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From a simple example to the challenges of Federated Learning
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Paradigm: data is not centralized on a single loca-
tion.
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Goal of this presentation:

Focus simultaneously on two challenges: reducing the

cost of communication.
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Applications of FL
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Mathematical framework for
compression



Setting of Federated Learning

Goal : learning from a set of N clients [MMR*17] F: global cost function
F;: local loss
N: clients
d: dimension
N del
. w: mo
mg}i F(w):=— Z[EZ~D,- [0(z,w)]¢. D;: local data distribution
we i=1
Fi(w)

Global loss

Local loss

Distributed SGD: VkeN, wy = wy_1 -y (% 1L, gh(wi-1)).
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N d: dimendsi?n
) w: mode
mg}i F(w):=— Z Ezvp, [0(z,w)]¢. D;: local data distribution
we =1 — e

Fayo oty Fy:a,y > (1 —sin(x))? + cos(y)

Global loss

Local loss

~ Challenge:

I 1 <N i reduce communication costs
Distributed SGD: VkeN, w; = wi_; —y(ﬁ izt & ( wk_l)).
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Exemples of compressors

% To limit the number of bits exchanged, we compress the uplink signal before transmitting it.

Compressed distributed SGD: VkeN, wy = wi_q — % Z’-VIC(g,"C(wk_l)).

i=

1. Sparsification based:

= Rand-k: keeps k coordinates,

= p-Sparsification: keeps each coordinate with probability p,

= p-partial participation: sends the complete vector with probability p,

= Sketching: using a random projection matrix into a lower-dimension space.
2. Quantization based on a codebook:

= (Stabilized) scalar quantization (coordinate compressed independently),
= Delaunay quantization.

7/18
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E[C(2)]=2z and E[|C(2)-z2|*]<w|z|.

= To go beyond this worst-case assumption and provide a tighter analyse.

= Focus on the LSR framework, which is popular for fine-grained analyses.

Final goal: highlight the differences in convergence between several unbiased compression schemes
having the same variance increase.
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Impact of compression

Big question: what is the impact of a compressor C on convergence?
Compressed distributed SGD: VkeN, wi = wi_; — % Z}\LIC(g,i(wk,l)).

Assumption

There exists a constant w € R} s.t. C satisfies, for all z in R4 :

E[C(2)]=2z and E[|C(2)-z2|*]<w|z|.

= To go beyond this worst-case assumption and provide a tighter analyse.

= Focus on the LSR framework, which is popular for fine-grained analyses.

Simplified setting for this presentation:
= N =1 client.

.....

well-defined model w,:

Vie{l,....K}, y={xp, w.)+ek, with e, ~N(0,0%) .
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5 compressors: 4 scenarios, 4 different behaviors.
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Comparing various compressors in different scenarios

5 compressors: 4 scenarios, 4 different behaviors.
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. Non-asymptotic convergence
result for (LSA)




Linear Stochastic Approximation

Definition 1 (Linear Stochastic Approximation, LSA)

Let wy eR? be the initialization, the linear stochastic approximation® recursion is defined as:
Wi = w1~ YVF(wi-1) +Y§p(wi-1-wx), keN, (LSA)

= y>0: step size,

n (&p)rent: Sequence of i.i.d. zero-centered random fields that characterizes the stochastic
oracle on VF(-).

LWhile in LSA literature, both the mean-field VF and the noise-field (&) are linear, we do not here consider
the noise fields to be linear.
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Linear Stochastic Approximation

Definition 1 (Linear Stochastic Approximation, LSA)

Let wy eR? be the initialization, the linear stochastic approximation® recursion is defined as:

Wk = We—1 ~YVF(Wr-1) + ¥ (wi-1 —ws), keN, (LSA)

= y>0: step size,

n (&p)rent: Sequence of i.i.d. zero-centered random fields that characterizes the stochastic
oracle on VF(-).

We assume F quadratic:

= Hp: its Hessian = u: its smallest eigenvalue.

For any k in N, with 0y = wy — w., we get equivalently:

Nk =I=YHp)Nk—1 +Y¢k(Nk-1), keN.

LWhile in LSA literature, both the mean-field VF and the noise-field (&) are linear, we do not here consider
the noise fields to be linear.
10/18



Examples and challenge

Algorithm 1 (LMS with a single worker)
We have for all k e N:

w = We-1 =Y ((Wk-1, Xk ) = Vi) Xk
Equivalently, for weR%:

Ee(w) = (xpxg —E[x1 ] ) w + ((we, X)) = yie) Xk
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Most analyses of (LSA)
[Blub4, Lju77, LS83] assume either:

1. The field & is either linear [see
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2. The noise-field is Lipschitz in
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[Blub4, Lju77, LS83] assume either:

1. The field & is either linear [see
KT03, BMP12, LP21] i.e. for any
2,7 €R4,

k(2) = Ep(2') =Er(2-2).

