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Introduction

• GLMs in univariate and multivariate contexts
• Estimated via the maximum likelihood estimator (MLE)

• usually asymptotically efficient
• time-consuming: with Newton-Raphson type algorithms,

particularly with large datasets or numerous variables

• In the univariate scenario:
• Closed-form estimator (CFE): fast to be computed, not always

efficient
• One-step closed-form estimator (OS-CFE): fast to be

computed, asymptotically efficient
• In the multivariate scenario:

• Inference for margins (IFM), (Xu 1996, Joe 1997, 2005)
• MLE-IFM vs OSCFE-IFM
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Notation for univariate GLMs

Y = (Y1, . . . ,Yn) observation sample. Yi , i ∈ I, independent r.v.s
belong to the one-parameter exponential family of probability
measures valued in Λ ⊂ R.

logL(β, ϕ |Y ) =

n∑
i=1

λi(β)Yi − b (λi(β))

a(ϕ) +

n∑
i=1

c(Yi , ϕ),

a : R → R, b : Λ → R and c : Y× R → R are fixed real-valued
measurable functions, ϕ is the dispersion parameter.
The parameters λ1, . . . , λn depend on β ∈ B ⊂ Rp.
Theoretical moments of Yi are:

EβYi = b′(λi(β)) = µi and VarβYi = b′′(λi(β))a(ϕ) = V (µi)a(ϕ),

where V : µ 7→ V (µ) = b′′◦(b′)−1(µ) is the variance of µ.
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Notation for univariate GLMs

Linear predictors and the link function is noted respectively by ηi
and g in

g(µi) = xT
i β = ηi , for all β ∈ B,

where g is a twice continuously differentiable and bijective function
from b′(Λ) to R.

The parameter β ∈ B ⊂ Rp is unknown and should be estimated.
Classically, the MLE β̂n for β is defined by

(β̂n, ϕ̂n) = arg max
(β,ϕ)∈B×R+

∗

logL(β, ϕ |Y ).

Sn(β̂n) :=
∂

∂β
logL(β̂n, ϕ |Y ) = 0

Under the regularity conditions (Fahrmeir, L. & Kaufmann, H.
(1985)) the MLE β̂n of β asymptotically exists.
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Notation for univariate GLMs

As soon as the MLE is unique, that is to say there is no
over-parametrization in the model, we have

IT/2
n (β)(β̂n − β)

L−→
n→+∞

Np (0p, Ip) ,

where In(β) is the Fisher Information matrix, I1/2
n IT/2

n = In, and
Ip is the identity matrix of Rp×p.

But Newton-Raphson type algorithm can be time-consuming when
having large number of variables/modalities or sample size.

We aim for fast computable and asymptotically efficient estimators.
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Binary dummy variables

When the explanatory variables are only categorical, it can be
encoded using binary dummies, where observations (x (j+1)

i )i take
values in a finite set {vj,1, . . . , vj,dj}

x (j+1),k
i = 1{x(j+1)

i =vj,k}
, k ∈ {1, . . . , dj}, j = 1 . . .m.

g
(
EβYi

)
=β(1) +

m+1∑
j=2

dj∑
k=1

x(j),k
i β

(j)
k Intercept and single effect

+
∑

j2<j3

∑
k2,k3

x(j2),k2
i x(j3),k3

i β
(j2,j3)
k2,k3 Double effect

+ . . .

+
∑

k2,...,km+1

x(2),k2
i . . . x(m+1),km+1

i β
(2,...,m+1)
k2,...,km+1

, All crossed effect
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Binary dummy variables

The vector of linear predictors η = (ηi)i=1...,n can be rewritten as
η = Xβ.

Redundancies of the matrix X implies the model to be non
identifiable.
Thus, we need to impose linear conditions on β by a contrast
matrix R: Rβ = 0. We also can consider a restricted parameter β̃
for which the model is identifiable. Hence, there exists a matrix X̃
related to R, such that

η = X̃ β̃.

Let’s define the vector η⋆ = (hj)j=1,...,d constituted with the d
distinct values of η. There exists a matrix Q̃ related to R, such
that

η⋆ = Q̃β̃.

