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Context
Uncertainty quantification

Numerical code
 : X ⊆ Rd −→ R

Characteristics of the numerical code  :
• black-box model
• deterministic
• expensive to evaluate
,→ cost of an algorithm: number of calls
to  
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Context
Uncertainty quantification

Numerical code
 : X ⊆ Rd −→ R

Inputs
X = (X1; : : : ; Xd)

⊤ ∼ fX

Output
Y =  (X) ∈ R

Uncertainty propagation

Characteristics of the random vector X:
• fX d-dimensional continuous distribution
• fX fully known
• potentially with dependent components

Characteristics of the numerical code  :
• black-box model
• deterministic
• expensive to evaluate
,→ cost of an algorithm: number of calls
to  
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Context
Reliability analysis

Numerical code
 : X ⊆ Rd −→ R

Inputs
X = (X1; : : : ; Xd)

⊤ ∼ fX

Output
Y =  (X) ∈ R

Quantity of interest
1 ( (X) > t)

• t ∈ R is a critical threshold
• { (X) > t} is the failure event
• the failure domain is Ft = {x ∈ X / (x) > t }
• the limit state is {x ∈ X / (x) = t }

Failure probability:

pt = P ( (X) > t) =

Z
Ft

fX (x) dx = EfX [1 ( (X) > t)]
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Rare event estimation
Crude Monte Carlo method and alternatives

Classical crude Monte Carlo method:

bpMC
t;N =

1

N

NX
n=1

1
“
 
“
X(n)

”
> t
”

with
“
X(n)

”
n∈[[1;N]]

∼ fX

✘ if pt ≈ 10−a, we need N ≈ 10a+2 to have an error of 10%
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Rare event estimation
Crude Monte Carlo method and alternatives

Classical crude Monte Carlo method:

bpMC
t;N =

1

N

NX
n=1

1
“
 
“
X(n)

”
> t
”

with
“
X(n)

”
n∈[[1;N]]

∼ fX

✘ if pt ≈ 10−a, we need N ≈ 10a+2 to have an error of 10%

Other existing methods:
• deterministic methods such as FORM/SORM [HL74, Bre84]
• subset sampling [CDMFG12]
• importance sampling [Buc04]
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Rare event estimation
Importance sampling

Principle of importance sampling
Consider an auxiliary sampling distribution g to draw more samples in Ft than fX
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Rare event estimation
Importance sampling

Principle of importance sampling
Consider an auxiliary sampling distribution g to draw more samples in Ft than fX

Rewriting pt according to g :

pt = EfX [1 ( (X) > t)] = Eg

»
1 ( (X) > t)

fX (X)

g (X)

–
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Rare event estimation
Importance sampling

Principle of importance sampling
Consider an auxiliary sampling distribution g to draw more samples in Ft than fX

Rewriting pt according to g :

pt = EfX [1 ( (X) > t)] = Eg

»
1 ( (X) > t)

fX (X)

g (X)

–
Importance sampling estimator of pt :

bpIS
t;N =

1

N

NX
n=1

1
“
 
“
X(n)

”
> t
” fX `X(n)

´
g
`
X(n)

´
with

`
X(n)

´
n∈[[1;N]]

∼ g
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Rare event estimation
Importance sampling

Principle of importance sampling
Consider an auxiliary sampling distribution g to draw more samples in Ft than fX

Rewriting pt according to g :

pt = EfX [1 ( (X) > t)] = Eg

»
1 ( (X) > t)

fX (X)

g (X)

–
Optimal IS auxiliary distribution [Buc04]:

gopt (x) =
1 ( (x) > t) fX (x)

pt
= fX|X∈Ft

(x)

=⇒ in practice, gopt is approximated
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Importance Sampling
Approximation of the optimal auxiliary distribution

Question: How do we approximate gopt?
• within a parametric family (ex: Gaussian [RK04], Gaussian mixture [GPS19])
• by a non-parametric model (ex: kernel smoothing) [Zha96, Mor11, FCIM23]
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Importance Sampling
Approximation of the optimal auxiliary distribution

Question: How do we approximate gopt?
• within a parametric family (ex: Gaussian [RK04], Gaussian mixture [GPS19])
• by a non-parametric model (ex: kernel smoothing) [Zha96, Mor11, FCIM23]

