Main Highlights Univ

*I*ls with categorical variabl

Multivariate GLM

stimation proceduı 0000 Conclusion 000

One-Step estimation procedure in univariate and multivariate GLMs with categorical explanatory variables

Alexandre Brouste (LMM), Christophe Dutang (UGA), Lilit Hovsepyan (LMM) & Tom Rohmer (INRAE)

JSS, Occimath, 2024, Toulouse

Lilit Hovsepyan

- 2 Univariate GLMs
- **3** GLMs with categorical variables
- **4** Multivariate GLMs
- **5** Estimation procedure

Lilit Hovsepyan

- **2** Univariate GLMs
- **3** GLMs with categorical variables
- **4** Multivariate GLMs
- **5** Estimation procedure

Lilit Hovsepyan

Main Highlights ○●	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 000
Introducti	ion				

- GLMs in univariate and multivariate contexts
 - Estimated via the maximum likelihood estimator (MLE)
 - usually asymptotically efficient
 - time-consuming: with Newton-Raphson type algorithms, particularly with large datasets or numerous variables

Main Highlights 0●	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 000
Introducti	ion				

- GLMs in univariate and multivariate contexts
 - Estimated via the maximum likelihood estimator (MLE)
 - usually asymptotically efficient
 - time-consuming: with Newton-Raphson type algorithms, particularly with large datasets or numerous variables
- In the *univariate* scenario:
 - Closed-form estimator (CFE): fast to be computed, not always efficient

Main Highlights 0●	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 000
Introduct	ion				

- GLMs in univariate and multivariate contexts
 - Estimated via the maximum likelihood estimator (MLE)
 - usually asymptotically efficient
 - time-consuming: with Newton-Raphson type algorithms, particularly with large datasets or numerous variables
- In the *univariate* scenario:
 - Closed-form estimator (CFE): fast to be computed, not always efficient
 - One-step closed-form estimator (OS-CFE): fast to be computed, asymptotically efficient

Main Highlights 0●	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 000
Introduct	ion				

- GLMs in univariate and multivariate contexts
 - Estimated via the maximum likelihood estimator (MLE)
 - usually asymptotically efficient
 - time-consuming: with Newton-Raphson type algorithms, particularly with large datasets or numerous variables
- In the *univariate* scenario:
 - Closed-form estimator (CFE): fast to be computed, not always efficient
 - One-step closed-form estimator (OS-CFE): fast to be computed, asymptotically efficient
- In the *multivariate* scenario:
 - Inference for margins (IFM), (Xu 1996, Joe 1997, 2005)
 - MLE-IFM vs OSCFE-IFM

Lilit Hovsepyan

2 Univariate GLMs

- **3** GLMs with categorical variables
- **4** Multivariate GLMs
- **5** Estimation procedure

Lilit Hovsepyan

 $\mathbf{Y} = (Y_1, \dots, Y_n)$ observation sample. Y_i , $i \in I$, independent r.v.s belong to the one-parameter exponential family of probability measures valued in $\Lambda \subset \mathbb{R}$.

$$\log \mathcal{L}(\boldsymbol{\beta}, \phi \mid \boldsymbol{Y}) = \sum_{i=1}^{n} \frac{\lambda_i(\boldsymbol{\beta}) Y_i - b(\lambda_i(\boldsymbol{\beta}))}{a(\phi)} + \sum_{i=1}^{n} c(Y_i, \phi),$$

 $\mathbf{Y} = (Y_1, \dots, Y_n)$ observation sample. $Y_i, i \in I$, independent r.v.s belong to the one-parameter exponential family of probability measures valued in $\Lambda \subset \mathbb{R}$.

$$\log \mathcal{L}(\boldsymbol{\beta}, \phi \mid \boldsymbol{Y}) = \sum_{i=1}^{n} \frac{\lambda_i(\boldsymbol{\beta}) Y_i - b(\lambda_i(\boldsymbol{\beta}))}{\boldsymbol{a}(\phi)} + \sum_{i=1}^{n} c(Y_i, \phi),$$

 $a: \mathbb{R} \to \mathbb{R}, b: \Lambda \to \mathbb{R}$ and $c: \mathbb{Y} \times \mathbb{R} \to \mathbb{R}$ are fixed real-valued measurable functions, ϕ is the dispersion parameter. The parameters $\lambda_1, \ldots, \lambda_n$ depend on $\beta \in B \subset \mathbb{R}^p$. Theoretical moments of Y_i are:

 $\mathbf{E}_{\boldsymbol{\beta}} Y_i = b'(\lambda_i(\boldsymbol{\beta})) = \mu_i$ and $\mathbf{Var}_{\boldsymbol{\beta}} Y_i = b''(\lambda_i(\boldsymbol{\beta}))a(\phi) = V(\mu_i)a(\phi),$ where $V: \mu \mapsto V(\mu) = b'' \circ (b')^{-1}(\mu)$ is the variance of μ .

