Towards a turnkey approach to unbiased Monte Carlo estimation of smooth functions of expectations

Nicolas Chopin

ENSAE, Institut Polytechnique de Paris

Introduction

Joint work with Francesca R. Crucinio \& Sumeetpal S. Singh

The math problem

Given:

- A function f

The math problem

Given:

- A function f
\checkmark a stream of IID random variables X_{1}, X_{2}, \ldots with expectation m and variance σ^{2}

The math problem

Given:

- A function f
\checkmark a stream of IID random variables X_{1}, X_{2}, \ldots with expectation m and variance σ^{2}

The math problem

Given:

- A function f
- a stream of IID random variables X_{1}, X_{2}, \ldots with expectation m and variance σ^{2}
generate unbiased estimates of $f(m)$.

Taylor expansion

Taylor expansion of f around some x_{0} :

$$
\begin{aligned}
f(m) & =\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(m-x_{0}\right)^{k} \\
& =\sum_{k=0}^{\infty} \gamma_{k}\left(\frac{m}{x_{0}}-1\right)^{k}
\end{aligned}
$$

where $\gamma_{k}:=f^{(k)}\left(x_{0}\right) x_{0}^{k} / k!$.

Taylor expansion

Taylor expansion of f around some x_{0} :

$$
\begin{aligned}
f(m) & =\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(m-x_{0}\right)^{k} \\
& =\sum_{k=0}^{\infty} \gamma_{k}\left(\frac{m}{x_{0}}-1\right)^{k}
\end{aligned}
$$

where $\gamma_{k}:=f^{(k)}\left(x_{0}\right) x_{0}^{k} / k!$.
Unbiased estimate for $\left(m / x_{0}-1\right)^{k}: \prod_{i=1}^{k}\left(X_{i} / x_{0}-1\right)$.

A Taylor-based sum estimator

This suggests using a sum estimator (McLeish, 2011; Glynn and Rhee, 2014; Rhee and Glynn, 2015):

$$
\hat{f}=\sum_{k=0}^{R} \frac{\gamma_{k} U_{R, k}}{\mathbb{P}(R \geq k)}=\sum_{k=0}^{\infty} \gamma_{k} U_{R, k} \frac{\mathbf{1}\{R \geq k\}}{\mathbb{P}(R \geq k)}
$$

where R takes values in $\mathbb{N}=\{0,1, \ldots\}$, and

$$
U_{r, k}=U_{k}=\prod_{i=1}^{k}\left(X_{i} / x_{0}-1\right)
$$

Motivation I: Log and MLE

In many situations (e.g. latent variable models), we have access to unbiased estimates of the likelihood, but we would like unbiased estimates of the log-likelihood (and its gradient).

Motivation I: Log and MLE

In many situations (e.g. latent variable models), we have access to unbiased estimates of the likelihood, but we would like unbiased estimates of the log-likelihood (and its gradient).
For $f(x)=\log (x), \gamma_{k}=(-1)^{k-1} / k$ (sub-geometric).

Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

$$
p(y \mid \theta)=g(y, \theta) / Z(\theta)
$$

where $Z(\theta)$ is intractable.

Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

$$
p(y \mid \theta)=g(y, \theta) / Z(\theta)
$$

where $Z(\theta)$ is intractable.
Often, unbiased estimates of $Z(\theta)$ are available, but we would like to estimate unbiasedly $1 / Z(\theta)$, e.g. to implement a pseudo-marginal MCMC sampler.

Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

$$
p(y \mid \theta)=g(y, \theta) / Z(\theta)
$$

where $Z(\theta)$ is intractable.
Often, unbiased estimates of $Z(\theta)$ are available, but we would like to estimate unbiasedly $1 / Z(\theta)$, e.g. to implement a pseudo-marginal MCMC sampler.
For $f(x)=1 / x, \gamma_{k}=(-1)^{k-1}$, which is also sub-geometric.

Not a motivation: Exponential

Obviously

$$
\exp (x)=\exp \left(x_{0}\right) \times \sum_{k=0}^{\infty} \frac{\left(x-x_{0}\right)^{k}}{k!}
$$

has also many practical applications; however the decay of the coefficients is super-geometric, which leads to different considerations.

