
Towards a turnkey approach to unbiased Monte
Carlo estimation of smooth functions of

expectations

Nicolas Chopin

ENSAE, Institut Polytechnique de Paris

Introduction

Joint work with Francesca R. Crucinio & Sumeetpal S.
Singh

The math problem

Given:
▶ A function 𝑓

▶ a stream of IID random variables 𝑋1, 𝑋2, … with expectation
𝑚 and variance 𝜎2

generate unbiased estimates of 𝑓(𝑚).

The math problem

Given:
▶ A function 𝑓
▶ a stream of IID random variables 𝑋1, 𝑋2, … with expectation

𝑚 and variance 𝜎2

generate unbiased estimates of 𝑓(𝑚).

The math problem

Given:
▶ A function 𝑓
▶ a stream of IID random variables 𝑋1, 𝑋2, … with expectation

𝑚 and variance 𝜎2

generate unbiased estimates of 𝑓(𝑚).

The math problem

Given:
▶ A function 𝑓
▶ a stream of IID random variables 𝑋1, 𝑋2, … with expectation

𝑚 and variance 𝜎2

generate unbiased estimates of 𝑓(𝑚).

Taylor expansion

Taylor expansion of 𝑓 around some 𝑥0:

𝑓(𝑚) =
∞

∑
𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘! (𝑚 − 𝑥0)𝑘

=
∞

∑
𝑘=0

𝛾𝑘 (𝑚
𝑥0

− 1)
𝑘

where 𝛾𝑘 ∶= 𝑓 (𝑘)(𝑥0)𝑥𝑘
0/𝑘!.

Unbiased estimate for (𝑚/𝑥0 − 1)𝑘: ∏𝑘
𝑖=1(𝑋𝑖/𝑥0 − 1).

Taylor expansion

Taylor expansion of 𝑓 around some 𝑥0:

𝑓(𝑚) =
∞

∑
𝑘=0

𝑓 (𝑘)(𝑥0)
𝑘! (𝑚 − 𝑥0)𝑘

=
∞

∑
𝑘=0

𝛾𝑘 (𝑚
𝑥0

− 1)
𝑘

where 𝛾𝑘 ∶= 𝑓 (𝑘)(𝑥0)𝑥𝑘
0/𝑘!.

Unbiased estimate for (𝑚/𝑥0 − 1)𝑘: ∏𝑘
𝑖=1(𝑋𝑖/𝑥0 − 1).

A Taylor-based sum estimator

This suggests using a sum estimator (McLeish, 2011; Glynn and
Rhee, 2014; Rhee and Glynn, 2015):

̂𝑓 =
𝑅

∑
𝑘=0

𝛾𝑘𝑈𝑅,𝑘
ℙ(𝑅 ≥ 𝑘) =

∞
∑
𝑘=0

𝛾𝑘𝑈𝑅,𝑘
1{𝑅 ≥ 𝑘}
ℙ(𝑅 ≥ 𝑘)

where 𝑅 takes values in ℕ = {0, 1, …}, and

𝑈𝑟,𝑘 = 𝑈𝑘 =
𝑘

∏
𝑖=1

(𝑋𝑖/𝑥0 − 1).

Motivation I: Log and MLE

In many situations (e.g. latent variable models), we have access to
unbiased estimates of the likelihood, but we would like unbiased
estimates of the log-likelihood (and its gradient).

For 𝑓(𝑥) = log(𝑥), 𝛾𝑘 = (−1)𝑘−1/𝑘 (sub-geometric).

Motivation I: Log and MLE

In many situations (e.g. latent variable models), we have access to
unbiased estimates of the likelihood, but we would like unbiased
estimates of the log-likelihood (and its gradient).

For 𝑓(𝑥) = log(𝑥), 𝛾𝑘 = (−1)𝑘−1/𝑘 (sub-geometric).

Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

𝑝(𝑦|𝜃) = 𝑔(𝑦, 𝜃)/𝑍(𝜃)

where 𝑍(𝜃) is intractable.