Main Highlights 00	Univariate GLMs 00●0	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 000

Linear predictors and the link function is noted respectively by η_i and g in

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta} = \eta_i, \quad \text{for all } \boldsymbol{\beta} \in B,$$

where g is a twice continuously differentiable and bijective function from $b'(\Lambda)$ to $\mathbb{R}.$

Linear predictors and the link function is noted respectively by η_i and g in

$$g(\mu_i) = \mathbf{x}_i^T \boldsymbol{\beta} = \eta_i, \quad \text{for all } \boldsymbol{\beta} \in B,$$

where g is a twice continuously differentiable and bijective function from $b'(\Lambda)$ to \mathbb{R} .

The parameter $\beta \in B \subset \mathbb{R}^p$ is unknown and should be estimated. Classically, the MLE $\hat{\beta}_n$ for β is defined by

$$\begin{split} \widehat{(\boldsymbol{\beta}_n, \boldsymbol{\hat{\phi}_n})} &= \arg \max_{(\boldsymbol{\beta}, \boldsymbol{\phi}) \in \boldsymbol{B} \times \mathbb{R}^+_*} \log \mathcal{L}(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{Y}). \\ S_n(\widehat{\boldsymbol{\beta}_n}) &:= \frac{\partial}{\partial \boldsymbol{\beta}} \log \mathcal{L}(\widehat{\boldsymbol{\beta}_n}, \boldsymbol{\phi} \mid \boldsymbol{Y}) = 0 \end{split}$$

Under the regularity conditions (Fahrmeir, L. & Kaufmann, H. (1985)) the MLE β_n of β asymptotically exists.

As soon as the MLE is unique, that is to say there is no over-parametrization in the model, we have

$$\mathcal{I}_{n}^{T/2}(\boldsymbol{\beta})(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}) \xrightarrow[n \to +\infty]{L} \mathcal{N}_{p}(\boldsymbol{0}_{p},\boldsymbol{I}_{p}),$$

where $\mathcal{I}_n(\boldsymbol{\beta})$ is the Fisher Information matrix, $\mathcal{I}_n^{1/2} \mathcal{I}_n^{T/2} = \mathcal{I}_n$, and I_p is the identity matrix of $\mathbb{R}^{p \times p}$.

As soon as the MLE is unique, that is to say there is no over-parametrization in the model, we have

$$\mathcal{I}_{n}^{T/2}(\boldsymbol{\beta})(\widehat{\boldsymbol{\beta}}_{n}-\boldsymbol{\beta}) \xrightarrow[n \to +\infty]{L} \mathcal{N}_{p}(\boldsymbol{0}_{p}, \boldsymbol{I}_{p}),$$

where $\mathcal{I}_n(\boldsymbol{\beta})$ is the Fisher Information matrix, $\mathcal{I}_n^{1/2} \mathcal{I}_n^{T/2} = \mathcal{I}_n$, and I_p is the identity matrix of $\mathbb{R}^{p \times p}$.

But Newton-Raphson type algorithm can be time-consuming when having large number of variables/modalities or sample size.

We aim for fast computable and asymptotically efficient estimators.

2 Univariate GLMs

3 GLMs with categorical variables

4 Multivariate GLMs

5 Estimation procedure

Lilit Hovsepyan

Main Highlights 00	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 000

When the explanatory variables are only categorical, it can be encoded using binary dummies, where observations $(x_i^{(j+1)})_i$ take values in a finite set $\{v_{j,1}, \ldots, v_{j,d_j}\}$

$$x_i^{(j+1),k} = 1_{\{x_i^{(j+1)} = v_{j,k}\}}, \quad k \in \{1, \dots, d_j\}, \quad j = 1 \dots m.$$

