
Towards a turnkey approach to unbiased Monte
Carlo estimation of smooth functions of

expectations

Nicolas Chopin

ENSAE, Institut Polytechnique de Paris



Introduction



Joint work with Francesca R. Crucinio & Sumeetpal S.
Singh



The math problem

Given:
▶ A function 𝑓

▶ a stream of IID random variables 𝑋1, 𝑋2, … with expectation
𝑚 and variance 𝜎2

generate unbiased estimates of 𝑓(𝑚).
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Taylor expansion

Taylor expansion of 𝑓 around some 𝑥0:

𝑓(𝑚) =
∞

∑
𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘! (𝑚 − 𝑥0)𝑘

=
∞

∑
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𝑘

where 𝛾𝑘 ∶= 𝑓 (𝑘)(𝑥0)𝑥𝑘
0/𝑘!.

Unbiased estimate for (𝑚/𝑥0 − 1)𝑘: ∏𝑘
𝑖=1(𝑋𝑖/𝑥0 − 1).
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A Taylor-based sum estimator

This suggests using a sum estimator (McLeish, 2011; Glynn and
Rhee, 2014; Rhee and Glynn, 2015):

̂𝑓 =
𝑅

∑
𝑘=0

𝛾𝑘𝑈𝑅,𝑘
ℙ(𝑅 ≥ 𝑘) =

∞
∑
𝑘=0

𝛾𝑘𝑈𝑅,𝑘
1{𝑅 ≥ 𝑘}
ℙ(𝑅 ≥ 𝑘)

where 𝑅 takes values in ℕ = {0, 1, …}, and

𝑈𝑟,𝑘 = 𝑈𝑘 =
𝑘

∏
𝑖=1

(𝑋𝑖/𝑥0 − 1).



Motivation I: Log and MLE

In many situations (e.g. latent variable models), we have access to
unbiased estimates of the likelihood, but we would like unbiased
estimates of the log-likelihood (and its gradient).

For 𝑓(𝑥) = log(𝑥), 𝛾𝑘 = (−1)𝑘−1/𝑘 (sub-geometric).
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Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

𝑝(𝑦|𝜃) = 𝑔(𝑦, 𝜃)/𝑍(𝜃)

where 𝑍(𝜃) is intractable.

Often, unbiased estimates of 𝑍(𝜃) are available, but we would like
to estimate unbiasedly 1/𝑍(𝜃), e.g. to implement a
pseudo-marginal MCMC sampler.

For 𝑓(𝑥) = 1/𝑥, 𝛾𝑘 = (−1)𝑘−1, which is also sub-geometric.
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Not a motivation: Exponential

Obviously

exp(𝑥) = exp(𝑥0) ×
∞

∑
𝑘=0

(𝑥 − 𝑥0)𝑘

𝑘!
has also many practical applications; however the decay of the
coefficients is super-geometric, which leads to different
considerations.

See Papaspiliopoulos (2011).
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Main points to address

Robust/automatic guidelines on how to choose:
▶ 𝑥0

▶ the distribution of 𝑅
▶ the form of the 𝑈𝑟,𝑘’s (see later).
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Objectives

▶ variance of estimate should be finite;

▶ CPU time is random; make sure its variance is also finite (and
has light tails).

The second point is related to the behaviour of

▶ sum of random variables (when estimates are computed
sequentially)

▶ max of random variables (when estimates are computed in
parallel)
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Theoretical properties



Variance decomposition

var[ ̂𝑓 ] = var [𝔼[ ̂𝑓|𝑅]] + 𝔼 [var[ ̂𝑓 |𝑅]]

where:
▶ the first term measures the variability induced by the random

truncation.

▶ the second term measures the variability due to the 𝑈𝑟,𝑘’s
(the unbiased estimates of (𝑚/𝑥0 − 1)𝑘).
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Analysing the first term

𝔼 [ ̂𝑓∣𝑅 = 𝑟] =
∞

∑
𝑘=0

𝛾𝑘
1{𝑟 ≥ 𝑘}
ℙ(𝑅 ≥ 𝑘) ( 𝑚

𝑥0
− 1)

𝑘
.