Often, unbiased estimates of 𝑍(𝜃) are available, but we would like
to estimate unbiasedly 1/𝑍(𝜃), e.g. to implement a
pseudo-marginal MCMC sampler.

For 𝑓(𝑥) = 1/𝑥, 𝛾𝑘 = (−1)𝑘−1, which is also sub-geometric.

Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

𝑝(𝑦|𝜃) = 𝑔(𝑦, 𝜃)/𝑍(𝜃)

where 𝑍(𝜃) is intractable.

Often, unbiased estimates of 𝑍(𝜃) are available, but we would like
to estimate unbiasedly 1/𝑍(𝜃), e.g. to implement a
pseudo-marginal MCMC sampler.

For 𝑓(𝑥) = 1/𝑥, 𝛾𝑘 = (−1)𝑘−1, which is also sub-geometric.

Motivation II: Reciprocal and un-normalised models

A model whose likelihood is of the form:

𝑝(𝑦|𝜃) = 𝑔(𝑦, 𝜃)/𝑍(𝜃)

where 𝑍(𝜃) is intractable.

Often, unbiased estimates of 𝑍(𝜃) are available, but we would like
to estimate unbiasedly 1/𝑍(𝜃), e.g. to implement a
pseudo-marginal MCMC sampler.

For 𝑓(𝑥) = 1/𝑥, 𝛾𝑘 = (−1)𝑘−1, which is also sub-geometric.

Not a motivation: Exponential

Obviously

exp(𝑥) = exp(𝑥0) ×
∞

∑
𝑘=0

(𝑥 − 𝑥0)𝑘

𝑘!
has also many practical applications; however the decay of the
coefficients is super-geometric, which leads to different
considerations.

See Papaspiliopoulos (2011).

Not a motivation: Exponential

Obviously

exp(𝑥) = exp(𝑥0) ×
∞

∑
𝑘=0

(𝑥 − 𝑥0)𝑘

𝑘!
has also many practical applications; however the decay of the
coefficients is super-geometric, which leads to different
considerations.

See Papaspiliopoulos (2011).

Main points to address

Robust/automatic guidelines on how to choose:
▶ 𝑥0

▶ the distribution of 𝑅
▶ the form of the 𝑈𝑟,𝑘’s (see later).

Main points to address

Robust/automatic guidelines on how to choose:
▶ 𝑥0

▶ the distribution of 𝑅

▶ the form of the 𝑈𝑟,𝑘’s (see later).

Main points to address

Robust/automatic guidelines on how to choose:
▶ 𝑥0

▶ the distribution of 𝑅
▶ the form of the 𝑈𝑟,𝑘’s (see later).

Main points to address

Robust/automatic guidelines on how to choose:
▶ 𝑥0

▶ the distribution of 𝑅
▶ the form of the 𝑈𝑟,𝑘’s (see later).

Main points to address

Robust/automatic guidelines on how to choose:
▶ 𝑥0

▶ the distribution of 𝑅
▶ the form of the 𝑈𝑟,𝑘’s (see later).

Objectives

▶ variance of estimate should be finite;

▶ CPU time is random; make sure its variance is also finite (and
has light tails).

The second point is related to the behaviour of

▶ sum of random variables (when estimates are computed
sequentially)

▶ max of random variables (when estimates are computed in
parallel)

Objectives

▶ variance of estimate should be finite;
▶ CPU time is random; make sure its variance is also finite (and

has light tails).

The second point is related to the behaviour of

▶ sum of random variables (when estimates are computed
sequentially)

▶ max of random variables (when estimates are computed in
parallel)

Objectives

▶ variance of estimate should be finite;
▶ CPU time is random; make sure its variance is also finite (and

has light tails).

The second point is related to the behaviour of

▶ sum of random variables (when estimates are computed
sequentially)

▶ max of random variables (when estimates are computed in
parallel)

Objectives

▶ variance of estimate should be finite;
▶ CPU time is random; make sure its variance is also finite (and

has light tails).

