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P a stream of IID random variables X, X, ... with expectation
m and variance o2

generate unbiased estimates of f(m).
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Taylor expansion of f around some z:

where v, := f¥) (z0)xk /K.

Unbiased estimate for (m/z, — 1)*: Hle(Xi/xO —1).



A Taylor-based sum estimator

This suggests using a sum estimator (McLeish, 2011; Glynn and
Rhee, 2014; Rhee and Glynn, 2015):

R
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where R takes values in N = {0,1,...}, and

k
U =U, = H(Xi/xo —1).
i=1
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In many situations (e.g. latent variable models), we have access to
unbiased estimates of the likelihood, but we would like unbiased
estimates of the log-likelihood (and its gradient).

For f(x) = log(z), v, = (—1)¥"1/k (sub-geometric).
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Motivation |I: Reciprocal and un-normalised models

A model whose likelihood is of the form:

p(yl0) = 9(y,0)/2(6)
where Z(0) is intractable.

Often, unbiased estimates of Z(f) are available, but we would like
to estimate unbiasedly 1/7(#), e.g. to implement a
pseudo-marginal MCMC sampler.

For f(z) = 1/z, v, = (=1)*~1, which is also sub-geometric.
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has also many practical applications; however the decay of the
coefficients is super-geometric, which leads to different
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Not a motivation: Exponential

Obviously
_ (T — xo)k
exp(x) = explag) x Yy 0
k=0
has also many practical applications; however the decay of the
coefficients is super-geometric, which leads to different
considerations.

See Papaspiliopoulos (2011).
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Objectives

P variance of estimate should be finite;

P CPU time is random; make sure its variance is also finite (and
has light tails).

The second point is related to the behaviour of

P sum of random variables (when estimates are computed
sequentially)

P max of random variables (when estimates are computed in
parallel)
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var[f] = var [[E[f|R]] +E [var[ﬂR]]

where:

P> the first term measures the variability induced by the random
truncation.

P the second term measures the variability due to the U, ;s
(the unbiased estimates of (m/xy — 1)¥).
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These expressions suggest to take:
P 1, such that 3, := |m/x, — 1] < 1;

» R ~ Geometric(p), with p < 1 — 3, so that
P(R > k) > B3".



Currently, we use the following unbiased estimate of (m/z, — 1)
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Currently, we use the following unbiased estimate of (m/z, — 1)
k
Up=Up = H(Xi/wo —1).
i=1

Computing f requires generating X, ..., X in order to compute
the last term Uy, , but we use only the £ first inputs to estimate
(m/zq — 1)k. Seems inefficient.



In order to use the whole sample, consider the following cycling

estimator:
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For the cycling estimator, one has (under weak assumptions)

£ [Var(fC|R)] = O(plog(1/p))
as p — 0.

P> Average number of required inputs is E[R] ~ 1/p.
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Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

£ [Var(fC|R)] = O(plog(1/p))
asp — 0.

P Average number of required inputs is E[R] ~ 1/p.

B We can have var[f] — 0 by taking E[R] — -+o0. (This is not
the case for the simple estimator.)

» Upto log factor, standard Monte Carlo rate,

i.e. Var[f] O(log E[R]/E[R]).



The simple estimator does not converge as E[R] — +o0.






Must ensure that |m/x, — 1| < 1, but m is unknown.



Must ensure that |m/x, — 1| < 1, but m is unknown.

= pilot run, bootstrap to ensure this condition with high
probability.



Less of an issue with the cycling estimator, because
work-normalised variance depends weakly on p.



Less of an issue with the cycling estimator, because
work-normalised variance depends weakly on p.

See paper.
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log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter 6,
p(016) = [ plolz.O)p(:16)ax

For a fixed 6, importance sampling gives unbiased estimates of
the likelihood:

X, —w, — p(ylZ:, O)p(Zi]0) 7~
a(Z;)

To compute the MLE, use our approach to derive unbiased
estimate of the log-likelihood and its gradient (stochastic
gradient descent).
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Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

l,.( 1og< Zw)

The SUMO estimator is a sum estimator based on the series:

logp(y|0) = E[¢,(0)] + Z E[AL], Ay =441(0) — £,.(0)

Main issue: infinite variance.



Adaptation of SUMO, truncation at R = 2K,



Adaptation of SUMO, truncation at R = 2K,

Variance is infinite, but the random CPU time may have infinite
variance (and has always heavy tails).
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Figure 1:

+ simple v cycling O mimc ——- expected cost === truth



Caption

Estimate vs CPU for an expected cost C' of 6 (top) and 96
(bottom) samples per data point. Dimension is d = 2 (left) and

d =5 (right). The vertical dashed line denotes the expected cost
while the horizontal one denotes the true value of 2?21 log p(y;|6).
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k
Yy = E zja; + o€ where
Jj=1

P y is a high-dim object (e.g. image)
P the z; are independent latent variables
P 0= (A0), with A= (a;)j=1,...,k

Aim is to estimate # using SGD.



Given data (y, ..., ¥, ), do gradient descent, where at east step,
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a single term (chosen uniformly).



Stochastic gradient descent

Given data (yq, ..., ¥, ), do gradient descent, where at east step,
the gradient is replaced by an unbiased estimate of the gradient of
a single term (chosen uniformly).

A good illustration on the need for automation, i.e. at each
iteration, the actual value of m, o2, and thus Zy and p must
change.



Estimated images
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p(y|0) = exp{67s(y)}/Z(0) where

P y = (y;;), with y;; = 1 (resp. 0) if nodes i and j are
connected



Exponential random graph model

/
//ﬁ Pazzib
Ginori

/
SLamberteschi

Figure 6: Florentine family business network

p(y|0) = exp{6Ts(y)}/Z(0) where

» y = (y;;), with y;; = 1 (resp. 0) if nodes i and j are
connected

P s(y) is a collection of network statistics (number of edges,
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Figure 6: Florentine family business network

p(y|0) = exp{6Ts(y)}/Z(0) where

» y = (y;;), with y;; = 1 (resp. 0) if nodes i and j are
connected

P s(y) is a collection of network statistics (number of edges,
number of k—stars, etc.)

» Z(0) is a sum over 2(2) terms (intractable)
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Typically the dimension of # is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

P Sample 0, ~q

_ p(0;)exp{67 s(y)} 1
P compute w; = — q(ej)J X Z0,)




Bayesian inference (and model choice)

Typically the dimension of 8 is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

P Sample 6, ~ ¢

p(8;) exp{67 s(y)} 1

> compute w; = X Z(0;)

J q(9;)

Pseudo-marginal approach: replace 1/Z(0) by an unbiased
estimate.




For a fixed 6, run a tempering SMC algorithm to obtain an
unbiased estimate of Z(6).
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Figure 8: Bivariate weighted histograms approximating the posterior
distributions obtained with the simple and the cycling estimator using
n = 1024 samples from proposal q.
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Figure 9: ESS accross simulated 6,
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Concluding remarks

P A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

P No free lunch. Cannot work without pilot runs.

P Garbage in, garbage out: if the variance of the inputs is very
large, the variance of our estimator will be large as well.



Paper

Chopin N., Crucinio F.R. and S. S. Singh (2024). Towards a
turnkey approach to unbiased Monte Carlo estimation of smooth
functions of expectations, arxiv 2403.20313.
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