Main Highlights 00	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 000	

When the explanatory variables are only categorical, it can be encoded using binary dummies, where observations $(x_i^{(j+1)})_i$ take values in a finite set $\{v_{j,1}, \ldots, v_{j,d_j}\}$

$$x_i^{(j+1),k} = 1_{\{x_i^{(j+1)} = v_{j,k}\}}, \quad k \in \{1, \dots, d_j\}, \quad j = 1 \dots m.$$

$$\begin{split} g\left(\mathbf{E}_{\boldsymbol{\beta}}Y_{i}\right) = & \beta^{(1)} + \sum_{j=2}^{m+1} \sum_{k=1}^{d_{j}} x_{i}^{(j),k} \boldsymbol{\beta}_{k}^{(j)} & \text{Intercept and single effect} \\ & + \sum_{j_{2} < j_{3}} \sum_{k_{2},k_{3}} x_{i}^{(j_{2}),k_{2}} x_{i}^{(j_{3}),k_{3}} \boldsymbol{\beta}_{k_{2},k_{3}}^{(j_{2},j_{3})} & \text{Double effect} \\ & + \dots \\ & + \sum_{k_{2},\dots,k_{m+1}} x_{i}^{(2),k_{2}} \dots x_{i}^{(m+1),k_{m+1}} \boldsymbol{\beta}_{k_{2},\dots,k_{m+1}}^{(2,\dots,m+1)}, & \text{All crossed effect} \end{split}$$

Lilit Hovsepyan

Main Highlights 00	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 000

The vector of linear predictors $\boldsymbol{\eta} = (\eta_i)_{i=1...,n}$ can be rewritten as

 $\eta = X\beta$.

Lilit Hovsepyan

Main Highlights 00	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion

The vector of linear predictors $\boldsymbol{\eta} = (\eta_i)_{i=1...,n}$ can be rewritten as

$$\eta = X \beta.$$

Redundancies of the matrix X implies the model to be non identifiable.

Thus, we need to impose linear conditions on β by a <u>contrast</u> matrix R: $R\beta = 0$. We also can consider a restricted parameter $\tilde{\beta}$ for which the model is identifiable. Hence, there exists a matrix \tilde{X} related to R, such that

$$\eta = \tilde{X}\tilde{\boldsymbol{\beta}}.$$

Main Highlights Univariate GLMs GLMs with categorical variables Multivariate GLMs Estimation procedure Cor 00 0000 000 000 000 000 000 000 000 00
--

The vector of linear predictors $\boldsymbol{\eta} = (\eta_i)_{i=1...,n}$ can be rewritten as

$$\eta = X \beta.$$

Redundancies of the matrix X implies the model to be non identifiable.

Thus, we need to impose linear conditions on β by a <u>contrast</u> matrix R: $R\beta = 0$. We also can consider a restricted parameter $\tilde{\beta}$ for which the model is identifiable. Hence, there exists a matrix \tilde{X} related to R, such that

$$\eta = \tilde{X} \tilde{\beta}.$$

Let's define the vector $\eta^* = (h_j)_{j=1,...,d}$ constituted with the *d* distinct values of η . There exists a matrix \tilde{Q} related to *R*, such that

$$\eta^{\star} = \tilde{Q}\tilde{\boldsymbol{\beta}}.$$

Lilit Hovsepyan

0000	GLMs with categorical variables	Multivariate GLMs	00000	000	

CFE and OS-CFE

The proposed (A. Brouste et al. (2020), (2022)) closed-form estimator of the restricted parameter is

$$\tilde{\boldsymbol{\beta}}_{\boldsymbol{n}}^{CFE} = (\tilde{\boldsymbol{Q}}^{T}\tilde{\boldsymbol{Q}})^{-1}\tilde{\boldsymbol{Q}}^{T}\boldsymbol{g}(\overline{\boldsymbol{Y}}_{\boldsymbol{n}}), \quad \boldsymbol{g}(\overline{\boldsymbol{Y}}_{\boldsymbol{n}}) = \begin{pmatrix} \boldsymbol{g}(\overline{\boldsymbol{Y}}_{\boldsymbol{n}}^{1}) & \dots & \boldsymbol{g}(\overline{\boldsymbol{Y}}_{\boldsymbol{n}}^{d}) \end{pmatrix}^{T}$$

where

$$\overline{Y}_n^k = \frac{\sum\limits_{i=1;\eta_i=h_k}^n Y_i}{m_k}, m_k = \#\{i \in \{1,\ldots,n\}; \eta_i = h_k\}.$$

OS-CFE

$$\tilde{\beta}_{n}^{\text{OS-CFE}} = \tilde{\beta}_{n}^{\text{CFE}} + \tilde{\mathcal{I}}_{n}(\tilde{\beta}_{n}^{\text{CFE}})^{-1}\tilde{S}_{n}(\tilde{\beta}_{n}^{\text{CFE}})$$