Not a motivation: Exponential

Obviously

$$
\exp (x)=\exp \left(x_{0}\right) \times \sum_{k=0}^{\infty} \frac{\left(x-x_{0}\right)^{k}}{k!}
$$

has also many practical applications; however the decay of the coefficients is super-geometric, which leads to different considerations.

See Papaspiliopoulos (2011).

Main points to address

Robust/automatic guidelines on how to choose:
$>x_{0}$

Main points to address

Robust/automatic guidelines on how to choose:
$>x_{0}$

- the distribution of R

Main points to address

Robust/automatic guidelines on how to choose:

- x_{0}
the distribution of R
the form of the $U_{r, k}$'s (see later).

Main points to address

Robust/automatic guidelines on how to choose:

- x_{0}
the distribution of R
the form of the $U_{r, k}$'s (see later).

Main points to address

Robust/automatic guidelines on how to choose:

- x_{0}
the distribution of R
the form of the $U_{r, k}$'s (see later).

Objectives

- variance of estimate should be finite;

Objectives

- variance of estimate should be finite;
- CPU time is random; make sure its variance is also finite (and has light tails).

Objectives

- variance of estimate should be finite;
- CPU time is random; make sure its variance is also finite (and has light tails).

Objectives

- variance of estimate should be finite;
- CPU time is random; make sure its variance is also finite (and has light tails).
The second point is related to the behaviour of
- sum of random variables (when estimates are computed sequentially)

Objectives

- variance of estimate should be finite;
- CPU time is random; make sure its variance is also finite (and has light tails).
The second point is related to the behaviour of
- sum of random variables (when estimates are computed sequentially)
- max of random variables (when estimates are computed in parallel)

Theoretical properties

Variance decomposition

$$
\operatorname{var}[\hat{f}]=\operatorname{var}[\mathbb{E}[\hat{f} \mid R]]+\mathbb{E}[\operatorname{var}[\hat{f} \mid R]]
$$

where:
the first term measures the variability induced by the random truncation.

Variance decomposition

$$
\operatorname{var}[\hat{f}]=\operatorname{var}[\mathbb{E}[\hat{f} \mid R]]+\mathbb{E}[\operatorname{var}[\hat{f} \mid R]]
$$

where:
the first term measures the variability induced by the random truncation.

- the second term measures the variability due to the $U_{r, k}$ ' s (the unbiased estimates of $\left(m / x_{0}-1\right)^{k}$).

Analysing the first term

$$
\mathbb{E}[\hat{f} \mid R=r]=\sum_{k=0}^{\infty} \gamma_{k} \frac{\mathbf{1}\{r \geq k\}}{\mathbb{P}(R \geq k)}\left(\frac{m}{x_{0}}-1\right)^{k} .
$$

Hence

$$
\begin{aligned}
& \operatorname{var}[\mathbb{E}[\hat{f} \mid R]]=\sum_{k=0}^{\infty} \gamma_{k}^{2}\left(\frac{m}{x_{0}}-1\right)^{2 k}\left(\frac{1}{\mathbb{P}(R \geq k)}-1\right) \\
& \quad+2 \sum_{k=0}^{\infty} \sum_{l=k+1}^{\infty} \gamma_{k} \gamma_{l}\left(\frac{m}{x_{0}}-1\right)^{k+l}\left(\frac{1}{\mathbb{P}(R \geq k)}-1\right)
\end{aligned}
$$

Implications

These expressions suggest to take:

- x_{0} such that $\beta_{0}:=\left|m / x_{0}-1\right|<1$;

Implications

These expressions suggest to take:

- x_{0} such that $\beta_{0}:=\left|m / x_{0}-1\right|<1$;
- $R \sim \operatorname{Geometric}(p)$, with $p<1-\beta_{0}$, so that $\mathbb{P}(R \geq k)>\beta_{0}^{2 k}$.

