Towards a turnkey approach to unbiased Monte Carlo estimation of smooth functions of expectations

Nicolas Chopin

ENSAE, Institut Polytechnique de Paris

Introduction

Joint work with Francesca R. Crucinio & Sumeetpal S. Singh

 \blacktriangleright A function f

 \blacktriangleright a stream of IID random variables X_1, X_2, \ldots with expectation m and variance σ^2

 \blacktriangleright A function f

 \blacktriangleright a stream of IID random variables X_1, X_2, \ldots with expectation m and variance σ^2

 \blacktriangleright A function f

 \blacktriangleright a stream of IID random variables X_1, X_2, \ldots with expectation m and variance σ^2

generate unbiased estimates of f(m).

Taylor expansion of f around some x_0 :

$$\begin{split} f(m) &= \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (m-x_0)^k \\ &= \sum_{k=0}^{\infty} \gamma_k \left(\frac{m}{x_0} - 1\right)^k \end{split}$$

where $\gamma_k:=f^{(k)}(x_0)x_0^k/k!.$

Taylor expansion of f around some x_0 :

$$\begin{split} f(m) &= \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (m-x_0)^k \\ &= \sum_{k=0}^{\infty} \gamma_k \left(\frac{m}{x_0} - 1\right)^k \end{split}$$

where $\gamma_k:=f^{(k)}(x_0)x_0^k/k!.$

Unbiased estimate for $(m/x_0-1)^k$: $\prod_{i=1}^k (X_i/x_0-1)$.

This suggests using a **sum estimator** (McLeish, 2011; Glynn and Rhee, 2014; Rhee and Glynn, 2015):

$$\hat{f} = \sum_{k=0}^{R} \frac{\gamma_k U_{R,k}}{\mathbb{P}(R \ge k)} = \sum_{k=0}^{\infty} \gamma_k U_{R,k} \frac{\mathbf{1}\{R \ge k\}}{\mathbb{P}(R \ge k)}$$

where R takes values in $\mathbb{N}=\{0,1,\ldots\},$ and

$$U_{r,k} = U_k = \prod_{i=1}^k (X_i/x_0 - 1).$$

In many situations (e.g. latent variable models), we have access to unbiased estimates of the likelihood, but we would like unbiased estimates of the log-likelihood (and its gradient). In many situations (e.g. latent variable models), we have access to unbiased estimates of the likelihood, but we would like unbiased estimates of the log-likelihood (and its gradient).

For $f(x) = \log(x), \ \gamma_k = (-1)^{k-1}/k$ (sub-geometric).

A model whose likelihood is of the form:

$$p(y|\theta) = g(y,\theta)/Z(\theta)$$

where $Z(\theta)$ is intractable.

A model whose likelihood is of the form:

$$p(y|\theta) = g(y,\theta)/Z(\theta)$$

where $Z(\theta)$ is intractable.

Often, unbiased estimates of $Z(\theta)$ are available, but we would like to estimate unbiasedly $1/Z(\theta)$, e.g. to implement a pseudo-marginal MCMC sampler.

A model whose likelihood is of the form:

$$p(y|\theta) = g(y,\theta)/Z(\theta)$$

where $Z(\theta)$ is intractable.

Often, unbiased estimates of $Z(\theta)$ are available, but we would like to estimate unbiasedly $1/Z(\theta)$, e.g. to implement a pseudo-marginal MCMC sampler.

For f(x)=1/x, $\gamma_k=(-1)^{k-1},$ which is also sub-geometric.

Obviously

$$\exp(x) = \exp(x_0) \times \sum_{k=0}^\infty \frac{(x-x_0)^k}{k!}$$

has also many practical applications; however the decay of the coefficients is **super-geometric**, which leads to different considerations.

Obviously

$$\exp(x) = \exp(x_0) \times \sum_{k=0}^\infty \frac{(x-x_0)^k}{k!}$$

has also many practical applications; however the decay of the coefficients is **super-geometric**, which leads to different considerations.

See Papaspiliopoulos (2011).

 $\blacktriangleright x_0$

\blacktriangleright the distribution of R

► x₀

- \blacktriangleright the distribution of R
- the form of the $U_{r,k}$'s (see later).

► x₀

- \blacktriangleright the distribution of R
- the form of the $U_{r,k}$'s (see later).