Lilit Hovsepyan

Multivariate GLN 000 Estimation procee

Conclusion

Asymptotic results

We showed recently that

Asymptotic results

(Brouste, A., Dutang, C., Hovsepyan, L. and Rohmer, T. (2023))

$$\begin{split} \sqrt{n} (\tilde{\boldsymbol{\beta}}_{n}^{\mathsf{CFE}} - \tilde{\boldsymbol{\beta}}) & \xrightarrow[n \to +\infty]{} \mathcal{N}_{p^{\star}} \left(\mathbf{0}_{p^{\star}}, \boldsymbol{a}(\phi) (\tilde{\boldsymbol{Q}}^{\mathsf{T}} \tilde{\boldsymbol{Q}})^{-1} \tilde{\boldsymbol{Q}}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\tilde{\boldsymbol{\beta}}) \tilde{\boldsymbol{Q}} (\tilde{\boldsymbol{Q}}^{\mathsf{T}} \tilde{\boldsymbol{Q}})^{-1} \right), \\ & \sqrt{n} (\tilde{\boldsymbol{\beta}}_{n}^{\mathsf{OS-CFE}} - \tilde{\boldsymbol{\beta}}) \xrightarrow[n \to +\infty]{} \mathcal{N}_{p^{\star}} \left(\mathbf{0}_{p^{\star}}, \tilde{\boldsymbol{\mathcal{I}}}^{-1} (\boldsymbol{\beta}) \right). \end{split}$$

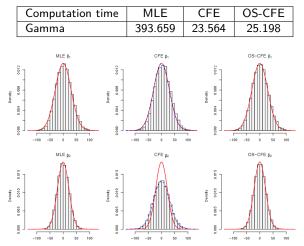
where \tilde{S}_n and $\tilde{\mathcal{I}}$ are the restricted score vector and Fisher information,

$$\tilde{\mathcal{I}}(\boldsymbol{\beta}) = \tilde{\boldsymbol{Q}} \Sigma \tilde{\boldsymbol{Q}}^{\mathsf{T}} \boldsymbol{a}(\phi)^{-1}$$

Main Highlights 00	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion

Monte-Carlo simulations

• Single effects Gamma-GLM, $n = 10^4$, fixed sample size:



Lilit Hovsepyan

Main Highlights 00	Univariate GLMs 0000	GLMs with categorical variables 000000●	Multivariate GLMs 000	Estimation procedure	Conclusion 000

Introduction to dataset

The Covea Affinity dataset under study is composed of 76,446 claim amounts ranging from 4 to 33,531 EUR.

Three covariates have been selected from the 124 available for the pricing of the guarantee

- vehicle brand with $d_2 = 2$ modalities,
- pricing segment with $d_3 = 6$ modalities,
- age class with $d_4 = 8$ modalities.

	CFE	OS-CFE	MLE	
Time (s)	0.01	0.01	0.30	

Lilit Hovsepyan

Main Highlights Univariate GLMs GLMs with categorical variables Multivariate GLMs Estimation proced	lure
---	------

2 Univariate GLMs

3 GLMs with categorical variables

4 Multivariate GLMs

5 Estimation procedure

6 Conclusion

Multivariate GLMs 000

Notation for multivariate GLMs

Let the sample $\mathbf{Y} = (\mathbf{Y}_1, \dots, \mathbf{Y}_n)$ be composed of \mathbb{R}^s -valued independent random vectors. Each vector $\underline{\mathbf{Y}}_i = (Y_{i,1}, \dots, Y_{i,s})$ has marginals $Y_{i,i}$, with natural parameters λ_{ii} linked to parameters β_i . The likelihood \mathcal{L}_{ii} for $Y_{i,i}$ is given by:

$$\log \mathcal{L}_{ij}(\boldsymbol{\beta}_j, \phi_j | y_{i,j}) = \frac{\lambda_{ij}(\boldsymbol{\beta}_j)y_{i,j} - b_j(\lambda_{ij}(\boldsymbol{\beta}_j))}{a_j(\phi_j)} + c_j(y_{i,j}, \phi_j).$$