Lilit Hovsepyan
One-Step estimation procedure in univariate and multivariate GLMs with categorical explanatory variables 11 / 26



Main Highlights Univariate GLMs GLMs with categorical variables Multivariate GLMs Estimation procedure Conclusion

Binary dummy variables

The vector of linear predictors η = (ηi)i=1...,n can be rewritten as
η = Xβ.

Redundancies of the matrix X implies the model to be non
identifiable.
Thus, we need to impose linear conditions on β by a contrast
matrix R: Rβ = 0. We also can consider a restricted parameter β̃
for which the model is identifiable. Hence, there exists a matrix X̃
related to R, such that

η = X̃ β̃.

Let’s define the vector η⋆ = (hj)j=1,...,d constituted with the d
distinct values of η. There exists a matrix Q̃ related to R, such
that

η⋆ = Q̃β̃.

Lilit Hovsepyan
One-Step estimation procedure in univariate and multivariate GLMs with categorical explanatory variables 11 / 26



Main Highlights Univariate GLMs GLMs with categorical variables Multivariate GLMs Estimation procedure Conclusion

Binary dummy variables

The vector of linear predictors η = (ηi)i=1...,n can be rewritten as
η = Xβ.

Redundancies of the matrix X implies the model to be non
identifiable.
Thus, we need to impose linear conditions on β by a contrast
matrix R: Rβ = 0. We also can consider a restricted parameter β̃
for which the model is identifiable. Hence, there exists a matrix X̃
related to R, such that

η = X̃ β̃.

Let’s define the vector η⋆ = (hj)j=1,...,d constituted with the d
distinct values of η. There exists a matrix Q̃ related to R, such
that

η⋆ = Q̃β̃.

Lilit Hovsepyan
One-Step estimation procedure in univariate and multivariate GLMs with categorical explanatory variables 11 / 26



Main Highlights Univariate GLMs GLMs with categorical variables Multivariate GLMs Estimation procedure Conclusion

CFE and OS-CFE

The proposed (A. Brouste et al. (2020), (2022)) closed-form
estimator of the restricted parameter is

β̃CFE
n = (Q̃T Q̃)−1Q̃T g(Y n), g(Y n) =

(
g(Y 1

n) . . . g(Y d
n)
)T

where

Y k
n =

n∑
i=1;ηi=hk

Yi

mk
,mk = #{i ∈ {1, . . . , n}; ηi = hk}.

OS-CFE

β̃OS-CFE
n = β̃CFE

n + Ĩn(β̃
CFE
n )−1S̃n(β̃

CFE
n )
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Asymptotic results

We showed recently that

Asymptotic results
(Brouste, A., Dutang, C., Hovsepyan, L. and Rohmer, T. (2023))

√
n(β̃CFE

n − β̃)
L−→

n→+∞
Np⋆

(
0p⋆ , a(ϕ)(Q̃T Q̃)−1Q̃TΣ−1(β̃)Q̃(Q̃T Q̃)−1

)
,

√
n(β̃OS-CFE

n − β̃)
L−→

n→+∞
Np⋆

(
0p⋆ , Ĩ−1(β)

)
.

where S̃n and Ĩ are the restricted score vector and Fisher
information,

Ĩ(β) = Q̃ΣQ̃T a(ϕ)−1
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Monte-Carlo simulations

• Single effects Gamma-GLM, n = 104, fixed sample size:
Computation time MLE CFE OS-CFE
Gamma 393.659 23.564 25.198
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Introduction to dataset

The Covea Affinity dataset under study is composed of 76,446
claim amounts ranging from 4 to 33,531 EUR.

Three covariates have been selected from the 124 available for the
pricing of the guarantee

• vehicle brand with d2 = 2 modalities,
• pricing segment with d3 = 6 modalities,
• age class with d4 = 8 modalities.

CFE OS-CFE MLE
Time (s) 0.01 0.01 0.30
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Notation for multivariate GLMs

Let the sample Y = (Y 1, . . . ,Y n) be composed of Rs -valued
independent random vectors. Each vector Y i = (Yi ,1, . . . ,Yi ,s) has
marginals Yi ,j , with natural parameters λij linked to parameters βj .

The likelihood Lij for Yi ,j is given by:

logLij(βj , ϕj | yi ,j) =
λij(βj)yi ,j − bj(λij(βj))

aj(ϕj)
+ cj(yi ,j , ϕj).