Robustness faced
to the dimension

Flexibility

Main question
Is it possible to approximate gopt by satisfying both characteristics?
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Dimensionality reduction
Introduction

Principle of dimensionality reduction
Reduce the number of features to describe and represent high dimensional data
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Dimensionality reduction
Introduction

Principle of dimensionality reduction
Reduce the number of features to describe and represent high dimensional data

Methods to do so:
• selection: select a reduced number of existing features
• extraction: create a reduced number of new features based on the existing ones
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Dimensionality reduction
Introduction

Principle of dimensionality reduction
Reduce the number of features to describe and represent high dimensional data

Examples:
• PCA [WEG87]: encoder and decoder are linear transformations of the input data
• autoencoder [MRG+87]: encoder and decoder neural networks
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Dimensionality reduction
Introduction

Principle of dimensionality reduction
Reduce the number of features to describe and represent high dimensional data

In that setting:
✔ encoding data into a lower dimensional latent space
✘ bad generation properties
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Variational autoencoder
General presentation

A variational autoencoder (VAE) [KW14] can be seen as a regularised autoencoder
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• an input data is encoded as a distribution

gffi (:|x) = Effi (x) = Ndz

`
—ffi

x ;Σ
ffi
x

´
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Variational autoencoder
General presentation

A variational autoencoder (VAE) [KW14] can be seen as a regularised autoencoder

• an input data is encoded as a distribution

gffi (:|x) = Effi (x) = Ndz

`
—ffi

x ;Σ
ffi
x

´
• a latent point is decoded as a distribution

g„ (:|z) = D„ (z) = Nd

`
—„

z ;Σ
„
z

´
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Variational autoencoder
General presentation

A variational autoencoder (VAE) [KW14] can be seen as a regularised autoencoder

• an input data is encoded as a distribution

gffi (:|x) = Effi (x) = Ndz

`
—ffi

x ;Σ
ffi
x

´
• a latent point is decoded as a distribution

g„ (:|z) = D„ (z) = Nd

`
—„

z ;Σ
„
z

´
Loss function:

argmax
ffi;„

EfX

ˆ
Egffi(:|X) (log (g„ (X|Z)))

˜| {z }
log-likelihood

− :::
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Variational autoencoder
General presentation

A variational autoencoder (VAE) [KW14] can be seen as a regularised autoencoder

Add a regularisation term to a prior p to:
• bring continuity and completeness

to the latent space
✔ have good generation properties!

Loss function:
argmax

ffi;„
EfX

ˆ
Egffi(:|X) (log (g„ (X|Z)))

˜| {z }
log-likelihood

−EfX [DKL (gffi (:|X) ∥p)]| {z }
regularisation

=: ELBO (ffi; „)

where ELBO refers to Evidence Lower BOund
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Variational autoencoder
A new method for density approximation

New point generation procedure:
1 draw a point z ∼ p from the prior p
2 draw a point x ∼ g„ (:|z)
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New point generation procedure:
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2 draw a point x ∼ g„ (:|z)

As a result, a variational autoencoder returns a distribution on Rd of PDF:
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Variational autoencoder
A new method for density approximation

New point generation procedure:
1 draw a point z ∼ p from the prior p
2 draw a point x ∼ g„ (:|z)

As a result, a variational autoencoder returns a distribution on Rd of PDF:

g„ (x) =

Z
g„ (x; z) dz =

Z
g„ (x|z) p (z) dz

Even if it is theoretically a parametric model parameterised by „, it more looks like a
non-parametric model and it is:

✔ flexible, since it is an infinite mixture of distributions g„ (x|z)
✔ robust in high dimension, because of the dimensionality reduction
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Variational autoencoder
A new method for density approximation

New point generation procedure:
1 draw a point z ∼ p from the prior p
2 draw a point x ∼ g„ (:|z)

As a result, a variational autoencoder returns a distribution on Rd of PDF:

g„ (x) =

Z
g„ (x; z) dz =

Z
g„ (x|z) p (z) dz

Question
Can we perform density estimation with a VAE in a context of importance sampling?
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Density estimation with a VAE and weigthed samples
Mathematical details

Goal: Approximate a target distribution with a distribution parameterised by a VAE

IS case: Approximate g with data distributed according to fX [DCBMK24]
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Density estimation with a VAE and weigthed samples
Mathematical details