The second point is related to the behaviour of
▶ sum of random variables (when estimates are computed

sequentially)

▶ max of random variables (when estimates are computed in
parallel)

Objectives

▶ variance of estimate should be finite;
▶ CPU time is random; make sure its variance is also finite (and

has light tails).

The second point is related to the behaviour of
▶ sum of random variables (when estimates are computed

sequentially)
▶ max of random variables (when estimates are computed in

parallel)

Theoretical properties

Variance decomposition

var[̂𝑓] = var [𝔼[̂𝑓|𝑅]] + 𝔼 [var[̂𝑓 |𝑅]]

where:
▶ the first term measures the variability induced by the random

truncation.

▶ the second term measures the variability due to the 𝑈𝑟,𝑘’s
(the unbiased estimates of (𝑚/𝑥0 − 1)𝑘).

Variance decomposition

var[̂𝑓] = var [𝔼[̂𝑓|𝑅]] + 𝔼 [var[̂𝑓 |𝑅]]

where:
▶ the first term measures the variability induced by the random

truncation.
▶ the second term measures the variability due to the 𝑈𝑟,𝑘’s

(the unbiased estimates of (𝑚/𝑥0 − 1)𝑘).

Analysing the first term

𝔼 [̂𝑓∣𝑅 = 𝑟] =
∞

∑
𝑘=0

𝛾𝑘
1{𝑟 ≥ 𝑘}
ℙ(𝑅 ≥ 𝑘) (𝑚

𝑥0
− 1)

𝑘
.

Hence

var [𝔼[̂𝑓|𝑅]] =
∞

∑
𝑘=0

𝛾2
𝑘 (𝑚

𝑥0
− 1)

2𝑘
(1

ℙ(𝑅 ≥ 𝑘) − 1)

+ 2
∞

∑
𝑘=0

∞
∑

𝑙=𝑘+1
𝛾𝑘𝛾𝑙 (𝑚

𝑥0
− 1)

𝑘+𝑙
(1

ℙ(𝑅 ≥ 𝑘) − 1) .

Implications

These expressions suggest to take:
▶ 𝑥0 such that 𝛽0 ∶= |𝑚/𝑥0 − 1| < 1;

▶ 𝑅 ∼ Geometric(𝑝), with 𝑝 < 1 − 𝛽0, so that
ℙ(𝑅 ≥ 𝑘) > 𝛽2𝑘

0 .

Implications

These expressions suggest to take:
▶ 𝑥0 such that 𝛽0 ∶= |𝑚/𝑥0 − 1| < 1;
▶ 𝑅 ∼ Geometric(𝑝), with 𝑝 < 1 − 𝛽0, so that

ℙ(𝑅 ≥ 𝑘) > 𝛽2𝑘
0 .

Improving the 𝑈𝑟,𝑘

Currently, we use the following unbiased estimate of (𝑚/𝑥0 − 1)𝑘:

𝑈𝑟,𝑘 = 𝑈𝑘 =
𝑘

∏
𝑖=1

(𝑋𝑖/𝑥0 − 1).

Computing ̂𝑓 requires generating 𝑋1, … , 𝑋𝑅 in order to compute
the last term 𝑈𝑅,𝑅, but we use only the 𝑘 first inputs to estimate
(𝑚/𝑥0 − 1)𝑘. Seems inefficient.

Improving the 𝑈𝑟,𝑘

Currently, we use the following unbiased estimate of (𝑚/𝑥0 − 1)𝑘:

𝑈𝑟,𝑘 = 𝑈𝑘 =
𝑘

∏
𝑖=1

(𝑋𝑖/𝑥0 − 1).

Computing ̂𝑓 requires generating 𝑋1, … , 𝑋𝑅 in order to compute
the last term 𝑈𝑅,𝑅, but we use only the 𝑘 first inputs to estimate
(𝑚/𝑥0 − 1)𝑘. Seems inefficient.