Multivariate GLMs 0●0

Estimation proc

Conclusion

Notation for multivariate GLMs

Let the sample $\mathbf{Y} = (\underline{\mathbf{Y}}_1, \dots, \underline{\mathbf{Y}}_n)$ be composed of \mathbb{R}^s -valued independent random vectors. Each vector $\underline{\mathbf{Y}}_i = (Y_{i,1}, \dots, Y_{i,s})$ has marginals $Y_{i,j}$, with natural parameters λ_{ij} linked to parameters $\boldsymbol{\beta}_j$. The likelihood \mathcal{L}_{ij} for $Y_{i,j}$ is given by:

$$\log \mathcal{L}_{ij}(\boldsymbol{\beta}_j, \phi_j | \mathbf{y}_{i,j}) = \frac{\lambda_{ij}(\boldsymbol{\beta}_j) \mathbf{y}_{i,j} - \mathbf{b}_j(\lambda_{ij}(\boldsymbol{\beta}_j))}{\mathbf{a}_j(\phi_j)} + c_j(\mathbf{y}_{i,j}, \phi_j).$$

GLMs relate the expected value $\mathbb{E}Y_{i,j} = b'_j(\lambda_{ij}(\beta_j))$ to the predictors η_{ij} via link functions g_j :

$$g_j(\mathbb{E}Y_{i,j}) = \mathbf{x}_{ij}^T \boldsymbol{\beta}_j = \eta_{ij}.$$

Here, x_{ij} are vectors determined by m_j deterministic explanatory variables.

Copula and Sklar's theorem

In this setting, the variables Y_{i1}, \ldots, Y_{is} constituting \underline{Y}_i are not assumed independent. We consider a parametric copula for the joint distribution of (Y_{i1}, \ldots, Y_{is}) :

Sklar's Theorem (1959):

Let $\mathbf{Y} = (Y_1, \dots, Y_s)$ be an *s*-dimensional random vector with c.d.f. \mathbf{F} and continuous marginal c.d.f.s F_1, \dots, F_s . Then there exists a <u>unique</u> function $C : [0, 1]^s \to [0, 1]$ such that:

 $F(\mathbf{y}) = C\{F_1(y_1), \ldots, F_s(y_s)\}, \qquad \mathbf{y} = (y_1, \ldots, y_s) \in \mathbb{R}^s.$

 \triangleright The so called copula *C* characterize the dependence between the components of **Y**.

2 Univariate GLMs

3 GLMs with categorical variables

4 Multivariate GLMs

5 Estimation procedure

6 Conclusion

Lilit Hovsepyan

	Main Highlights Univariate GLMs GLMs with categorical variables Multivariate GLMs Estimation procedure Conclusi 00 0000 00000 000 000 000 000 000000 000	on
--	---	----

IFM approach

Let $\boldsymbol{\alpha}_j = (\boldsymbol{\beta}_j, \phi_j)$. The log-likelihood of $\boldsymbol{y} = (\underline{\boldsymbol{y}}_1, \dots, \underline{\boldsymbol{y}}_n)$ can be written as:

$$\log \mathcal{L}(\boldsymbol{\alpha}, \boldsymbol{\theta} \mid \boldsymbol{y}) = \sum_{i=1}^{n} \log c_{\boldsymbol{\theta}}(F_1(y_{i,1} \mid \boldsymbol{\alpha}_1), \dots, F_s(y_{i,s} \mid \boldsymbol{\alpha}_s)) + \sum_{j=1}^{s} \sum_{i=1}^{n} \log \mathcal{L}_{ij}(\boldsymbol{\alpha}_j \mid y_{i,j}).$$

Estimation:

• MLE approach: $\hat{\boldsymbol{\xi}} = (\hat{\boldsymbol{lpha}}_1, \dots, \hat{\boldsymbol{lpha}}_s, \hat{ heta})$ is solution of

$$(\frac{\partial \log \mathcal{L}}{\partial \boldsymbol{\alpha}_1}, \dots, \frac{\partial \log \mathcal{L}}{\partial \boldsymbol{\alpha}_s}, \frac{\partial \log \mathcal{L}}{\partial \theta})(\boldsymbol{\xi}) = 0.$$

• IFM approach: $\hat{\boldsymbol{\xi}} = (\hat{\boldsymbol{\alpha}}_1, \dots, \hat{\boldsymbol{\alpha}}_s, \hat{\theta})$ is solution of

$$(\frac{\partial \log \mathcal{L}_1}{\partial \boldsymbol{\alpha}_1}, \dots, \frac{\partial \log \mathcal{L}_s}{\partial \boldsymbol{\alpha}_s}, \frac{\partial \log \mathcal{L}}{\partial \theta})(\boldsymbol{\xi}) = 0.$$

