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Introduction

® GLMs in univariate and multivariate contexts
® Estimated via the maximum likelihood estimator (MLE)

® usually asymptotically efficient
® time-consuming: with Newton-Raphson type algorithms,
particularly with large datasets or numerous variables

® |n the univariate scenario:

® Closed-form estimator (CFE): fast to be computed, not always
efficient
® One-step closed-form estimator (OS-CFE): fast to be
computed, asymptotically efficient
® In the multivariate scenario:

® Inference for margins (IFM), (Xu 1996, Joe 1997, 2005)
® MLE-IFM vs OSCFE-IFM
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Notation for univariate GLMs

Y =(Y1,...,Yn) observation sample. Y;, i € I, independent r.v.s
belong to the one-parameter exponential family of probability
measures valued in A C R.

n

1og£(ﬂ,¢|v>=ZA"(ﬁ) it +Z

i=1 a(¢)
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000

Notation for univariate GLMs

Y =(Y1,...,Yn) observation sample. Y;, i € I, independent r.v.s
belong to the one-parameter exponential family of probability
measures valued in A C R.

log £(B,6]Y) = Ai(B) Y"azq;; AilB) > i ¢),
i=1 i=1

a:R— R, b:A—Randc:Y xR — R are fixed real-valued
measurable functions, ¢ is the dispersion parameter.

The parameters A1,..., A, depend on B3 € B C RP.
Theoretical moments of Y; are:

EgY;=b'(\(B)) =i and VargY;=b"(X\(8))a(¢) = V(ui)a(9),
where V : i+ V(1) = b"o(b’)~1(u) is the variance of p.
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Notation for univariate GLMs

Linear predictors and the link function is noted respectively by 7;
and g in

gpi) =x/B=m, forallBeB,
where g is a twice continuously differentiable and bijective function
from b'(A) to R.
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Notation for univariate GLMs

Linear predictors and the link function is noted respectively by 7;
and g in

g(ui) =x/B=m;, forall geB,
where g is a twice continuously differentiable and bijective function
from b'(A) to R.
The parameter 8 € B C RP is unknown and should be estimated.
Classically, the MLE 3, for 3 is defined by

(B, dn) =arg  max  logL£(B,¢|Y).
(B,9)eBxRY

. o .
n(Bn) = 551 ny Y)=
51(B) 1= 55108 £(Br. 0| ¥) =0
Under the regularitAy conditions (Fahrmeir, L. & Kaufmann, H.
(1985)) the MLE 3, of 3 asymptotically exists.
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Notation for univariate GLMs

As soon as the MLE is unique, that is to say there is no
over-parametrization in the model, we have

. 2(B)(Br— B) — Ny (0p, 1),

1/QIT/2

where Z,(3) is the Fisher Information matrix, Z, , and

Ip is the identity matrix of RP*P.
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Notation for univariate GLMs

As soon as the MLE is unique, that is to say there is no
over-parametrization in the model, we have

. 2(B)(Br— B) — Ny (0p, 1),

n—-+o0o

where Z,,(8) is the Fisher Information matrix, Zp/*Z, /> = Z,,, and

Ip is the identity matrix of RP*P.

But Newton-Raphson type algorithm can be time-consuming when
having large number of variables/modalities or sample size.

We aim for fast computable and asymptotically efficient estimators.
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Binary dummy variables

When the explanatory variables are only categorical, it can be
encoded using binary dummies, where observations (x,-UH)),- take
values in a finite set {vj1,...,Vjq}

XUtk — g ke{l,....d}, j=1...m.