Goal: Approximate a target distribution with a distribution parameterised by a VAE

IS case: Approximate g with data distributed according to fX [DCBMK24]
1 minimise DKL (g∥g„) = Eg [log (g (X))− log (g„ (X))] according to „
2 note that it is equivalent to maximise the log-likelihood Eg [log (g„ (X))] according to „

3 rewrite the log-likelihood as an expectation over fX as EfX

h
g(X)
fX(X)

log (g„ (X))
i

(IS trick)
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Density estimation with a VAE and weigthed samples
Mathematical details

Goal: Approximate a target distribution with a distribution parameterised by a VAE

IS case: Approximate g with data distributed according to fX [DCBMK24]
1 minimise DKL (g∥g„) = Eg [log (g (X))− log (g„ (X))] according to „
2 note that it is equivalent to maximise the log-likelihood Eg [log (g„ (X))] according to „

3 rewrite the log-likelihood as an expectation over fX as EfX

h
g(X)
fX(X)

log (g„ (X))
i

(IS trick)

4 compute a lower bound of the weighted log-likelihood using the latent variable z :

EfX

»
g (X)

fX (X)
log (g„ (X))

–
≥ EfX

»
g (X)

fX (X)
Egffi(:|X) [log (g„ (X|Z))]

–
− EfX

»
g (X)

fX (X)
DKL (gffi (:|X) ∥p)

–
| {z }

loss function of a VAE with weighted samples: wELBO(ffi;„)
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Density estimation with a VAE and weigthed samples
Mathematical details

IS case: Approximate g with data distributed according to fX [DCBMK24]
1 minimise DKL (g∥g„) = Eg [log (g (X))− log (g„ (X))] according to „
2 note that it is equivalent to maximise the log-likelihood Eg [log (g„ (X))] according to „

3 rewrite the log-likelihood as an expectation over fX as EfX

h
g(X)
fX(X)

log (g„ (X))
i

(IS trick)

4 compute a lower bound of the weighted log-likelihood using the latent variable z :

EfX

»
g (X)

fX (X)
log (g„ (X))

–
≥ EfX

»
g (X)

fX (X)
Egffi(:|X) [log (g„ (X|Z))]

–
− EfX

»
g (X)

fX (X)
DKL (gffi (:|X) ∥p)

–
| {z }

loss function of a VAE with weighted samples: wELBO(ffi;„)Statement
We can perform density estimation with weighted samples in an importance sampling
context with a VAE by maximising wELBO (ffi; „)
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Improvements of the VAE
Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions
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Improvements of the VAE
Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions
☞ Choice of a flexible prior: VampPrior [TW18]
To add flexibility to the resulting distribution g„, we consider a flexible prior distribution

pVP
–;ffi (z) =

1

K

KX
k=1

gffi
`
z
˛̨
VP–

`
eKk
´´

• eKk are the vector of the canonical
basis of RK

• VP– : RK → Rd is a neural network
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Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions
☞ Choice of a flexible prior: VampPrior [TW18]
To add flexibility to the resulting distribution g„, we consider a flexible prior distribution

✔ approximation the optimal prior p∗

✔ depends on ffi =⇒ collaborative work between Effi and VP–

✔ adapts itself to the data during the training =⇒ can be multimodal
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Improvements of the VAE
Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions
☞ Choice of a flexible prior: VampPrior [TW18]
To add flexibility to the resulting distribution g„, we consider a flexible prior distribution

✔ approximation the optimal prior p∗

✔ depends on ffi =⇒ collaborative work between Effi and VP–

✔ adapts itself to the data during the training =⇒ can be multimodal

Introduction of pVP
–;ffi into the loss function:

argmax
ffi;„;–

EfX

»
g (X)

fX (X)
Egffi(:|X) (log (g„ (X|Z)))

–
| {z }

log-likelihood

−EfX

»
g (X)

fX (X)
DKL

`
gffi (:|X) ∥pVP

–;ffi

´–
| {z }

regularisation term
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Improvements of the VAE
Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions
☞ Pre-training procedure [DCBMK24]
The posterior collapse phenomenon can badly affect the performances of the VAE