Improving the $U_{r, k}$

Currently, we use the following unbiased estimate of $\left(m / x_{0}-1\right)^{k}$:

$$
U_{r, k}=U_{k}=\prod_{i=1}^{k}\left(X_{i} / x_{0}-1\right)
$$

Improving the $U_{r, k}$

Currently, we use the following unbiased estimate of $\left(m / x_{0}-1\right)^{k}$:

$$
U_{r, k}=U_{k}=\prod_{i=1}^{k}\left(X_{i} / x_{0}-1\right)
$$

Computing \hat{f} requires generating X_{1}, \ldots, X_{R} in order to compute the last term $U_{R, R}$, but we use only the k first inputs to estimate $\left(m / x_{0}-1\right)^{k}$. Seems inefficient.

Cycling estimator

In order to use the whole sample, consider the following cycling estimator:

$$
\begin{aligned}
U_{r, k}^{\mathrm{C}}:=\frac{1}{r}\left[\prod_{i=1}^{k}\left(\frac{X_{i}}{x_{0}}-1\right)\right. & +\prod_{i=2}^{k+1}\left(\frac{X_{i}}{x_{0}}-1\right) \\
& \left.+\ldots+\left(\frac{X_{r}}{x_{0}}-1\right) \prod_{i=1}^{k-1}\left(\frac{X_{i}}{x_{0}}-1\right)\right]
\end{aligned}
$$

Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

$$
\mathbb{E}\left[\operatorname{var}\left(\hat{f}^{\mathrm{C}} \mid R\right)\right]=\mathcal{O}(p \log (1 / p))
$$

as $p \rightarrow 0$.

- Average number of required inputs is $\mathbb{E}[R] \approx 1 / p$.

Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

$$
\mathbb{E}\left[\operatorname{var}\left(\hat{f}^{\mathrm{C}} \mid R\right)\right]=\mathcal{O}(p \log (1 / p))
$$

as $p \rightarrow 0$.

- Average number of required inputs is $\mathbb{E}[R] \approx 1 / p$.
- We can have var $[\hat{f}] \rightarrow 0$ by taking $\mathbb{E}[R] \rightarrow+\infty$. (This is not the case for the simple estimator.)

Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

$$
\mathbb{E}\left[\operatorname{var}\left(\hat{f}^{\mathrm{C}} \mid R\right)\right]=\mathcal{O}(p \log (1 / p))
$$

as $p \rightarrow 0$.

- Average number of required inputs is $\mathbb{E}[R] \approx 1 / p$.
- We can have var $[\hat{f}] \rightarrow 0$ by taking $\mathbb{E}[R] \rightarrow+\infty$. (This is not the case for the simple estimator.)
- Up to log factor, standard Monte Carlo rate, i.e. $\operatorname{var}[f]=\mathcal{O}(\log \mathbb{E}[R] / \mathbb{E}[R])$.

Without cycling

The simple estimator does not converge as $\mathbb{E}[R] \rightarrow+\infty$.

Calibration of tuning parameters

Tuning x_{0}

Must ensure that $\left|m / x_{0}-1\right|<1$, but m is unknown.

Tuning x_{0}

Must ensure that $\left|m / x_{0}-1\right|<1$, but m is unknown.
\Rightarrow pilot run, bootstrap to ensure this condition with high probability.

Tuning p

Less of an issue with the cycling estimator, because work-normalised variance depends weakly on p.

Tuning p

Less of an issue with the cycling estimator, because work-normalised variance depends weakly on p.

See paper.

Numerical experiments: log

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ;

$$
p(y \mid \theta)=\int p(y \mid z, \theta) p(z \mid \theta) d z
$$

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ;

$$
p(y \mid \theta)=\int p(y \mid z, \theta) p(z \mid \theta) d z
$$

For a fixed θ, importance sampling gives unbiased estimates of the likelihood:

$$
X_{i}=w_{i}=\frac{p\left(y \mid Z_{i}, \theta\right) p\left(Z_{i} \mid \theta\right)}{q\left(Z_{i}\right)}, \quad Z_{i} \sim q
$$

log-likelihood (and gradient) of a latent variable model

Model with data y, latent z, parameter θ;

$$
p(y \mid \theta)=\int p(y \mid z, \theta) p(z \mid \theta) d z
$$

For a fixed θ, importance sampling gives unbiased estimates of the likelihood:

$$
X_{i}=w_{i}=\frac{p\left(y \mid Z_{i}, \theta\right) p\left(Z_{i} \mid \theta\right)}{q\left(Z_{i}\right)}, \quad Z_{i} \sim q
$$

To compute the MLE, use our approach to derive unbiased estimate of the log-likelihood and its gradient (stochastic gradient descent).

Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

$$
\ell_{k}(\theta)=\log \left(\frac{1}{k} \sum_{i=1}^{k} w_{i}\right)
$$

The SUMO estimator is a sum estimator based on the series:

$$
\log p(y \mid \theta)=\mathbb{E}\left[\ell_{1}(\theta)\right]+\sum_{k=1}^{\infty} \mathbb{E}\left[\Delta_{k}\right], \quad \Delta_{k}=\ell_{k+1}(\theta)-\ell_{k}(\theta)
$$

Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

$$
\ell_{k}(\theta)=\log \left(\frac{1}{k} \sum_{i=1}^{k} w_{i}\right)
$$

The SUMO estimator is a sum estimator based on the series:

$$
\log p(y \mid \theta)=\mathbb{E}\left[\ell_{1}(\theta)\right]+\sum_{k=1}^{\infty} \mathbb{E}\left[\Delta_{k}\right], \quad \Delta_{k}=\ell_{k+1}(\theta)-\ell_{k}(\theta)
$$

Main issue: infinite variance.

Alternative approach: MLMC (Shi \& Cornish, 2021)

Adaptation of SUMO, truncation at $R=2^{K}$.

Alternative approach: MLMC (Shi \& Cornish, 2021)

Adaptation of SUMO, truncation at $R=2^{K}$.
Variance is infinite, but the random CPU time may have infinite variance (and has always heavy tails).

Comparison on a toy model from Rob \& Cornish (2021)

Figure 1:

Caption

Estimate vs CPU for an expected cost C of 6 (top) and 96 (bottom) samples per data point. Dimension is $d=2$ (left) and $d=5$ (right). The vertical dashed line denotes the expected cost while the horizontal one denotes the true value of $\sum_{i=1}^{n} \log p\left(y_{i} \mid \theta\right)$.

Independent component analysis (Allassonnière and Younes, 2012)

$$
y=\sum_{j=1}^{k} z_{j} a_{j}+\sigma \epsilon \quad \text { where }
$$

- y is a high-dim object (e.g. image)

Independent component analysis (Allassonnière and Younes, 2012)

$$
y=\sum_{j=1}^{k} z_{j} a_{j}+\sigma \epsilon \quad \text { where }
$$

- y is a high-dim object (e.g. image)
the z_{j} are independent latent variables

Independent component analysis (Allassonnière and Younes, 2012)

$$
y=\sum_{j=1}^{k} z_{j} a_{j}+\sigma \epsilon \quad \text { where }
$$

- y is a high-dim object (e.g. image)
the z_{j} are independent latent variables
- $\theta=(A, \sigma)$, with $A=\left(a_{j}\right) j=1, \ldots, k$.

Independent component analysis (Allassonnière and Younes, 2012)

$$
y=\sum_{j=1}^{k} z_{j} a_{j}+\sigma \epsilon \quad \text { where }
$$

- y is a high-dim object (e.g. image)
the z_{j} are independent latent variables
- $\theta=(A, \sigma)$, with $A=\left(a_{j}\right) j=1, \ldots, k$.

Independent component analysis (Allassonnière and Younes, 2012)

$$
y=\sum_{j=1}^{k} z_{j} a_{j}+\sigma \epsilon \quad \text { where }
$$

- y is a high-dim object (e.g. image)
the z_{j} are independent latent variables

$$
\theta=(A, \sigma), \text { with } A=\left(a_{j}\right) j=1, \ldots, k .
$$

Aim is to estimate θ using SGD.

Stochastic gradient descent

Given data $\left(y_{1}, \ldots, y_{n}\right)$, do gradient descent, where at east step, the gradient is replaced by an unbiased estimate of the gradient of a single term (chosen uniformly).

Stochastic gradient descent

Given data $\left(y_{1}, \ldots, y_{n}\right)$, do gradient descent, where at east step, the gradient is replaced by an unbiased estimate of the gradient of a single term (chosen uniformly).

