Nicolas Chopin

ENSAE, Institut Polytechnique de Paris

Joint work with Francesca R. Crucinio & Sumeetpal S.
Singh

Given:

» A function f

Given:
» A function f

P a stream of IID random variables X, X, ... with expectation
m and variance o2

Given:
» A function f

P a stream of IID random variables X, X, ... with expectation
m and variance o2

Given:
» A function f

P a stream of IID random variables X, X, ... with expectation
m and variance o2

generate unbiased estimates of f(m).

Taylor expansion of f around some z:

Taylor expansion of f around some z:

where v, := f¥) (z0)xk /K.

Unbiased estimate for (m/z, — 1)*: Hle(Xi/xO —1).

A Taylor-based sum estimator

This suggests using a sum estimator (McLeish, 2011; Glynn and
Rhee, 2014; Rhee and Glynn, 2015):

R
Y Ur,k k}
;[P(R>k ZV""UR’“[PR>k)

where R takes values in N = {0,1,...}, and

k
U =U, = H(Xi/xo —1).
i=1

In many situations (e.g. latent variable models), we have access to
unbiased estimates of the likelihood, but we would like unbiased
estimates of the log-likelihood (and its gradient).

Motivation |: Log and MLE

In many situations (e.g. latent variable models), we have access to
unbiased estimates of the likelihood, but we would like unbiased
estimates of the log-likelihood (and its gradient).

For f(x) = log(z), v, = (—1)¥"1/k (sub-geometric).

A model whose likelihood is of the form:

p(ylo) = g(y,0)/Z(0)

where Z(0) is intractable.

Motivation |I: Reciprocal and un-normalised models

A model whose likelihood is of the form:

p(yl0) = 9(y,0)/2(6)
where Z(0) is intractable.

Often, unbiased estimates of Z(f) are available, but we would like
to estimate unbiasedly 1/7(#), e.g. to implement a
pseudo-marginal MCMC sampler.

Motivation |I: Reciprocal and un-normalised models

A model whose likelihood is of the form:

p(yl0) = 9(y,0)/2(6)
where Z(0) is intractable.

Often, unbiased estimates of Z(f) are available, but we would like
to estimate unbiasedly 1/7(#), e.g. to implement a
pseudo-marginal MCMC sampler.

For f(z) = 1/z, v, = (=1)*~1, which is also sub-geometric.

Obviously
_ o (2 — ﬁl”o)k
exp(x) = exp(zg) x Z -
k=0
has also many practical applications; however the decay of the
coefficients is super-geometric, which leads to different
considerations.

Not a motivation: Exponential

Obviously
_ (T — xo)k
exp(x) = explag) x Yy 0
k=0
has also many practical applications; however the decay of the
coefficients is super-geometric, which leads to different
considerations.

See Papaspiliopoulos (2011).

Robust/automatic guidelines on how to choose:

> z,

Robust/automatic guidelines on how to choose:
> 2,
P the distribution of R

Robust/automatic guidelines on how to choose:
> 2,
P the distribution of R

P the form of the U, ;'s (see later).

Robust/automatic guidelines on how to choose:
> 2,
P the distribution of R

P the form of the U, ;'s (see later).

Robust/automatic guidelines on how to choose:
> 2,
P the distribution of R

P the form of the U, ;'s (see later).

P variance of estimate should be finite;

P variance of estimate should be finite;

P CPU time is random; make sure its variance is also finite (and
has light tails).

P variance of estimate should be finite;

P CPU time is random; make sure its variance is also finite (and
has light tails).

Objectives

P variance of estimate should be finite;

P CPU time is random; make sure its variance is also finite (and
has light tails).

The second point is related to the behaviour of

P sum of random variables (when estimates are computed
sequentially)

Objectives

P variance of estimate should be finite;

P CPU time is random; make sure its variance is also finite (and
has light tails).

The second point is related to the behaviour of

P sum of random variables (when estimates are computed
sequentially)

P max of random variables (when estimates are computed in
parallel)

var[f] = var [E[f|R]| + E [var[f|R]|

where:

P> the first term measures the variability induced by the random
truncation.

var[f] = var [[E[f|R]] +E [var[ﬂR]]

where:

P> the first term measures the variability induced by the random
truncation.