2. The noise-field is Lipschitz in
squared expectation
[MBL11, Bacl4, DDB20, GP23].
i.e. for any z,z' e RY

E[[¢x(2) k()1 < Clz 2|

— Specificity and bottleneck of
compression: the resulting field does
not satisfy such assumptions.
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Definition of

Definition 2 (Additive and multiplicative
noise)

Under the setting of (LSA), for any k in N*:

§89=6(0) and &P zeRT - Ei(2) -4
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Definition 2 (Additive and multiplicative Assumption (Second moment of the
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Under the setting of (LSA), for any k in N*: IM1, M, >0 s.t. for any 1 in R?:

1/2
§99:28(0) and EPMizeRY o £ (z) -3 1. E[JR(n)]2] < 2Ma | HY *n|? + 4A.
1/2 1/2
B[R (n) 2] < Ma | Hy *n] + 3Ma | H *n .
Classical “assumption Holder-type ~ assumption

(new)
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Under the setting of (LSA), for any k in N*:

IM;, M5 >0 s.t. for any i) in R%:
fadd

=&(0) and EMzeR? o E(2) -0, L E[EM(n)|P] <2Mo | Hy Pn|2 +4A.

E[EM () 12] < Mo | HY *n]) + 3Ma | HY *n)12
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M, #0 for quantization
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Definition of

Creia—
Definition 2 (Additive and multiplicative Assumption (Second moment of the
noise) multiplicative noise)
Under the setting of (LSA), for any k in N*: IM1, M, >0 s.t. for any 1 in R?:
S 6(0) and EMzeRT e E(2) -G L B[ ()P] s2Mef Hy Pl + 4.

E[EM () 12] < Mo | HY *n]) + 3Ma | HY *n)12

Holder-type zmpt‘lon /

Classical “assumption
(new)

M =0 if the random field is linear,
M, #0 for quantization because:

E[[C(2) -C(2")*] < 12V/dmin(| 2], |2'])| 2= '] +3(w+1) 2~ 2|
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Definition of

bezia—

Definition 2 (Additive and multiplicative

Assumption (Second moment of the
noise)

multiplicative noise)
Under the setting of (LSA), for any k in N*:

fadd

AM, M5 >0 s.t. for any 1 in R%:

=&(0) and EM R E(2) -0, L E[JER(n)|P] <2Mo | Hy Pn|2 +4A.

ELIEM (1) 1] < Mo | HY *n]l + 3Ma | HY *n]12.

Definition 3 (Ania’s covariance.)
Under (LSA), we define the covariance of the additive noise: €pia = [E[E*lldd@).f*l‘dd].
Theorem 1 (Asymptotic result, from [PJ92])

Under some assumptions. Consider a sequence (wy)ren+ produced in the setting of (LSA) for a
step-size (Y )ken+ S-t. Yx =1//K. Then we have:

. i/ _ _
\/E( wg — w*) mN(O’ lecaniuHFl)-
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ergence theorem

Theorem 2 (“Non-asymptotic convergence rate”)

Under some assumptions. Consider a sequence (wy.)ren+ produced by the setting of (LSA),
for a constant step-size y verifying some assumptions. Then for any horizon K, we have

2

E[F(wk-1)-F(w )]<i min M M +/ Te(e, -,H*1)+O( -1/2 1/4)
K-1 * SoK Y\/I—( ) ﬂ aniallp M Y .
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Convergence theorem

Theorem 2 (“Non-asymptotic convergence rate”)

Under some assumptions. Consider a sequence (wy.)ren+ produced by the setting of (LSA),
for a constant step-size y verifying some assumptions. Then for any horizon K, we have

—-1/2
LEn0] o

mln(M(, \/}7

E[F(Wx-1) - F(ws)] < Tr (Cania H') + O (™~ 1/2y1/*%)

1
2K
classical asymptotic noise term in CLT for

Bias term,”as in [BM13, DB15] (LSA)

asymptotically negligible for y=o0(1),
comes from multiplicative noise

[nk:wkfw*] [Q:ania: additive noise’s covariance] [Ilp: Hessianj (,u:min(eig(llp))]
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gence theorem

Theorem 2 (“Non-asymptotic convergence rate”)

Under some assumptions. Consider a sequence (wy.)ren+ produced by the setting of (LSA),
for a constant step-size y verifying some assumptions. Then for any horizon K, we have

E[F(wg-1) - F(w4)] <

(1H 0l ol ~ 1214
— Tr (Cania H )+O(u Y )

min| —————,
WK VY

1
2K

classical asymptotic noise term in CLT for
Bias term,”as in [BM13, DB15] (LSA)

asymptotically negligible for y=o0(1),

Remarks: S K
comes from multiplicative noise

= Asymptotically, the dominant term is \/Tr (Cania H5').