A good illustration on the need for automation, i.e. at each iteration, the actual value of m, σ^{2}, and thus x_{0} and p must change.

Estimated images

Numerical experiments: reciprocal

Exponential random graph model

Figure 6: Florentine family business network

$$
p(y \mid \theta)=\exp \left\{\theta^{T} s(y)\right\} / Z(\theta) \quad \text { where }
$$

- $y=\left(y_{i j}\right)$, with $y_{i j}=1$ (resp. 0) if nodes i and j are connected

Exponential random graph model

Figure 6: Florentine family business network

$$
p(y \mid \theta)=\exp \left\{\theta^{T} s(y)\right\} / Z(\theta) \quad \text { where }
$$

- $y=\left(y_{i j}\right)$, with $y_{i j}=1$ (resp. 0) if nodes i and j are connected
- $s(y)$ is a collection of network statistics (number of edges, number of k-stars, etc.)

Exponential random graph model

Figure 6: Florentine family business network

$$
p(y \mid \theta)=\exp \left\{\theta^{T} s(y)\right\} / Z(\theta) \quad \text { where }
$$

- $y=\left(y_{i j}\right)$, with $y_{i j}=1$ (resp. 0) if nodes i and j are connected
- $s(y)$ is a collection of network statistics (number of edges, number of k-stars, etc.)
- $Z(\theta)$ is a sum over $2^{\binom{k}{2}}$ terms (intractable)

Bayesian inference (and model choice)

Typically the dimension of θ is $2-3$, so even importance sampling could work reasonably well to approximate the posterior:

- Sample $\theta_{j} \sim q$

Bayesian inference (and model choice)

Typically the dimension of θ is $2-3$, so even importance sampling could work reasonably well to approximate the posterior:

- Sample $\theta_{j} \sim q$
compute $w_{j}=\frac{p\left(\theta_{j}\right) \exp \left\{\theta_{j}^{T} s(y)\right\}}{q\left(\theta_{j}\right)} \times \frac{1}{Z\left(\theta_{j}\right)}$

Bayesian inference (and model choice)

Typically the dimension of θ is $2-3$, so even importance sampling could work reasonably well to approximate the posterior:

- Sample $\theta_{j} \sim q$
compute $w_{j}=\frac{p\left(\theta_{j}\right) \exp \left\{\theta_{j}^{T} s(y)\right\}}{q\left(\theta_{j}\right)} \times \frac{1}{Z\left(\theta_{j}\right)}$

Bayesian inference (and model choice)

Typically the dimension of θ is $2-3$, so even importance sampling could work reasonably well to approximate the posterior:

- Sample $\theta_{j} \sim q$
- compute $w_{j}=\frac{p\left(\theta_{j}\right) \exp \left\{\theta_{j}^{T} s(y)\right\}}{q\left(\theta_{j}\right)} \times \frac{1}{Z\left(\theta_{j}\right)}$

Pseudo-marginal approach: replace $1 / Z(\theta)$ by an unbiased estimate.

Details

For a fixed θ, run a tempering SMC algorithm to obtain an unbiased estimate of $Z(\theta)$.

Posterior approximation

(a) Simple

(a) Cycling

Figure 8: Bivariate weighted histograms approximating the posterior distributions obtained with the simple and the cycling estimator using $n=1024$ samples from proposal q.

Cycling gives better performance II

Figure 9: ESS accross simulated θ_{j}

Conclusion

Concluding remarks

- A step towards making unbiased estimates of smooth function more reliable and user-friendly.

Concluding remarks

- A step towards making unbiased estimates of smooth function more reliable and user-friendly.
- No free lunch. Cannot work without pilot runs.

Concluding remarks

- A step towards making unbiased estimates of smooth function more reliable and user-friendly.
- No free lunch. Cannot work without pilot runs.
- Garbage in, garbage out: if the variance of the inputs is very large, the variance of our estimator will be large as well.

Paper

Chopin N., Crucinio F.R. and S. S. Singh (2024). Towards a turnkey approach to unbiased Monte Carlo estimation of smooth functions of expectations, arxiv 2403.20313.