✘ over-regularisation of the VAE, bad reconstruction of the data
✘ unimodal resulting distribution
✘ stuck in a local optimum during the training of the VAE
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Improvements of the VAE
Flexible prior and pre-training procedure

Challenge: ability to learn multimodal target distributions
☞ Pre-training procedure [DCBMK24]
The posterior collapse phenomenon can badly affect the performances of the VAE

✘ over-regularisation of the VAE, bad reconstruction of the data
✘ unimodal resulting distribution
✘ stuck in a local optimum during the training of the VAE

Our remedy: new pre-training procedure to find "good" starting points ffi(0),„(0) and –(0)

1 initialise the weights – by supervised learning
2 initialise the weights ffi and „ by unsupervised learning
3 main training of the VAE
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Importance sampling with a VAE
Compute the PDF values of the resulting distribution

Question: How can we have access to the PDF values of g„ (x) =
R
g„ (x|z) p (z) dz?
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Importance sampling with a VAE
Compute the PDF values of the resulting distribution

Question: How can we have access to the PDF values of g„ (x) =
R
g„ (x|z) p (z) dz?

☞ Existing procedure [WBD19]: pointwise estimation \g„ (x) of the PDF values of g„

✘ the convenient statistical properties of bpIS
t;N , unbiasedness and convergence, are no

longer guaranteed
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Importance sampling with a VAE
Compute the PDF values of the resulting distribution

Question: How can we have access to the PDF values of g„ (x) =
R
g„ (x|z) p (z) dz?

☞ Existing procedure [WBD19]: pointwise estimation \g„ (x) of the PDF values of g„

✘ the convenient statistical properties of bpIS
t;N , unbiasedness and convergence, are no

longer guaranteed

☞ Our procedure [DCBMK24]: we propose no longer to estimate only the PDF values of
g„ pointwise, but to approximate the whole distribution g„ by the mixture:

gM
„ (:) =

1

M

MX
m=1

g„

“
:
˛̨̨
Z(m)

”
with

“
Z(m)

”
m∈[[1;M]]

∈ ZM ∼ p i.i.d.

✔ It is possible to compute exactly the PDF values of gM
„ !
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Importance sampling with a VAE
Methodology

IS goal: approximate gopt (x) ∝ 1 ( (x) > t) fX (x) with data distributed according to fX
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Importance sampling with a VAE
Methodology

IS goal: approximate gopt (x) ∝ 1 ( (x) > t) fX (x) with data distributed according to fX

Methodology [DCBMK24]:
1 train a VAE by maximising

wELBO (ffi; „;–) = EfX

ˆ
1 (ffi (X) > t)Egffi(:|X) [log (g„ (X|Z))]

˜
−EfX

ˆ
1 (ffi (X) > t)DKL

`
gffi (:|X) ∥pVP

–;ffi

´˜
2 compute the resulting approximating distribution gM

„

3 draw a N-sample according to gM
„

4 estimate the failure probability with the importance sampling estimator bpIS
t;N
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Importance sampling with a VAE
Methodology

IS goal: approximate gopt (x) ∝ 1 ( (x) > t) fX (x) with data distributed according to fX

Methodology [DCBMK24]:
1 train a VAE by maximising

wELBO (ffi; „;–) = EfX

ˆ
1 (ffi (X) > t)Egffi(:|X) [log (g„ (X|Z))]

˜
−EfX

ˆ
1 (ffi (X) > t)DKL

`
gffi (:|X) ∥pVP

–;ffi

´˜
2 compute the resulting approximating distribution gM

„

3 draw a N-sample according to gM
„

4 estimate the failure probability with the importance sampling estimator bpIS
t;N

Theorem ([DCBMK24])
The estimator bpIS

t;N with gM
„ as the auxiliary distribution is unbiased and convergent
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Numerical test
Estimation of the failure probability on a simple test case in dimension 10

Problem setting:
• Black-box model: ∀x ∈ R10;  (x) = |x1|
• failure threshold: t = 1:5

• input distribution: fX = N10 (010; I10)

,→ pt ≈ 1:336× 10−1
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Numerical test
Estimation of the failure probability on a simple test case in dimension 10

Problem setting:
• Black-box model: ∀x ∈ R10;  (x) = |x1|
• failure threshold: t = 1:5

• input distribution: fX = N10 (010; I10)

