁺15] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[PD19] Guillaume Perrin and G Defaux. Efficient evaluation of reliability-oriented sensitivity indices. Journal of Scientific Computing, 79(3):1433–1455, 2019.

[PGS19] Iason Papaioannou, Sebastian Geyer, and Daniel Straub. Improved cross entropy-based importance sampling with a flexible mixture model. Reliability Engineering & System Safety, 191:106564, 2019. [RK04] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation, and machine learning, volume 133. Springer, 2004. [SRM⁺16] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder variational autoencoders. Advances in neural information processing systems, 29, 2016. [TW18] Jakub Tomczak and Max Welling. VAE with a VampPrior. In International Conference on Artificial Intelligence and Statistics, pages 1214–1223. PMLR, 2018.

[WBD19] Hechuan Wang, Mónica F Bugallo, and Petar M Djurić. Adaptive importance sampling supported by a variational auto-encoder. In 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 619–623. IEEE, 2019. [WEG87] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987. [Zha96] Ping Zhang. Nonparametric importance sampling. Journal of the American Statistical Association, 91(435):1245–1253, 1996.

Optimal prior distribution

The most classical and easiest choice for the prior is $\rho = \mathcal{N}_{d_{\mathsf{z}}}\left(\mathbf{0}_{d_{\mathsf{z}}}, \mathbf{I}_{d_{\mathsf{z}}}\right)$

- ✘ can be too restrictive, for multimodal target distributions for example, and can lead to over-regularisation and finally to poor density estimation
- **question**: how can we add flexibility to g_{θ} with the prior?

Optimal prior distribution

The most classical and easiest choice for the prior is $\rho = \mathcal{N}_{d_{\mathsf{z}}}\left(\mathbf{0}_{d_{\mathsf{z}}}, \mathbf{I}_{d_{\mathsf{z}}}\right)$

- ✘ can be too restrictive, for multimodal target distributions for example, and can lead to over-regularisation and finally to poor density estimation
- **question**: how can we add flexibility to g_{θ} with the prior?

Solution

Consider a flexible and learnable prior *p*. The optimal prior distribution, maximising the loss function, is given by $[MSJ+15, HJ16]$ $[MSJ+15, HJ16]$ $[MSJ+15, HJ16]$:

$$
\rho^{*}\left(\mathsf{z}\right)=\int g_{\pmb{\phi}}\left(\mathsf{z}|\mathsf{x}\right)g_{\text {opt}}\left(\mathsf{x}\right)d\mathsf{x}=\mathbb{E}_{g_{\text {opt}}}\left[g_{\pmb{\phi}}\left(\mathsf{z}|\mathsf{X}\right)\right]
$$

This is the *aggregated posterior*.

VampPrior

There are several existing methods to approximate this optimal prior Chosen method: *Variational Mixture of Posteriors* prior, or *VampPrior* [\[TW18\]](#page-76-0)

$$
\rho^{\text{VP}}_{u_1,\ldots,u_K,\boldsymbol{\phi}}\left(\boldsymbol{z}\right)=\frac{1}{K}\sum_{k=1}^{K}g_{\boldsymbol{\phi}}\left(\boldsymbol{z}|\boldsymbol{u}_k\right)
$$

where $K\geq 1$ and $(\mathsf{u}_k)_{k\in\llbracket 1,K\rrbracket}$ are learnable pseudo-inputs from the initial space \mathbb{R}^d

Advantages of the VampPrior distribution:

 \vee flexible enough to be adapted to many kinds of problems

 \blacktriangleright depends on ϕ , as the aggregated posterior p^*

VampPrior

Chosen method: *Variational Mixture of Posteriors* prior, or *VampPrior* [\[TW18\]](#page-76-0)

$$
\rho_{\lambda,\phi}^{\text{VP}}\left(\mathsf{z}\right)=\frac{1}{K}\sum_{k=1}^{K}g_{\pmb{\phi}}\left(\mathsf{z}\left|\text{VP}_{\pmb{\lambda}}\left(\pmb{e}_{k}^{K}\right)\right.\right)
$$

- e_{k}^{K} are the vector of the canonical basis of $\mathbb{R}^{\mathcal{K}}$
- $\mathsf{VP}_{\pmb{\lambda}} : \mathbb{R}^K \to \mathbb{R}^d$ is a neural network

VampPrior

New pre-training procedure

Posterior collapse $\left[\text{BVV}^+15, \text{SRM}^+16\right]$ $\left[\text{BVV}^+15, \text{SRM}^+16\right]$ $\left[\text{BVV}^+15, \text{SRM}^+16\right]$ is a phenomenon that badly affects the performances of a VAE

New pre-training procedure

Posterior collapse [\[BVV](#page-72-0)⁺15, [SRM](#page-76-1)⁺16] is a phenomenon that badly affects the performances of a VAE

It generally refers to:

- an over-regularisation of the VAE
- \bullet i.e. $D_{\mathsf{KL}}\left(g_{\boldsymbol{\phi}}\left(.\left. \mathsf{|x|} \right) \right\| p_{\boldsymbol{\lambda} ,\boldsymbol{\phi}}^{\mathsf{VP}} \right) \approx 0$ for every x ∈ **R** *d*

New pre-training procedure

Posterior collapse [\[BVV](#page-72-0)+15, [SRM](#page-76-1)+16] is a phenomenon that badly affects the performances of a VAE