Cycling estimator

In order to use the whole sample, consider the following cycling
estimator:

𝑈C
𝑟,𝑘 ∶= 1

𝑟[
𝑘

∏
𝑖=1

(𝑋𝑖
𝑥0

− 1) +
𝑘+1
∏
𝑖=2

(𝑋𝑖
𝑥0

− 1)

+ … + (𝑋𝑟
𝑥0

− 1)
𝑘−1
∏
𝑖=1

(𝑋𝑖
𝑥0

− 1)].

Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

𝔼 [var(̂𝑓C|𝑅)] = 𝒪(𝑝 log(1/𝑝))

as 𝑝 → 0.
▶ Average number of required inputs is 𝔼[𝑅] ≈ 1/𝑝.

▶ We can have var[̂𝑓] → 0 by taking 𝔼[𝑅] → +∞. (This is not
the case for the simple estimator.)

▶ Up to log factor, standard Monte Carlo rate,
i.e. var[̂𝑓] = 𝒪(log 𝔼[𝑅]/𝔼[𝑅]).

Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

𝔼 [var(̂𝑓C|𝑅)] = 𝒪(𝑝 log(1/𝑝))

as 𝑝 → 0.
▶ Average number of required inputs is 𝔼[𝑅] ≈ 1/𝑝.

▶ We can have var[̂𝑓] → 0 by taking 𝔼[𝑅] → +∞. (This is not
the case for the simple estimator.)

▶ Up to log factor, standard Monte Carlo rate,
i.e. var[̂𝑓] = 𝒪(log 𝔼[𝑅]/𝔼[𝑅]).

Second term of the decomposition

For the cycling estimator, one has (under weak assumptions)

𝔼 [var(̂𝑓C|𝑅)] = 𝒪(𝑝 log(1/𝑝))

as 𝑝 → 0.
▶ Average number of required inputs is 𝔼[𝑅] ≈ 1/𝑝.

▶ We can have var[̂𝑓] → 0 by taking 𝔼[𝑅] → +∞. (This is not
the case for the simple estimator.)

▶ Up to log factor, standard Monte Carlo rate,
i.e. var[̂𝑓] = 𝒪(log 𝔼[𝑅]/𝔼[𝑅]).

Without cycling

The simple estimator does not converge as 𝔼[𝑅] → +∞.

Calibration of tuning parameters

Tuning 𝑥0

Must ensure that |𝑚/𝑥0 − 1| < 1, but 𝑚 is unknown.

⇒ pilot run, bootstrap to ensure this condition with high
probability.

Tuning 𝑥0

Must ensure that |𝑚/𝑥0 − 1| < 1, but 𝑚 is unknown.

⇒ pilot run, bootstrap to ensure this condition with high
probability.

Tuning 𝑝

Less of an issue with the cycling estimator, because
work-normalised variance depends weakly on 𝑝.

See paper.

Tuning 𝑝

Less of an issue with the cycling estimator, because
work-normalised variance depends weakly on 𝑝.

See paper.

Numerical experiments: log

log-likelihood (and gradient) of a latent variable model

Model with data 𝑦, latent 𝑧, parameter 𝜃;

𝑝(𝑦|𝜃) = ∫ 𝑝(𝑦|𝑧, 𝜃)𝑝(𝑧|𝜃)𝑑𝑧

For a fixed 𝜃, importance sampling gives unbiased estimates of
the likelihood:

𝑋𝑖 = 𝑤𝑖 = 𝑝(𝑦|𝑍𝑖, 𝜃)𝑝(𝑍𝑖|𝜃)
𝑞(𝑍𝑖)

, 𝑍𝑖 ∼ 𝑞

To compute the MLE, use our approach to derive unbiased
estimate of the log-likelihood and its gradient (stochastic
gradient descent).

log-likelihood (and gradient) of a latent variable model

Model with data 𝑦, latent 𝑧, parameter 𝜃;

𝑝(𝑦|𝜃) = ∫ 𝑝(𝑦|𝑧, 𝜃)𝑝(𝑧|𝜃)𝑑𝑧

For a fixed 𝜃, importance sampling gives unbiased estimates of
the likelihood:

𝑋𝑖 = 𝑤𝑖 = 𝑝(𝑦|𝑍𝑖, 𝜃)𝑝(𝑍𝑖|𝜃)
𝑞(𝑍𝑖)

, 𝑍𝑖 ∼ 𝑞

To compute the MLE, use our approach to derive unbiased
estimate of the log-likelihood and its gradient (stochastic
gradient descent).

log-likelihood (and gradient) of a latent variable model

Model with data 𝑦, latent 𝑧, parameter 𝜃;

𝑝(𝑦|𝜃) = ∫ 𝑝(𝑦|𝑧, 𝜃)𝑝(𝑧|𝜃)𝑑𝑧

For a fixed 𝜃, importance sampling gives unbiased estimates of
the likelihood:

𝑋𝑖 = 𝑤𝑖 = 𝑝(𝑦|𝑍𝑖, 𝜃)𝑝(𝑍𝑖|𝜃)
𝑞(𝑍𝑖)

, 𝑍𝑖 ∼ 𝑞

To compute the MLE, use our approach to derive unbiased
estimate of the log-likelihood and its gradient (stochastic
gradient descent).

Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

ℓ𝑘(𝜃) = log (1
𝑘

𝑘
∑
𝑖=1

𝑤𝑖)

The SUMO estimator is a sum estimator based on the series:

log 𝑝(𝑦|𝜃) = 𝔼[ℓ1(𝜃)] +
∞

∑
𝑘=1

𝔼[Δ𝑘], Δ𝑘 = ℓ𝑘+1(𝜃) − ℓ𝑘(𝜃)

Main issue: infinite variance.

Alternative approach: SUMO (Luo et al, 2021)

Consider biased (but consistent) IS estimate:

ℓ𝑘(𝜃) = log (1
𝑘

𝑘
∑
𝑖=1

𝑤𝑖)

The SUMO estimator is a sum estimator based on the series:

log 𝑝(𝑦|𝜃) = 𝔼[ℓ1(𝜃)] +
∞

∑
𝑘=1

𝔼[Δ𝑘], Δ𝑘 = ℓ𝑘+1(𝜃) − ℓ𝑘(𝜃)

Main issue: infinite variance.

Alternative approach: MLMC (Shi & Cornish, 2021)

Adaptation of SUMO, truncation at 𝑅 = 2𝐾.

Variance is infinite, but the random CPU time may have infinite
variance (and has always heavy tails).

Alternative approach: MLMC (Shi & Cornish, 2021)

Adaptation of SUMO, truncation at 𝑅 = 2𝐾.

Variance is infinite, but the random CPU time may have infinite
variance (and has always heavy tails).

Comparison on a toy model from Rob & Cornish (2021)

104

4100

4000

3900

3800

3700

3600

3500

3400

1045 × 103 6 × 103 7 × 103 8 × 103 9 × 103

10500

10000

9500

9000

8500

105 2 × 105 3 × 105

3540

3520

3500

3480

3460

3440

3420

105 2 × 105

8950

8900

8850

8800

8750

Figure 1: 104

4100

4000

3900

3800

3700

3600

3500

3400

simple cycling mlmc expected cost truth

Caption

Estimate vs CPU for an expected cost 𝐶 of 6 (top) and 96
(bottom) samples per data point. Dimension is 𝑑 = 2 (left) and
𝑑 = 5 (right). The vertical dashed line denotes the expected cost
while the horizontal one denotes the true value of ∑𝑛

𝑖=1 log 𝑝(𝑦𝑖|𝜃).

Independent component analysis (Allassonnière and
Younes, 2012)

𝑦 =
𝑘

∑
𝑗=1

𝑧𝑗𝑎𝑗 + 𝜎𝜖 where

▶ 𝑦 is a high-dim object (e.g. image)

▶ the 𝑧𝑗 are independent latent variables
▶ 𝜃 = (𝐴, 𝜎), with 𝐴 = (𝑎𝑗)𝑗 = 1, … , 𝑘.