,→ pt ≈ 1:336× 10−1

Parameters of the algorithm:
• dimension of the latent space: dz = 2

• VampPrior components: K = 75

• N = 104

• M = 103

Estimation of the failure probability:

bpIS
t;N C:o:V:

`bpIS
t;N

´
1:339× 10−1 0:540%

Table: Theoretical error Monte Carlo:
C:o:V:

`bpMC
t;N

´
= 2:546%
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Numerical test
Estimation of the failure probability on a simple test case in dimension 100

Problem setting:
• Black-box model: ∀x ∈ R100;  (x) = |x1|
• failure threshold: t = 1:5

• input distribution: fX = N100 (0100; I100)

,→ pt ≈ 1:336× 10−1

Parameters of the algorithm:
• dimension of the latent space: dz = 2

• VampPrior components: K = 75

• N = 104

• M = 103
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Numerical test
Estimation of the failure probability on a simple test case in dimension 100

Problem setting:
• Black-box model: ∀x ∈ R100;  (x) = |x1|
• failure threshold: t = 1:5

• input distribution: fX = N100 (0100; I100)

,→ pt ≈ 1:336× 10−1

Parameters of the algorithm:
• dimension of the latent space: dz = 2

• VampPrior components: K = 75

• N = 104

• M = 103

Estimation of the failure probability:

bpIS
t;N C:o:V:

`bpIS
t;N

´
1:355× 10−1 1:486%

Table: Theoretical error Monte Carlo:
C:o:V:

`bpMC
t;N

´
= 2:546%
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Adaptive IS with a VAE
How to estimate a rare event probability with a VAE?

✔ The VAE found both modes in dimension 10 and 100, and the estimation error is small
✘ Fine...... but pt ≈ 1:336× 10−1 is not the probability of a rare event
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Adaptive IS with a VAE
How to estimate a rare event probability with a VAE?

Question: how to deal with rare event probabilities?
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Adaptive IS with a VAE
How to estimate a rare event probability with a VAE?

Question: how to deal with rare event probabilities?
Solution: use an adaptive IS algorithm =⇒ the cross-entropy algorithm [RK04]
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Adaptive IS with a VAE
How to estimate a rare event probability with a VAE?

Question: how to deal with rare event probabilities?
Solution: use an adaptive IS algorithm =⇒ the cross-entropy algorithm [RK04]

☞ Existing CE algorithms can use as the auxiliary distribution:
• Gaussian distributions
• Gaussian mixture distributions
• non-parametric models
• Mixture of von Mises-Fisher-Nakagami (vMFNM) distributions
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Adaptive IS with a VAE
How to estimate a rare event probability with a VAE?

Question: how to deal with rare event probabilities?
Solution: use an adaptive IS algorithm =⇒ the cross-entropy algorithm [RK04]

☞ Existing CE algorithms can use as the auxiliary distribution:
• Gaussian distributions
• Gaussian mixture distributions
• non-parametric models
• Mixture of von Mises-Fisher-Nakagami (vMFNM) distributions

☞ Our improvement: CE-VAE algorithm
New CE algorithm using a distribution parameterised by a VAE as the auxiliary distribution
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Numerical test
4-branch problem in dimension 100

Problem setting:
• "4-branch" in dimension d = 100

• failure threshold: t = 3:5

• input distribution: fX = N100 (0100; I100)

,→ pt ≈ 9:3× 10−4
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Numerical test
4-branch problem in dimension 100

Problem setting:
• "4-branch" in dimension d = 100

• failure threshold: t = 3:5

• input distribution: fX = N100 (0100; I100)

,→ pt ≈ 9:3× 10−4

Comparison with the CE algorithm using as the auxiliary distribution:
• a mixture of n ∈ {3; 4; 5} vMFNM distributions (CE-vMFNMn) [PGS19]
• a standard VAE without both VampPrior and the pre-training procedure (CE-stdVAE)
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Numerical test
4-branch problem in dimension 100

CE-VAE CE-vMFNM3 CE-vMFNM4 CE-vMFNM5 CE-stdVAE
Ntot 40000 88000 50000 50000 200000bpmean
t 9:310× 10−4 1:319× 10−3 9:835× 10−4 9:315× 10−4 9:446× 10−4