=y
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Binary dummy variables

When the explanatory variables are only categorical, it can be
encoded using binary dummies, where observations (x; g+t )),- take
values in a finite set {vj1,...,Vjq}

Gk _ g L
X; _1{X,-U+1):Vj,k}, ke{l,...,dj}, j=1...m
G
g (EgYi) =pM + Z ZX;O)’kBE) Intercept and single effect
j=2 k=1
+ Z Z XOQ) 2 Od) kdﬁ;&i}g Double effect
J2<Jja ka2 ,ks
+...
+ Z )<:‘(2)J(2 -~~Xi<m+1)7km+15;23:’:::’,:;:11), All crossed effect
k2w kmt1
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Binary dummy variables

The vector of linear predictors 1 = (1;)i=1...» can be rewritten as
n = XgG.
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Binary dummy variables

The vector of linear predictors 1 = (1;)i=1...» can be rewritten as

n = Xp.
Redundancies of the matrix X implies the model to be non
identifiable.
Thus, we need to impose linear conditions on 3 by a contrast
matrix R: R3 = 0. We also can consider a restricted parameter 3
for which the model is identifiable. Hence, there exists a matrix X
related to R, such that

n = XgG.
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Binary dummy variables

The vector of linear predictors 1 = (1;)i=1...» can be rewritten as
n=XB.
Redundancies of the matrix X implies the model to be non
identifiable.
Thus, we need to impose linear conditions on 3 by a contrast
matrix R: R3 = 0. We also can consider a restricted parameter 3
for which the model is identifiable. Hence, there exists a matrix X
related to R, such that o
n=XB.
Let's define the vector n* = (h;j);=1,.. 4 constituted with the d
distinct values of . There exists a matrix Q related to R, such
that
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CFE and OS-CFE

The proposed (A. Brouste et al. (2020), (2022)) closed-form
estimator of the restricted parameter is

BEFE — (QTQ)1QTg(¥.), g(?n):(g(V},) g(ngT
where
SRRY
k i=1imi=hg

Vn:7,”7;(:#{1'6{1,...,”};7]i:hk}.
my

OS-CFE

BnOS—CFE — ~’§FE +i— ( CFE) Sn( ~,(7:FE)
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Asymptotic results

We showed recently that

Asymptotic results

(Brouste, A., Dutang, C., Hovsepyan, L. and Rohmer, T. (2023))

VaBTE=B) 5 Mo (0-,26)(QTQ) RIS ARQTA) ),

n——+4oo

VA=) 5 N (00,27(9)).

n——+o0

where 3,, and Z are the restricted score vector and Fisher
information,

I(8) = QQTa(¢) ™!
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Monte-Carlo simulations

e Single effects Gamma-GLM, n = 104, fixed sample size:

Computation time MLE CFE OS-CFE
Gamma 393.659 | 23.564 | 25.198

MLE g, CFEp, 0S-CFE g,
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Introduction to dataset

The Covea Affinity dataset under study is composed of 76,446
claim amounts ranging from 4 to 33,531 EUR.

Three covariates have been selected from the 124 available for the
pricing of the guarantee

® vehicle brand with dy = 2 modalities,
® pricing segment with d3 = 6 modalities,

® age class with dy = 8 modalities.

| [CFE [ OS-CFE | MLE |
’ Time (s) ‘ 0.01 ‘ 0.01 ‘ 0.30 H
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Notation for multivariate GLMs

Let the sample Y = (Y,...,Y,) be composed of R*-valued
independent random vectors. Each vector Y; = (Yj1,..., Yis) has
marginals Y; ;, with natural parameters \j; linked to parameters (3;.

The likelihood Lj; for Y;; is given by:

Ni(B))yij — bi(Xij(B)))
aj(¢;)

log Lij(Bj, dj | yij) = + ¢ (yij, 9))-
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Notation for multivariate GLMs

Let the sample Y = (Y,...,Y,) be composed of R*-valued
independent random vectors. Each vector Y; = (Yj1,..., Yis) has
marginals Y; ;, with natural parameters \j; linked to parameters (3;.

The likelihood Lj; for Y;; is given by:

i (B))yij — bj(Aii(B)))
aj()

GLMs relate the expected value EY;; = bj(A;(8))) to the

predictors 7);; via link functions g;:

g(EYi)) = x| Bj = ny.