Hence

var [𝔼[ ̂𝑓|𝑅]] =
∞

∑
𝑘=0

𝛾2
𝑘 ( 𝑚

𝑥0
− 1)

2𝑘
( 1

ℙ(𝑅 ≥ 𝑘) − 1)

+ 2
∞

∑
𝑘=0

∞
∑

𝑙=𝑘+1
𝛾𝑘𝛾𝑙 ( 𝑚

𝑥0
− 1)

𝑘+𝑙
( 1

ℙ(𝑅 ≥ 𝑘) − 1) .



Implications

These expressions suggest to take:
▶ 𝑥0 such that 𝛽0 ∶= |𝑚/𝑥0 − 1| < 1;

▶ 𝑅 ∼ Geometric(𝑝), with 𝑝 < 1 − 𝛽0, so that
ℙ(𝑅 ≥ 𝑘) > 𝛽2𝑘

0 .
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Improving the 𝑈𝑟,𝑘

Currently, we use the following unbiased estimate of (𝑚/𝑥0 − 1)𝑘:

𝑈𝑟,𝑘 = 𝑈𝑘 =
𝑘

∏
𝑖=1

(𝑋𝑖/𝑥0 − 1).

Computing ̂𝑓 requires generating 𝑋1, … , 𝑋𝑅 in order to compute
the last term 𝑈𝑅,𝑅, but we use only the 𝑘 first inputs to estimate
(𝑚/𝑥0 − 1)𝑘. Seems inefficient.
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Cycling estimator

In order to use the whole sample, consider the following cycling
estimator:

𝑈C
𝑟,𝑘 ∶= 1

𝑟[
𝑘

∏
𝑖=1

(𝑋𝑖
𝑥0

− 1) +
𝑘+1
∏
𝑖=2

(𝑋𝑖
𝑥0

− 1)

+ … + (𝑋𝑟
𝑥0

− 1)
𝑘−1
∏
𝑖=1

(𝑋𝑖
𝑥0

− 1) ].



Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

𝔼 [var( ̂𝑓C|𝑅)] = 𝒪(𝑝 log(1/𝑝))

as 𝑝 → 0.
▶ Average number of required inputs is 𝔼[𝑅] ≈ 1/𝑝.

▶ We can have var[ ̂𝑓 ] → 0 by taking 𝔼[𝑅] → +∞. (This is not
the case for the simple estimator.)

▶ Up to log factor, standard Monte Carlo rate,
i.e. var[ ̂𝑓 ] = 𝒪(log 𝔼[𝑅]/𝔼[𝑅]).
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Without cycling

The simple estimator does not converge as 𝔼[𝑅] → +∞.



Calibration of tuning parameters



Tuning 𝑥0

Must ensure that |𝑚/𝑥0 − 1| < 1, but 𝑚 is unknown.

⇒ pilot run, bootstrap to ensure this condition with high
probability.
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Tuning 𝑝

Less of an issue with the cycling estimator, because
work-normalised variance depends weakly on 𝑝.

See paper.
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Numerical experiments: log



log-likelihood (and gradient) of a latent variable model

Model with data 𝑦, latent 𝑧, parameter 𝜃;

𝑝(𝑦|𝜃) = ∫ 𝑝(𝑦|𝑧, 𝜃)𝑝(𝑧|𝜃)𝑑𝑧

For a fixed 𝜃, importance sampling gives unbiased estimates of
the likelihood:

𝑋𝑖 = 𝑤𝑖 = 𝑝(𝑦|𝑍𝑖, 𝜃)𝑝(𝑍𝑖|𝜃)
𝑞(𝑍𝑖)

, 𝑍𝑖 ∼ 𝑞

To compute the MLE, use our approach to derive unbiased
estimate of the log-likelihood and its gradient (stochastic
gradient descent).
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Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

ℓ𝑘(𝜃) = log (1
𝑘

𝑘
∑
𝑖=1

𝑤𝑖)

The SUMO estimator is a sum estimator based on the series:

log 𝑝(𝑦|𝜃) = 𝔼[ℓ1(𝜃)] +
∞

∑
𝑘=1

𝔼[Δ𝑘], Δ𝑘 = ℓ𝑘+1(𝜃) − ℓ𝑘(𝜃)

Main issue: infinite variance.
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Alternative approach: MLMC (Shi & Cornish, 2021)

Adaptation of SUMO, truncation at 𝑅 = 2𝐾.