C:o:V: (bpt) 5:31% 512:8% 31:3% 7:56% 34:83%

The CE-VAE algorithm:
✔ requires less iterations to converge
✔ has the smallest estimation error
✔ doesn’t require any prior knowledge on the form of the failure domain
✔ major beneficial impact of both VampPrior and the pre-training procedure
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Numerical test
4-branch problem in dimension 100

CE-VAE CE-vMFNM3 CE-vMFNM4 CE-vMFNM5 CE-stdVAE
Ntot 40000 88000 50000 50000 200000bpmean
t 9:310× 10−4 1:319× 10−3 9:835× 10−4 9:315× 10−4 9:446× 10−4

C:o:V: (bpt) 5:31% 512:8% 31:3% 7:56% 34:83%
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Outline

1 Presentation of the context

2 Dimensionality reduction

3 Variational autoencoder with weighted samples

4 Numerical tests

5 Conclusion and perspectives
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Conclusion and perspectives

What is new?

✔ adaptation of the VAE framework to approximate a target distribution with weighted samples

✔ able to learn a multimodal target distribution without any prior knowledge on it

✔ procedure can be applied to any kind of importance sampling (reliability analysis, generation)

16/16VAE with weighted samples for AISJ. Demange-ChrystJun 18th, 2024



Conclusion and perspectives

What is new?

✔ adaptation of the VAE framework to approximate a target distribution with weighted samples

✔ able to learn a multimodal target distribution without any prior knowledge on it

✔ procedure can be applied to any kind of importance sampling (reliability analysis, generation)

Improvements and perspectives:

� apply numerical tricks to prevent the weight degeneracy phenomenon in very high dimension

� improve the ability of the method to learn multimodal target distributions, in particular in a
non-reliability context

� extend the procedure to the estimation of reliability-oriented sensitivity indices based on [PD19]
or on [DCBM23]

✌ Published paper [DCBMK24] and codes to reproduce the results are available online!
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https://openreview.net/forum?id=nzG9KGssSe
https://github.com/Julien6431/Importance-Sampling-VAE
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Adaptive importance sampling supported by a variational auto-encoder.
In 2019 IEEE 8th International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP), pages 619–623. IEEE, 2019.

[WEG87] Svante Wold, Kim Esbensen, and Paul Geladi.
Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[Zha96] Ping Zhang.
Nonparametric importance sampling.
Journal of the American Statistical Association, 91(435):1245–1253, 1996.



Choice of the prior
Optimal prior distribution

The most classical and easiest choice for the prior is p = Ndz (0dz ; Idz )

✘ can be too restrictive, for multimodal target distributions for example, and can lead to
over-regularisation and finally to poor density estimation

• question: how can we add flexibility to g„ with the prior?
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Choice of the prior
Optimal prior distribution

The most classical and easiest choice for the prior is p = Ndz (0dz ; Idz )

✘ can be too restrictive, for multimodal target distributions for example, and can lead to
over-regularisation and finally to poor density estimation

• question: how can we add flexibility to g„ with the prior?

Solution
Consider a flexible and learnable prior p. The optimal prior distribution, maximising the
loss function, is given by [MSJ+15, HJ16]:

p∗ (z) =

Z
gffi (z|x) gopt (x) dx = Egopt [gffi (z|X)]

This is the aggregated posterior.
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Choice of the prior
VampPrior

There are several existing methods to approximate this optimal prior

Chosen method: Variational Mixture of Posteriors prior, or VampPrior [TW18]

pVP
u1;:::;uK ;ffi (z) =

1

K

KX
k=1

gffi (z|uk)

where K ≥ 1 and (uk)k∈[[1;K]] are learnable pseudo-inputs from the initial space Rd

Advantages of the VampPrior distribution:
✔ flexible enough to be adapted to many kinds of problems
✔ depends on ffi, as the aggregated posterior p∗
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Choice of the prior
VampPrior

Chosen method: Variational Mixture of Posteriors prior, or VampPrior [TW18]

pVP
–;ffi (z) =

1

K

KX
k=1

gffi
`
z
˛̨
VP–

`
eKk
´´

• eKk are the vector of the canonical
basis of RK

• VP– : RK → Rd is a neural network
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Choice of the prior
VampPrior