Lilit Hovsepyan

One-Step Closed-form IFM (OSCFE-IFM) estimator

- OSCFE-IFM approach:
 - For β_i, the One-Step Closed Form Estimator (Brouste et al. 2023) is given by:

$$\hat{\beta}_j^{\star} = (\boldsymbol{Q}_j^{\mathsf{T}} \boldsymbol{Q}_j)^{-1} \boldsymbol{Q}_j^{\mathsf{T}} \boldsymbol{g}_j(\bar{\boldsymbol{Y}}_{..j}), \quad \hat{\boldsymbol{\beta}}_j = \hat{\boldsymbol{\beta}}_j^{\star} + \mathcal{I}_j(\hat{\boldsymbol{\beta}}_j^{\star})^{-1} S_j(\hat{\boldsymbol{\beta}}_j^{\star})$$

Here, $\hat{\beta}_i^{\star}$ is a consistent, mean-based estimator, \mathcal{I}_i represents the Fisher Information, and S_i the score function for the jth marginal.

- $\hat{\phi}_i = \arg \max_{\phi} \log \mathcal{L}_i(\hat{\beta}_i, \phi; y_{1,i}, \dots, y_{n,i})$
- Determine $\hat{\theta}$ by solving:

$$\frac{\partial \log \mathcal{L}}{\partial \theta}(\hat{\boldsymbol{\alpha}}_1,\ldots,\hat{\boldsymbol{\alpha}}_s,\theta)=0.$$

▷ The OSCFE-IFM approach $(\hat{\alpha}_1, \ldots, \hat{\alpha}_s, \hat{\theta})$ ensures consistency, asymptotic Gaussian behavior, and equivalence to the standard IFM.

Lilit Hovsepvan

Monte-Carlo simulations

100 simulations of the gamma-GLM model with single effects only, 2 response variables, 15 parameters to estimate, $n=10^5$

Spearman ρ Copula type		Theo. θ Mean $\hat{\theta}$			Sd $\hat{\theta}$	
			IFM	OSCFE-IFM	IFM	OSCFE-IFM
0.4	Clayton	0.758	0.758	0.758	0.007	0.007
	Frank	2.610	2.613	2.613	0.021	0.021
0.1	Gumbel	1.382	1.382	1.382	0.004	0.004
	Normal	0.416	0.416	0.416	0.002	0.002
0.8	Clayton	3.188	3.187	3.187	0.018	0.018
	Frank	7.902	7.901	7.902	0.033	0.033
	Gumbel	2.582	2.582	2.582	0.009	0.009
	Normal	0.814	0.813	0.813	0.001	0.001

Lilit Hovsepyan

Main Highlights	Univariate GLMs	GLMs with categorical variables	Multivariate GLMs	Estimation procedure	Conclusion
00	0000		000	0000●	000

Monte-Carlo simulations

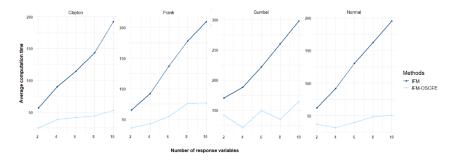


Fig. 1: Copula parameter θ average computation time (sec.) for 4 copula types, $\rho = 0.8$, 100 simulations, 2 explanatory variables with 20 modalities and $n = 10^5$ observations for s = 2 to 10 response variables.

- **2** Univariate GLMs
- **3** GLMs with categorical variables
- **4** Multivariate GLMs
- **5** Estimation procedure

Lilit Hovsepyan

Fisher-Scoring algorithms are time-consuming, so

- in case of univariate GLMs
 - CFE is faster to be computed but not efficient
 - OS-CFE is asymptotically efficient as well as fast estimator

Fisher-Scoring algorithms are time-consuming, so

- in case of univariate GLMs
 - CFE is faster to be computed but not efficient
 - OS-CFE is asymptotically efficient as well as fast estimator
- in case of multivariate GLMS:
 - IFM is a consistent estimator but remains time-consuming (Brouste et al. 2023)
 - The OSCFE-IFM approach is consistent, with marginal estimations that are closed-form and asymptotically efficient. On simulated data, the OSCFE-IFM solution closely matches the IFM while significantly reducing computation times.

Main Highlights 00	Univariate GLMs 0000	GLMs with categorical variables	Multivariate GLMs 000	Estimation procedure	Conclusion 00●

Thanks!

Lilit Hovsepyan