► x₀

- \blacktriangleright the distribution of R
- the form of the $U_{r,k}$'s (see later).

variance of estimate should be finite;

CPU time is random; make sure its variance is also finite (and has light tails).

variance of estimate should be finite;

CPU time is random; make sure its variance is also finite (and has light tails).

- variance of estimate should be finite;
- CPU time is random; make sure its variance is also finite (and has light tails).
- The second point is related to the behaviour of
 - sum of random variables (when estimates are computed sequentially)

- variance of estimate should be finite;
- CPU time is random; make sure its variance is also finite (and has light tails).
- The second point is related to the behaviour of
 - sum of random variables (when estimates are computed sequentially)
 - max of random variables (when estimates are computed in parallel)

Theoretical properties

$$\operatorname{var}[\hat{f}] = \operatorname{var}\left[\mathbb{E}[\hat{f}|R]\right] + \mathbb{E}\left[\operatorname{var}[\hat{f}|R]\right]$$

where:

the first term measures the variability induced by the random truncation.

$$\operatorname{var}[\hat{f}] = \operatorname{var}\left[\mathbb{E}[\hat{f}|R]\right] + \mathbb{E}\left[\operatorname{var}[\hat{f}|R]\right]$$

where:

the first term measures the variability induced by the random truncation.

 \blacktriangleright the second term measures the variability due to the $U_{r,k}$'s (the unbiased estimates of $(m/x_0 - 1)^k$).

Analysing the first term

$$\mathbb{E}\left[\hat{f}\Big|R=r\right] = \sum_{k=0}^{\infty} \gamma_k \frac{\mathbf{1}\{r \ge k\}}{\mathbb{P}(R \ge k)} \left(\frac{m}{x_0} - 1\right)^k.$$

Hence

$$\begin{aligned} \operatorname{var}\left[\mathbb{E}[\widehat{f}|R]\right] &= \sum_{k=0}^{\infty} \gamma_k^2 \left(\frac{m}{x_0} - 1\right)^{2k} \left(\frac{1}{\mathbb{P}(R \ge k)} - 1\right) \\ &+ 2\sum_{k=0}^{\infty} \sum_{l=k+1}^{\infty} \gamma_k \gamma_l \left(\frac{m}{x_0} - 1\right)^{k+l} \left(\frac{1}{\mathbb{P}(R \ge k)} - 1\right). \end{aligned}$$

These expressions suggest to take:

•
$$x_0$$
 such that $\beta_0 := |m/x_0 - 1| < 1$;

These expressions suggest to take:

$$\blacktriangleright \ x_0 \text{ such that } \beta_0 := |m/x_0 - 1| < 1;$$

$$\label{eq:rescaled} \begin{split} \blacktriangleright \ R \sim \operatorname{Geometric}(p) \text{, with } p < 1 - \beta_0 \text{, so that} \\ \mathbb{P}(R \geq k) > \beta_0^{2k}. \end{split}$$

Currently, we use the following unbiased estimate of $(m/x_0 - 1)^k$:

$$U_{r,k} = U_k = \prod_{i=1}^k (X_i/x_0 - 1).$$

Currently, we use the following unbiased estimate of $(m/x_0 - 1)^k$:

$$U_{r,k} = U_k = \prod_{i=1}^k (X_i/x_0 - 1).$$

Computing \hat{f} requires generating X_1, \ldots, X_R in order to compute the last term $U_{R,R}$, but we use only the k first inputs to estimate $(m/x_0-1)^k$. Seems inefficient.

In order to use the **whole sample**, consider the following cycling estimator:

$$\begin{split} U_{r,k}^{\mathrm{C}} &:= \frac{1}{r} \Big[\prod_{i=1}^{k} \left(\frac{X_i}{x_0} - 1 \right) + \prod_{i=2}^{k+1} \left(\frac{X_i}{x_0} - 1 \right) \\ &+ \ldots + \left(\frac{X_r}{x_0} - 1 \right) \prod_{i=1}^{k-1} \left(\frac{X_i}{x_0} - 1 \right) \Big]. \end{split}$$
For the cycling estimator, one has (under weak assumptions)

$$\mathbb{E}\left[\mathrm{var}(\hat{f}^{\mathrm{C}}|R)\right] = \mathcal{O}(p\log(1/p))$$

as $p \to 0$.