Here, x;; are vectors determined by m; deterministic explanatory
variables.

log Lij(Bj, dj | yij) = + ¢ (yij, 9))-
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Copula and Sklar’s theorem

In this setting, the variables Yji,..., Yis constituting Y, are not
assumed independent. We consider a parametric copula for the
joint distribution of (Yi1,..., Yis):

Sklar's Theorem (1959):

Let Y = (Yi,..., Ys) be an s-dimensional random vector with c.d.f. F and
continuous marginal c.d.f.s F1,...Fs. Then there exists a unique function
C:[0,1]° — [0, 1] such that:

F(y) = C{Fl(yl)v' ) Fs(ys)}7 Yy = (}/17 000 7Ys) € R°.

> The so called copula C characterize the dependence between the
components of Y.
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IFM approach

Let aj = (B;, ¢;). The log-likelihood of y = (Xl’ s ’Xn) can be
written as:

log L(v, 0 | y) =Y logcs(Fi(yin | o), .., Fslyis | @o)+> > log Ly(ay | yiy)-

i=1 j=1 i=1
Estimation:
e MLE approach: € = (&, ... ,ds,é) is solution of
(8log£ Olog L OlogL
T das T 00

)(§) = 0.

80(1
e IFM approach: € = (aq, .. .,ds,é) is solution of

(Blogﬁl OlogLs OdlogL
day 7 das T 00

)(§) = 0.
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One-Step Closed-form IFM (OSCFE-IFM) estimator

e OSCFE-IFM approach:
® For 3;, the One-Step Closed Form Estimator (Brouste et al.
2023) is given by:

B = (QTQ) ' g(V.y), B =B +T(8) 7 S(8))

Here, [3]* is a consistent, mean-based estimator, Z; represents
the Fisher Information, and S; the score function for the jth
marginal.

e ¢_I = argmajxqﬁ 10g£](ﬂj?¢ayl,ja e a.yn,j>
® Determine ¢ by solving:
Jdlog L
ol
> The OSCFE-IFM approach (&4, ..., &s, ()) ensures consistency, asymptotic
Gaussian behavior, and equivalence to the standard IFM.

(6u1,. .., 6u,0) = 0.
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Monte-Carlo simulations

100 simulations of the gamma-GLM model with single effects only,
2 response variables, 15 parameters to estimate, n = 10°

Spearman p ‘ Copula type ‘ Theo. 0 ‘ Mean 6 Sd 6
‘ ‘ ‘ IFM OSCFE-IFM‘ IFM OSCFE-IFM

Clayton 0.758 0.758 0.758 0.007 0.007

0.4 Frank 2.610 2.613 2.613 0.021 0.021
' Gumbel 1.382 1.382 1.382 0.004 0.004
Normal 0.416 0.416 0.416 0.002 0.002

Clayton 3.188 3.187 3.187 0.018 0.018

08 Frank 7.902 7.901 7.902 0.033 0.033
' Gumbel 2.582 2.582 2.582 0.009 0.009
Normal 0.814 0.813 0.813 0.001 0.001
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te-Carlo simulations

Clayton Frank Gumbel Hormal
w0 300 200

il
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g / = 150
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a3
5
2 / Methods
S m - g
§ 100 / IFM-OSCFE
H
H
<

Number of response variables

Fig. 1: Copula parameter 6 average computation time (sec.) for 4 copula
types, p = 0.8, 100 simulations, 2 explanatory variables with 20 modalities and
n = 10° observations for s = 2 to 10 response variables.
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Fisher-Scoring algorithms are time-consuming, so

® in case of univariate GLMs

® CFE is faster to be computed but not efficient

® OS-CFE is asymptotically efficient as well as fast estimator
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Fisher-Scoring algorithms are time-consuming, so

® in case of univariate GLMs

® CFE is faster to be computed but not efficient

® OS-CFE is asymptotically efficient as well as fast estimator

® in case of multivariate GLMS:

® |FM is a consistent estimator but remains time-consuming
(Brouste et al. 2023)

® The OSCFE-IFM approach is consistent, with marginal
estimations that are closed-form and asymptotically efficient.
On simulated data, the OSCFE-IFM solution closely matches
the IFM while significantly reducing computation times.
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