Aim is to estimate 𝜃 using SGD.

Independent component analysis (Allassonnière and
Younes, 2012)

𝑦 =
𝑘

∑
𝑗=1

𝑧𝑗𝑎𝑗 + 𝜎𝜖 where

▶ 𝑦 is a high-dim object (e.g. image)
▶ the 𝑧𝑗 are independent latent variables

▶ 𝜃 = (𝐴, 𝜎), with 𝐴 = (𝑎𝑗)𝑗 = 1, … , 𝑘.

Aim is to estimate 𝜃 using SGD.

Independent component analysis (Allassonnière and
Younes, 2012)

𝑦 =
𝑘

∑
𝑗=1

𝑧𝑗𝑎𝑗 + 𝜎𝜖 where

▶ 𝑦 is a high-dim object (e.g. image)
▶ the 𝑧𝑗 are independent latent variables
▶ 𝜃 = (𝐴, 𝜎), with 𝐴 = (𝑎𝑗)𝑗 = 1, … , 𝑘.

Aim is to estimate 𝜃 using SGD.

Independent component analysis (Allassonnière and
Younes, 2012)

𝑦 =
𝑘

∑
𝑗=1

𝑧𝑗𝑎𝑗 + 𝜎𝜖 where

▶ 𝑦 is a high-dim object (e.g. image)
▶ the 𝑧𝑗 are independent latent variables
▶ 𝜃 = (𝐴, 𝜎), with 𝐴 = (𝑎𝑗)𝑗 = 1, … , 𝑘.

Aim is to estimate 𝜃 using SGD.

Independent component analysis (Allassonnière and
Younes, 2012)

𝑦 =
𝑘

∑
𝑗=1

𝑧𝑗𝑎𝑗 + 𝜎𝜖 where

▶ 𝑦 is a high-dim object (e.g. image)
▶ the 𝑧𝑗 are independent latent variables
▶ 𝜃 = (𝐴, 𝜎), with 𝐴 = (𝑎𝑗)𝑗 = 1, … , 𝑘.

Aim is to estimate 𝜃 using SGD.

Stochastic gradient descent

Given data (𝑦1, … , 𝑦𝑛), do gradient descent, where at east step,
the gradient is replaced by an unbiased estimate of the gradient of
a single term (chosen uniformly).

A good illustration on the need for automation, i.e. at each
iteration, the actual value of 𝑚, 𝜎2, and thus 𝑥0 and 𝑝 must
change.

Stochastic gradient descent

Given data (𝑦1, … , 𝑦𝑛), do gradient descent, where at east step,
the gradient is replaced by an unbiased estimate of the gradient of
a single term (chosen uniformly).

A good illustration on the need for automation, i.e. at each
iteration, the actual value of 𝑚, 𝜎2, and thus 𝑥0 and 𝑝 must
change.

Estimated images

(a) true (a) simple (a) cycle (a) SAEM

Numerical experiments: reciprocal

Exponential random graph model

Figure 6: Florentine family business network

𝑝(𝑦|𝜃) = exp{𝜃𝑇 𝑠(𝑦)}/𝑍(𝜃) where

▶ 𝑦 = (𝑦𝑖𝑗), with 𝑦𝑖𝑗 = 1 (resp. 0) if nodes 𝑖 and 𝑗 are
connected

▶ 𝑠(𝑦) is a collection of network statistics (number of edges,
number of 𝑘−stars, etc.)

▶ 𝑍(𝜃) is a sum over 2(𝑘
2) terms (intractable)

Exponential random graph model

Figure 6: Florentine family business network

𝑝(𝑦|𝜃) = exp{𝜃𝑇 𝑠(𝑦)}/𝑍(𝜃) where

▶ 𝑦 = (𝑦𝑖𝑗), with 𝑦𝑖𝑗 = 1 (resp. 0) if nodes 𝑖 and 𝑗 are
connected

▶ 𝑠(𝑦) is a collection of network statistics (number of edges,
number of 𝑘−stars, etc.)