Average number of required inputs is $\mathbb{E}[R] \approx 1/p$.

For the cycling estimator, one has (under weak assumptions)

$$\mathbb{E}\left[\mathrm{var}(\hat{f}^{\mathrm{C}}|R)\right] = \mathcal{O}(p\log(1/p))$$

as $p \to 0$.

- Average number of required inputs is $\mathbb{E}[R] \approx 1/p$.
- We can have $var[\hat{f}] \to 0$ by taking $\mathbb{E}[R] \to +\infty$. (This is not the case for the simple estimator.)

For the cycling estimator, one has (under weak assumptions)

$$\mathbb{E}\left[\mathrm{var}(\hat{f}^{\mathrm{C}}|R)\right] = \mathcal{O}(p\log(1/p))$$

as $p \to 0$.

- Average number of required inputs is $\mathbb{E}[R] \approx 1/p$.
- We can have $var[\hat{f}] \to 0$ by taking $\mathbb{E}[R] \to +\infty$. (This is not the case for the simple estimator.)
- ▶ Up to log factor, standard Monte Carlo rate, i.e. var[f] = O(log E[R]/E[R]).

The simple estimator does not converge as $\mathbb{E}[R] \to +\infty$.

Calibration of tuning parameters

Must ensure that $\left|m/x_{0}-1\right|<1,$ but m is unknown.

Must ensure that $|m/x_0 - 1| < 1$, but m is unknown.

 \Rightarrow pilot run, bootstrap to ensure this condition with high probability.

Less of an issue with the cycling estimator, because work-normalised variance depends weakly on p.

Less of an issue with the cycling estimator, because work-normalised variance depends weakly on $p. \end{tabular}$

See paper.

Numerical experiments: log

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ ;

$$p(y|\theta) = \int p(y|z,\theta) p(z|\theta) dz$$

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ ;

$$p(y|\theta) = \int p(y|z,\theta) p(z|\theta) dz$$

For a fixed θ , **importance sampling** gives unbiased estimates of the likelihood:

$$X_i = w_i = \frac{p(y|Z_i,\theta)p(Z_i|\theta)}{q(Z_i)}, \quad Z_i \sim q$$

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ ;

$$p(y|\theta) = \int p(y|z,\theta) p(z|\theta) dz$$

For a fixed θ , **importance sampling** gives unbiased estimates of the likelihood:

$$X_i = w_i = \frac{p(y|Z_i, \theta)p(Z_i|\theta)}{q(Z_i)}, \quad Z_i \sim q$$

To compute the MLE, use our approach to derive unbiased estimate of the **log-likelihood** and its **gradient** (stochastic gradient descent).

Consider biased (but consistent) IS estimate:

$$\ell_k(\theta) = \log\left(\frac{1}{k}\sum_{i=1}^k w_i\right)$$

The SUMO estimator is a sum estimator based on the series:

$$\log p(y|\theta) = \mathbb{E}[\ell_1(\theta)] + \sum_{k=1}^{\infty} \mathbb{E}[\Delta_k], \quad \Delta_k = \ell_{k+1}(\theta) - \ell_k(\theta)$$

Consider biased (but consistent) IS estimate:

$$\ell_k(\theta) = \log\left(\frac{1}{k}\sum_{i=1}^k w_i\right)$$

The SUMO estimator is a sum estimator based on the series:

$$\log p(y|\theta) = \mathbb{E}[\ell_1(\theta)] + \sum_{k=1}^\infty \mathbb{E}[\Delta_k], \quad \Delta_k = \ell_{k+1}(\theta) - \ell_k(\theta)$$

Main issue: infinite variance.

Alternative approach: MLMC (Shi & Cornish, 2021)

Adaptation of SUMO, truncation at $R = 2^{K}$.

Adaptation of SUMO, truncation at $R = 2^{K}$.

Variance is infinite, but the random CPU time may have infinite variance (and has always heavy tails).