P the second term measures the variability due to the U, ;s
(the unbiased estimates of (m/xy — 1)¥).

These expressions suggest to take:

P 1, such that 3, := |m/x, — 1] < 1;

These expressions suggest to take:
P 1, such that 3, := |m/x, — 1] < 1;

» R ~ Geometric(p), with p < 1 — 3, so that
P(R > k) > B3".

Currently, we use the following unbiased estimate of (m/z, — 1)

k
U =Up = H(Xi/wo —1).
i=1

Currently, we use the following unbiased estimate of (m/z, — 1)
k
Up=Up = H(Xi/wo —1).
i=1

Computing f requires generating X, ..., X in order to compute
the last term Uy, , but we use only the £ first inputs to estimate
(m/zq — 1)k. Seems inefficient.

In order to use the whole sample, consider the following cycling

estimator:
15 7 x e
UC .— _[Ai A
ok r le(wo)+E($o)

For the cycling estimator, one has (under weak assumptions)

£ [Var(fC|R)] = O(plog(1/p))
as p — 0.

P> Average number of required inputs is E[R] ~ 1/p.

Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

£ [Var(fC|R)] = O(plog(1/p))
asp — 0.

P Average number of required inputs is E[R] ~ 1/p.

~

P We can have var[f] — 0 by taking E[R] — +o00. (This is not
the case for the simple estimator.)

Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

£ [Var(fC|R)] = O(plog(1/p))
asp — 0.

P Average number of required inputs is E[R] ~ 1/p.

B We can have var[f] — 0 by taking E[R] — -+o0. (This is not
the case for the simple estimator.)

» Upto log factor, standard Monte Carlo rate,

i.e. Var[f] O(log E[R]/E[R]).

The simple estimator does not converge as E[R] — +o0.

Must ensure that |m/x, — 1| < 1, but m is unknown.

Must ensure that |m/x, — 1| < 1, but m is unknown.

= pilot run, bootstrap to ensure this condition with high
probability.

Less of an issue with the cycling estimator, because
work-normalised variance depends weakly on p.

Less of an issue with the cycling estimator, because
work-normalised variance depends weakly on p.

See paper.

Model with data y, latent z, parameter 6,

p(yl6) = / p(y]z 0)p(210)d=

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter 6,
p(016) = [plolz.O)p(:16)ax

For a fixed 6, importance sampling gives unbiased estimates of
the likelihood:

X, —w, — p(ylZ:, O)p(Zi]0) l
a(Z;)

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter 6,
p(016) = [plolz.O)p(:16)ax

For a fixed 6, importance sampling gives unbiased estimates of
the likelihood:

X, —w, — p(ylZ:, O)p(Zi]0) 7~
a(Z;)

To compute the MLE, use our approach to derive unbiased
estimate of the log-likelihood and its gradient (stochastic
gradient descent).

Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

l,.(1og< Zw)

The SUMO estimator is a sum estimator based on the series:

logp(y|0) = E[¢,(0)] + Z E[AL], Ay =441(0) — £,.(0)

Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

l,.(1og< Zw)

The SUMO estimator is a sum estimator based on the series:

logp(y|0) = E[¢,(0)] + Z E[AL], Ay =441(0) — £,.(0)

Main issue: infinite variance.

Adaptation of SUMO, truncation at R = 2K,

Adaptation of SUMO, truncation at R = 2K,

Variance is infinite, but the random CPU time may have infinite
variance (and has always heavy tails).

—3400 + !
v
—3500 1 —8500 - + |
—3600 1 —9000 ¥
—3700
—9500 1
—3800 1
-1 i
_3000 1 0000
—4000 1 o —10500 -
-41004 t
5x10% 6x10% 7x10° 8x10° 9x10° 104
—3420 4
34404 —-8750 1
—3460 1 88001
—3480 1
—8850 1
—3500 1
—8900 1
—35201 o
o o o
3540 ~8950 o
2x10° 3x10° 2x10°

Figure 1:

+ simple v cycling O mimc ——- expected cost === truth

Caption

Estimate vs CPU for an expected cost C' of 6 (top) and 96
(bottom) samples per data point. Dimension is d = 2 (left) and

d =5 (right). The vertical dashed line denotes the expected cost
while the horizontal one denotes the true value of 2?21 log p(y;|6).

k
Yy = zja; + o€ where
=1

P y is a high-dim object (e.g. image)

k
Yy = zja; + o€ where
=1

P y is a high-dim object (e.g. image)

P the z; are independent latent variables

k
Yy = zja; + o€ where
=1

P y is a high-dim object (e.g. image)
P the z; are independent latent variables

P 0= (A0), with A= (a;)j=1,...,k

k
Yy = zja; + o€ where
=1

P y is a high-dim object (e.g. image)
P the z; are independent latent variables

P 0= (A0), with A= (a;)j=1,...,k

k
Yy = E zja; + o€ where
Jj=1

P y is a high-dim object (e.g. image)
P the z; are independent latent variables
P 0= (A0), with A= (a;)j=1,...,k

Aim is to estimate # using SGD.

Given data (y, ..., ¥,), do gradient descent, where at east step,
the gradient is replaced by an unbiased estimate of the gradient of
a single term (chosen uniformly).

Stochastic gradient descent

Given data (yq, ..., ¥,), do gradient descent, where at east step,
the gradient is replaced by an unbiased estimate of the gradient of
a single term (chosen uniformly).

A good illustration on the need for automation, i.e. at each
iteration, the actual value of m, o2, and thus Zy and p must
change.

Estimated images

) true a) simple a) cycle) SAEM

iBischeri

s

Lamberteschi

Figure 6: Florentine family business network

p(y|0) = exp{67s(y)}/Z(0) where

P y = (y;;), with y;; = 1 (resp. 0) if nodes i and j are
connected

Exponential random graph model

/
//ﬁ Pazzib
Ginori

/
SLamberteschi

Figure 6: Florentine family business network

p(y|0) = exp{6Ts(y)}/Z(0) where

» y = (y;;), with y;; = 1 (resp. 0) if nodes i and j are
connected

P s(y) is a collection of network statistics (number of edges,
number of k—stars, etc.)

Exponential random graph model

Ginori

/
SLamberteschi

Figure 6: Florentine family business network

p(y|0) = exp{6Ts(y)}/Z(0) where

» y = (y;;), with y;; = 1 (resp. 0) if nodes i and j are
connected

P s(y) is a collection of network statistics (number of edges,
number of k—stars, etc.)

» Z(0) is a sum over 2(2) terms (intractable)

Typically the dimension of # is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

P Sample 0, ~q

Typically the dimension of # is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

P Sample 0, ~q

_ p(0;)exp{67 s(y)} 1
P compute w; = — q(ej)J X Z0,)

Typically the dimension of # is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

P Sample 0, ~q

_ p(0;)exp{67 s(y)} 1
P compute w; = — q(ej)J X Z0,)

Bayesian inference (and model choice)

Typically the dimension of 8 is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

P Sample 6, ~ ¢

p(8;) exp{67 s(y)} 1

> compute w; = X Z(0;)

J q(9;)

Pseudo-marginal approach: replace 1/Z(0) by an unbiased
estimate.

For a fixed 6, run a tempering SMC algorithm to obtain an
unbiased estimate of Z(6).

=

= £, =

(a) Simple (a) Cycling

Figure 8: Bivariate weighted histograms approximating the posterior
distributions obtained with the simple and the cycling estimator using
n = 1024 samples from proposal q.

301
I simple
B cycling

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure 9: ESS accross simulated 6,

P A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

P A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

P No free lunch. Cannot work without pilot runs.

Concluding remarks

P A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

P No free lunch. Cannot work without pilot runs.

P Garbage in, garbage out: if the variance of the inputs is very
large, the variance of our estimator will be large as well.

Paper

Chopin N., Crucinio F.R. and S. S. Singh (2024). Towards a
turnkey approach to unbiased Monte Carlo estimation of smooth
functions of expectations, arxiv 2403.20313.

	Introduction
	Theoretical properties
	Calibration of tuning parameters
	Numerical experiments: log
	Numerical experiments: reciprocal
	Conclusion