= Contrary to [BM13], the convergence rate is not necessarily independent of p.

= Examining the explicit formulas of Tr(Q‘amaH;l) allows to determine the convergence rate.

[nk:wkfw*] [Q:ania: additive noise’s covariance] [Ilp: Hessianj (,u:min(eig(llp))]
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Il. Compressed LSR on a single
client




M diagonal

M non-diagonal

10 COMPI.
1-quantiz.
sparsif.

rand-h
partial part.

= sketching

J—

0.5 1.0 15 20
log (i), Vi € {1, ...}

05 1.0 15 20
log(4),Vi € {1, ...,d}

Depending on the compression scheme:

Classical LMS:
Partial part.:
Sparsification:
Rand-h:
Sketching:

Q:ania =H
Cania = aH
Cania = @' H+ bDiag (H)
Cania = b'Diag (H)
Cania=a" H+b"Tr(H) 1,

(xa?)

Figure 5: Tr(Q‘amaH_l) -K=10%de [2,100], D:Diag((l/i4)?:1). Left: H diagonal. Right: H non-diagonal.
(Plain line: empirical values; dashed lines: theoretical)

Vike{l,...,K},xx ~N(0,H), with H=QDQT, D:Diag((l/i4 ?:1) and Q an orthogonal matrix.
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M diagonal M non-diagonal

Depending on the compression scheme:

8] = 1o compr. Classical LMS:  €ania=H (x0?)

= ]-quantiz. Partial part.: Cania = aH

= sparsif. Sparsification:  €ania = a’ H+ bDiag (H)
61 —— sketching Rand-h: Cania = b'Diag (H)

— rand-h Sketching: Cania 5,0 H+b"Tr (H) 14

partial part.

Structured noise

Isotropic noise
= Significantly impacts the limit

: : : : : : : : distribution with a rate proportional
0.5 1.0 1.5 2.0 05 1.0 1.5 2.0 -1
log (i), Vi € {1, .., d} log(i), Vi € {1,..,d} to Tr(H™").

= Same variance but different behaviors!
Figure 5: Tr(Q‘aniaH_l) -K=10%de [2,100], D=Diag((1/i4)?:1). Left: H diagonal. Right: H non-diagonal.
(Plain line: empirical values; dashed lines: theoretical)
Vke{l,...,K},x; ~N(0,H), with H=QDQT, D:Diag((l/i4 ?:1) and Q an orthogonal matrix.
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lllustration in dimension 2

StabilizedQtz Sketching Sparsification Randl PartialParticipation

28 00 28 28 00 28

Figure 6: H not diagonal. Scatter plot of (xk)ﬁl/ (C(.\‘,\J),’-il with its ellipse 5Cov[xk]/5(10\'[0(,\-,\)]-

Vke{l,...,K},xx ~N(0,H), with H=QDQ, D=Diag(1,10) and Q rotation matrix with angle 7/8 in
Figure 6.
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Examples of take-aways

Take-away 1

= Quantization not Lipschitz but satisfy Halder-type condition.

= Convergence degraded, yet achieve a rate comparable to projection based
compressors.

Take-away 2

= Rand-1 and Partial Participation with probability (1/d): same variance condition.

= But PP more robust to ill-conditioned problem.
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Back to the comparison between various compressors in different scenari@s... -

5 compressors: 4 scenarios, 4 different behaviors.
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Conclusion




Partial conclusion

Summary of the contributions of the article:
= Analyze (LSA) under weak regularity assumptions of the noise field (&x)k.
= Provide a non-asymptotic theorem.
= Underline the key impact on convergence of the ania's covariance € ;.

= Describe the link between, the compressor C, the features’ covariance H and the ania's covariance
Cania-

= Show how to compute the ania’s covariance €,;,.

= Study the FL setting with heterogeneous clients.
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Study the FL setting with heterogeneous clients.

Take-away 3

Beyond the worst-case analysis of compression.

= Analyze of the compressors’ covariance €.

Differences between compressors that have the same variance.
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Thank you for your attention.
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