Comparison on a toy model from Rob & Cornish (2021)

Estimate vs CPU for an expected cost C of 6 (top) and 96 (bottom) samples per data point. Dimension is d = 2 (left) and d = 5 (right). The vertical dashed line denotes the expected cost while the horizontal one denotes the true value of $\sum_{i=1}^{n} \log p(y_i|\theta)$.

$$y = \sum_{j=1}^k z_j a_j + \sigma \epsilon \quad \text{where} \quad$$

$$y = \sum_{j=1}^k z_j a_j + \sigma \epsilon \quad \text{where} \quad$$

 \blacktriangleright the z_i are independent latent variables

$$y = \sum_{j=1}^k z_j a_j + \sigma \epsilon \quad \text{where} \quad$$

$$y = \sum_{j=1}^k z_j a_j + \sigma \epsilon \quad \text{where} \quad$$

$$y = \sum_{j=1}^k z_j a_j + \sigma \epsilon \quad \text{where} \quad$$

Given data (y_1, \ldots, y_n) , do gradient descent, where at east step, the gradient is replaced by an unbiased estimate of the gradient of a **single** term (chosen uniformly).

Given data (y_1, \ldots, y_n) , do gradient descent, where at east step, the gradient is replaced by an unbiased estimate of the gradient of a **single** term (chosen uniformly).

A good illustration on the need for automation, i.e. at each iteration, the actual value of $m,\,\sigma^2,$ and thus x_0 and p must change.

Estimated images

Numerical experiments: reciprocal

Exponential random graph model

Figure 6: Florentine family business network

$$p(y|\theta) = \exp\{\theta^T s(y)\}/Z(\theta) \quad \text{where} \quad$$

▶ $y = (y_{ij})$, with $y_{ij} = 1$ (resp. 0) if nodes i and j are connected

Exponential random graph model

Figure 6: Florentine family business network

$$p(y|\theta) = \exp\{\theta^T s(y)\}/Z(\theta) \quad \text{where} \quad$$

▶ $y = (y_{ij})$, with $y_{ij} = 1$ (resp. 0) if nodes i and j are connected

s(y) is a collection of network statistics (number of edges, number of k-stars, etc.)

Exponential random graph model

Figure 6: Florentine family business network

$$p(y|\theta) = \exp\{\theta^T s(y)\}/Z(\theta) \quad \text{where} \quad$$

▶ $y = (y_{ij})$, with $y_{ij} = 1$ (resp. 0) if nodes i and j are connected

s(y) is a collection of network statistics (number of edges, number of k-stars, etc.)

•
$$Z(heta)$$
 is a sum over $2^{\binom{k}{2}}$ terms (intractable)

Sample
$$\theta_j \sim q$$

$$\begin{array}{l} \blacktriangleright \mbox{ Sample } \theta_j \sim q \\ \\ \blacktriangleright \mbox{ compute } w_j = \frac{p(\theta_j) \exp\{\theta_j^T s(y)\}}{q(\theta_j)} \times \frac{1}{Z(\theta_j)} \end{array}$$

$$\begin{array}{l} \blacktriangleright \mbox{ Sample } \theta_j \sim q \\ \\ \blacktriangleright \mbox{ compute } w_j = \frac{p(\theta_j) \exp\{\theta_j^T s(y)\}}{q(\theta_j)} \times \frac{1}{Z(\theta_j)} \end{array}$$

Sample
$$\theta_j \sim q$$

$$\blacktriangleright \text{ compute } w_j = \frac{p(\theta_j) \exp\{\theta_j^T s(y)\}}{q(\theta_j)} \times \frac{1}{Z(\theta_j)}$$

Pseudo-marginal approach: replace $1/Z(\theta)$ by an unbiased estimate.

For a fixed $\theta,$ run a tempering SMC algorithm to obtain an unbiased estimate of $Z(\theta).$

Figure 8: Bivariate weighted histograms approximating the posterior distributions obtained with the simple and the cycling estimator using n = 1024 samples from proposal q.

Cycling gives better performance II

Figure 9: ESS accross simulated θ_i

A step towards making unbiased estimates of smooth function more reliable and user-friendly.

- A step towards making unbiased estimates of smooth function more reliable and user-friendly.
- No free lunch. Cannot work without pilot runs.

- A step towards making unbiased estimates of smooth function more reliable and user-friendly.
- No free lunch. Cannot work without pilot runs.
- Garbage in, garbage out: if the variance of the inputs is very large, the variance of our estimator will be large as well.

Chopin N., Crucinio F.R. and S. S. Singh (2024). Towards a turnkey approach to unbiased Monte Carlo estimation of smooth functions of expectations, arxiv 2403.20313.