Variance is infinite, but the random CPU time may have infinite
variance (and has always heavy tails).
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Comparison on a toy model from Rob & Cornish (2021)
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Caption

Estimate vs CPU for an expected cost 𝐶 of 6 (top) and 96
(bottom) samples per data point. Dimension is 𝑑 = 2 (left) and
𝑑 = 5 (right). The vertical dashed line denotes the expected cost
while the horizontal one denotes the true value of ∑𝑛

𝑖=1 log 𝑝(𝑦𝑖|𝜃).



Independent component analysis (Allassonnière and
Younes, 2012)

𝑦 =
𝑘

∑
𝑗=1

𝑧𝑗𝑎𝑗 + 𝜎𝜖 where

▶ 𝑦 is a high-dim object (e.g. image)

▶ the 𝑧𝑗 are independent latent variables
▶ 𝜃 = (𝐴, 𝜎), with 𝐴 = (𝑎𝑗)𝑗 = 1, … , 𝑘.

Aim is to estimate 𝜃 using SGD.
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Stochastic gradient descent

Given data (𝑦1, … , 𝑦𝑛), do gradient descent, where at east step,
the gradient is replaced by an unbiased estimate of the gradient of
a single term (chosen uniformly).

A good illustration on the need for automation, i.e. at each
iteration, the actual value of 𝑚, 𝜎2, and thus 𝑥0 and 𝑝 must
change.
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Estimated images

(a) true (a) simple (a) cycle (a) SAEM



Numerical experiments: reciprocal



Exponential random graph model

Figure 6: Florentine family business network

𝑝(𝑦|𝜃) = exp{𝜃𝑇 𝑠(𝑦)}/𝑍(𝜃) where

▶ 𝑦 = (𝑦𝑖𝑗), with 𝑦𝑖𝑗 = 1 (resp. 0) if nodes 𝑖 and 𝑗 are
connected

▶ 𝑠(𝑦) is a collection of network statistics (number of edges,
number of 𝑘−stars, etc.)

▶ 𝑍(𝜃) is a sum over 2(𝑘
2) terms (intractable)
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Bayesian inference (and model choice)

Typically the dimension of 𝜃 is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

▶ Sample 𝜃𝑗 ∼ 𝑞

▶ compute 𝑤𝑗 = 𝑝(𝜃𝑗) exp{𝜃𝑇
𝑗 𝑠(𝑦)}

𝑞(𝜃𝑗) × 1
𝑍(𝜃𝑗)

Pseudo-marginal approach: replace 1/𝑍(𝜃) by an unbiased
estimate.
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Details

For a fixed 𝜃, run a tempering SMC algorithm to obtain an
unbiased estimate of 𝑍(𝜃).



Posterior approximation
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Figure 8: Bivariate weighted histograms approximating the posterior
distributions obtained with the simple and the cycling estimator using
𝑛 = 1024 samples from proposal 𝑞.



Cycling gives better performance II
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Figure 9: ESS accross simulated 𝜃𝑗



Conclusion



Concluding remarks

▶ A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

▶ No free lunch. Cannot work without pilot runs.
▶ Garbage in, garbage out: if the variance of the inputs is very

large, the variance of our estimator will be large as well.



Concluding remarks

▶ A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

▶ No free lunch. Cannot work without pilot runs.

▶ Garbage in, garbage out: if the variance of the inputs is very
large, the variance of our estimator will be large as well.



Concluding remarks

▶ A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

▶ No free lunch. Cannot work without pilot runs.
▶ Garbage in, garbage out: if the variance of the inputs is very

large, the variance of our estimator will be large as well.



Paper
Chopin N., Crucinio F.R. and S. S. Singh (2024). Towards a
turnkey approach to unbiased Monte Carlo estimation of smooth
functions of expectations, arxiv 2403.20313.

Figure 10: https://arxiv.org/abs/2403.20313
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