GLMs relate the expected value EYi ,j = b′
j(λij(βj)) to the

predictors ηij via link functions gj :

gj(EYi ,j) = xT
ij βj = ηij .

Here, x ij are vectors determined by mj deterministic explanatory
variables.
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Copula and Sklar’s theorem

In this setting, the variables Yi1, . . . ,Yis constituting Y i are not
assumed independent. We consider a parametric copula for the
joint distribution of (Yi1, . . . ,Yis):

Sklar’s Theorem (1959):
Let Y = (Y1, . . . ,Ys) be an s-dimensional random vector with c.d.f. F and
continuous marginal c.d.f.s F1, . . .Fs . Then there exists a unique function
C : [0, 1]s → [0, 1] such that:

F (y) = C{F1(y1), . . . ,Fs(ys)}, y = (y1, . . . , ys) ∈ Rs .

▷ The so called copula C characterize the dependence between the
components of Y .
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IFM approach

Let αj = (βj , ϕj). The log-likelihood of y = (y
1
, . . . , yn) can be

written as:

logL(α, θ | y) =
n∑

i=1

log cθ(F1(yi,1 | α1), . . . ,Fs(yi,s | αs))+
s∑

j=1

n∑
i=1

logLij(αj | yi,j).

Estimation:
• MLE approach: ξ̂ = (α̂1, . . . , α̂s , θ̂) is solution of

(
∂ logL
∂α1

, . . . ,
∂ logL
∂αs

,
∂ logL
∂θ

)(ξ) = 0.

• IFM approach: ξ̂ = (α̂1, . . . , α̂s , θ̂) is solution of

(
∂ logL1

∂α1
, . . . ,

∂ logLs
∂αs

,
∂ logL
∂θ

)(ξ) = 0.
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One-Step Closed-form IFM (OSCFE-IFM) estimator

• OSCFE-IFM approach:
• For βj , the One-Step Closed Form Estimator (Brouste et al.

2023) is given by:

β̂⋆
j = (QT

j Qj)
−1QT

j gj(Ȳ.,j), β̂j = β̂⋆
j + Ij(β̂

⋆
j )

−1Sj(β̂
⋆
j )

Here, β̂⋆
j is a consistent, mean-based estimator, Ij represents

the Fisher Information, and Sj the score function for the jth
marginal.

• ϕ̂j = arg maxϕ logLj(β̂j , ϕ; y1,j , . . . , yn,j)
• Determine θ̂ by solving:

∂ logL
∂θ

(α̂1, . . . , α̂s , θ) = 0.

▷ The OSCFE-IFM approach (α̂1, . . . , α̂s , θ̂) ensures consistency, asymptotic
Gaussian behavior, and equivalence to the standard IFM.
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Monte-Carlo simulations

100 simulations of the gamma-GLM model with single effects only,
2 response variables, 15 parameters to estimate, n = 105

Spearman ρ Copula type Theo. θ Mean θ̂ Sd θ̂

IFM OSCFE-IFM IFM OSCFE-IFM

0.4

Clayton 0.758 0.758 0.758 0.007 0.007
Frank 2.610 2.613 2.613 0.021 0.021

Gumbel 1.382 1.382 1.382 0.004 0.004
Normal 0.416 0.416 0.416 0.002 0.002

0.8

Clayton 3.188 3.187 3.187 0.018 0.018
Frank 7.902 7.901 7.902 0.033 0.033

Gumbel 2.582 2.582 2.582 0.009 0.009
Normal 0.814 0.813 0.813 0.001 0.001
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Monte-Carlo simulations

Fig. 1: Copula parameter θ average computation time (sec.) for 4 copula
types, ρ = 0.8, 100 simulations, 2 explanatory variables with 20 modalities and
n = 105 observations for s = 2 to 10 response variables.
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Fisher-Scoring algorithms are time-consuming, so

• in case of univariate GLMs
• CFE is faster to be computed but not efficient
• OS-CFE is asymptotically efficient as well as fast estimator

• in case of multivariate GLMS:
• IFM is a consistent estimator but remains time-consuming

(Brouste et al. 2023)
• The OSCFE-IFM approach is consistent, with marginal

estimations that are closed-form and asymptotically efficient.
On simulated data, the OSCFE-IFM solution closely matches
the IFM while significantly reducing computation times.
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Thanks!
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