Jun 18th, 2024 J. Demange-Chryst *VAE with weighted samples for AIS* **16/16**

It generally refers to:

every x ∈ **R** *d*

• an over-regularisation of the VAE \bullet i.e. $D_{\mathsf{KL}}\left(g_{\boldsymbol{\phi}}\left(.\left. \mathsf{|x|} \right) \right\| p_{\boldsymbol{\lambda} ,\boldsymbol{\phi}}^{\mathsf{VP}} \right) \approx 0$ for

New pre-training procedure

Existing remedies are based on some modifications of the loss function or on the choice of other families for the prior p and/or the posterior distributions g_{ϕ} (\cdot |x)

New pre-training procedure

New pre-training procedure

- \bullet initialise the weights λ by supervised learning
- **2** initialise the weights ϕ and θ by unsupervised learning
- ³ main training of the VAE

New pre-training procedure

- **1** initialise the weights λ by supervised learning
	- pick a sub-sample $(\mathbf{X}^{(s(k))})$ $\kappa \in [1, K]$ with probabilities $\propto \left(g_{\mathsf{opt}} \left(\mathbf{X}^{(n)} \right) \Big/ f_{\mathbf{X}} \left(\mathbf{X}^{(n)} \right) \right)$ *n*∈[[1*;N*]]
	- pre-train the VP₁ network by solving

$$
\boldsymbol{\lambda}^{(0)} = \underset{\boldsymbol{\lambda}}{\text{arg min }} \sum_{k=1}^{K}\left\| \boldsymbol{V} \boldsymbol{P}_{\boldsymbol{\lambda}}\left(\boldsymbol{e}_{k}^{\mathcal{K}}\right)-\boldsymbol{X}^{(s(k))} \right\|^{2}
$$

- the initial pseuso-inputs $u_k^{(0)} = VP_{\lambda^{(0)}}(e_k^K)$ are already representative of the target distribution g_{out}
- **2** initialise the weights ϕ and θ by unsupervised learning
- ³ main training of the VAE

New pre-training procedure

Our remedy: new pre-training procedure to find "good" starting points $\bm{\phi}^{(0)}, \bm{\theta}^{(0)}$ and $\bm{\lambda}^{(0)}$

- \bullet initialise the weights λ by supervised learning
- **2** initialise the weights ϕ and θ by unsupervised learning
	- pre-train the pair encoder/decoder (E_{ϕ}, D_{θ}) as a classical autoencoder by solving:

$$
\boldsymbol{\phi}^{(0)}, \boldsymbol{\theta}^{(0)}=\underset{\boldsymbol{\phi}, \boldsymbol{\theta}}{\arg\min} \ \mathbb{E}_{\text{f_X}}\left[\frac{\mathcal{g}_{\text{opt}}\left(\boldsymbol{X}\right)}{\text{f}_X\left(\boldsymbol{X}\right)}\left\|\boldsymbol{X}-\boldsymbol{\mu}_{\boldsymbol{\mu}_X^{\boldsymbol{\theta}}}^{\boldsymbol{\theta}}\right\|^2\right]
$$

where $\left(\bm{\mu}^\varPhi_\mathsf{x},\bm{\Sigma}^\varPhi_\mathsf{x}\right)=E_\varPhi\left(\mathsf{x}\right)$ and $\left(\bm{\mu}^\theta_\mathsf{z},\bm{\Sigma}^\theta_\mathsf{z}\right)=D_\theta\left(\mathsf{z}\right)$ when respectively $g_\varPhi\left(. \left|\mathsf{x}\right.\right)$ and $g_\theta\left(. \left|\mathsf{z}\right.\right)$ are Gaussian distribution with diagonal covariance matrices.

³ main training of the VAE

New pre-training procedure

- \bullet initialise the weights λ by supervised learning
- **2** initialise the weights ϕ and θ by unsupervised learning
- ³ main training of the VAE
	- train the whole VAE (E_{ϕ} , D_{θ} , VP_{λ}) by solving:

$$
\boldsymbol{\phi}^*, \boldsymbol{\theta}^*, \boldsymbol{\lambda}^* = \arg \max_{\boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{\lambda}} \mathbb{E}_{f_{\boldsymbol{X}}}\left[\frac{\boldsymbol{g}\left(\boldsymbol{X} \right)}{f_{\boldsymbol{X}}\left(\boldsymbol{X} \right)} \mathbb{E}_{\boldsymbol{g}_{\boldsymbol{\phi}}(\cdot|\boldsymbol{X})}\left(\log \left(\boldsymbol{g}_{\boldsymbol{\theta}}\left(\boldsymbol{X} | \boldsymbol{Z} \right) \right) \right) \right] - \mathbb{E}_{f_{\boldsymbol{X}}}\left[\frac{\boldsymbol{g}\left(\boldsymbol{X} \right)}{f_{\boldsymbol{X}}\left(\boldsymbol{X} \right)} D_{\text{KL}}\left(\boldsymbol{g}_{\boldsymbol{\phi}}\left(.|\boldsymbol{X} \right) || \rho_{\boldsymbol{\lambda}, \boldsymbol{\phi}}^{\text{VP}} \right) \right] \notag \\ \text{starting from } \left(\boldsymbol{\phi}^{(0)}, \boldsymbol{\theta}^{(0)}, \boldsymbol{\lambda}^{(0)} \right)
$$