Chosen method: Variational Mixture of Posteriors prior, or VampPrior [TW18]

pVP
–;ffi (z) =

1

K

KX
k=1

gffi
`
z
˛̨
VP–

`
eKk
´´

• eKk are the vector of the canonical
basis of RK

• VP– : RK → Rd is a neural network
Introduction pVP

–;ffi into the loss function:

argmax
ffi;„;–

EfX

»
g (X)

fX (X)
Egffi(:|X) (log (g„ (X|Z)))

–
− EfX

»
g (X)

fX (X)
DKL

`
gffi (:|X) ∥pVP

–;ffi

´–
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Posterior collapse
New pre-training procedure

Posterior collapse [BVV+15, SRM+16] is a phenomenon that badly affects the
performances of a VAE
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Posterior collapse
New pre-training procedure

Posterior collapse [BVV+15, SRM+16] is a phenomenon that badly affects the
performances of a VAE

It generally refers to:
• an over-regularisation of the VAE

• i.e. DKL

“
gffi (: |x ) ∥pVP

–;ffi

”
≈ 0 for

every x ∈ Rd
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Posterior collapse
New pre-training procedure

Posterior collapse [BVV+15, SRM+16] is a phenomenon that badly affects the
performances of a VAE

It generally refers to:
• an over-regularisation of the VAE

• i.e. DKL

“
gffi (: |x ) ∥pVP

–;ffi

”
≈ 0 for

every x ∈ Rd

Why? Not a clear answer!
The most common hypothesis is that posterior collapse happens when we are stuck in a
local maxima during the training of the VAE [SRM+16]
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Posterior collapse
New pre-training procedure

Existing remedies are based on some modifications of the loss function or on the choice of
other families for the prior p and/or the posterior distributions gffi (: |x )
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Posterior collapse
New pre-training procedure

Our remedy: new pre-training procedure to find "good" starting points ffi(0),„(0) and –(0)
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Posterior collapse
New pre-training procedure

Our remedy: new pre-training procedure to find "good" starting points ffi(0),„(0) and –(0)

1 initialise the weights – by supervised learning
2 initialise the weights ffi and „ by unsupervised learning
3 main training of the VAE
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Posterior collapse
New pre-training procedure

Our remedy: new pre-training procedure to find "good" starting points ffi(0),„(0) and –(0)

1 initialise the weights – by supervised learning
• pick a sub-sample

“
X(s(k))

”
k∈[[1;K]]

with probabilities ∝
“
gopt

“
X(n)

”.
fX
“
X(n)

””
n∈[[1;N]]

• pre-train the VP– network by solving

–(0) = argmin
–

KX
k=1

‚‚‚VP–

“
eKk
”
− X(s(k))

‚‚‚2
• the initial pseuso-inputs u(0)

k = VP–(0)

`
eKk
´

are already representative of the target
distribution gopt

2 initialise the weights ffi and „ by unsupervised learning
3 main training of the VAE
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Posterior collapse
New pre-training procedure

Our remedy: new pre-training procedure to find "good" starting points ffi(0),„(0) and –(0)

1 initialise the weights – by supervised learning
2 initialise the weights ffi and „ by unsupervised learning

• pre-train the pair encoder/decoder (Effi; D„) as a classical autoencoder by solving:

ffi(0); „(0) = argmin
ffi;„

EfX

»
gopt (X)

fX (X)

‚‚‚X− —„

—
ffi
X

‚‚‚2–

where
“
—ffi

x ;Σ
ffi
x

”
= Effi (x) and

`
—„

z ;Σ
„
z

´
= D„ (z) when respectively gffi (: |x ) and g„ (: |z )

are Gaussian distribution with diagonal covariance matrices.

3 main training of the VAE
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Posterior collapse
New pre-training procedure

Our remedy: new pre-training procedure to find "good" starting points ffi(0),„(0) and –(0)

1 initialise the weights – by supervised learning
2 initialise the weights ffi and „ by unsupervised learning
3 main training of the VAE

• train the whole VAE (Effi; D„;VP–) by solving:

ffi∗; „∗;–∗ = argmax
ffi;„;–

EfX

»
g (X)

fX (X)
Egffi(:|X) (log (g„ (X|Z)))

–
− EfX

»
g (X)

fX (X)
DKL

“
gffi (:|X) ∥pVP

–;ffi

”–

starting from
“
ffi(0); „(0);–(0)

”
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