▶ 𝑍(𝜃) is a sum over 2(𝑘
2) terms (intractable)

Exponential random graph model

Figure 6: Florentine family business network

𝑝(𝑦|𝜃) = exp{𝜃𝑇 𝑠(𝑦)}/𝑍(𝜃) where

▶ 𝑦 = (𝑦𝑖𝑗), with 𝑦𝑖𝑗 = 1 (resp. 0) if nodes 𝑖 and 𝑗 are
connected

▶ 𝑠(𝑦) is a collection of network statistics (number of edges,
number of 𝑘−stars, etc.)

▶ 𝑍(𝜃) is a sum over 2(𝑘
2) terms (intractable)

Bayesian inference (and model choice)

Typically the dimension of 𝜃 is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

▶ Sample 𝜃𝑗 ∼ 𝑞

▶ compute 𝑤𝑗 = 𝑝(𝜃𝑗) exp{𝜃𝑇
𝑗 𝑠(𝑦)}

𝑞(𝜃𝑗) × 1
𝑍(𝜃𝑗)

Pseudo-marginal approach: replace 1/𝑍(𝜃) by an unbiased
estimate.

Bayesian inference (and model choice)

Typically the dimension of 𝜃 is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

▶ Sample 𝜃𝑗 ∼ 𝑞

▶ compute 𝑤𝑗 = 𝑝(𝜃𝑗) exp{𝜃𝑇
𝑗 𝑠(𝑦)}

𝑞(𝜃𝑗) × 1
𝑍(𝜃𝑗)

Pseudo-marginal approach: replace 1/𝑍(𝜃) by an unbiased
estimate.

Bayesian inference (and model choice)

Typically the dimension of 𝜃 is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

▶ Sample 𝜃𝑗 ∼ 𝑞

▶ compute 𝑤𝑗 = 𝑝(𝜃𝑗) exp{𝜃𝑇
𝑗 𝑠(𝑦)}

𝑞(𝜃𝑗) × 1
𝑍(𝜃𝑗)

Pseudo-marginal approach: replace 1/𝑍(𝜃) by an unbiased
estimate.

Bayesian inference (and model choice)

Typically the dimension of 𝜃 is 2-3, so even importance sampling
could work reasonably well to approximate the posterior:

▶ Sample 𝜃𝑗 ∼ 𝑞

▶ compute 𝑤𝑗 = 𝑝(𝜃𝑗) exp{𝜃𝑇
𝑗 𝑠(𝑦)}

𝑞(𝜃𝑗) × 1
𝑍(𝜃𝑗)

Pseudo-marginal approach: replace 1/𝑍(𝜃) by an unbiased
estimate.

Details

For a fixed 𝜃, run a tempering SMC algorithm to obtain an
unbiased estimate of 𝑍(𝜃).

Posterior approximation

4.5 4.0 3.5 3.0 2.5 2.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Simple
4.5 4.0 3.5 3.0 2.5 2.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Cycling

Figure 8: Bivariate weighted histograms approximating the posterior
distributions obtained with the simple and the cycling estimator using
𝑛 = 1024 samples from proposal 𝑞.

Cycling gives better performance II

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

5

10

15

20

25

30
simple
cycling

Figure 9: ESS accross simulated 𝜃𝑗

Conclusion

Concluding remarks

▶ A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

▶ No free lunch. Cannot work without pilot runs.
▶ Garbage in, garbage out: if the variance of the inputs is very

large, the variance of our estimator will be large as well.

Concluding remarks

▶ A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

▶ No free lunch. Cannot work without pilot runs.

▶ Garbage in, garbage out: if the variance of the inputs is very
large, the variance of our estimator will be large as well.

Concluding remarks

▶ A step towards making unbiased estimates of smooth function
more reliable and user-friendly.

▶ No free lunch. Cannot work without pilot runs.
▶ Garbage in, garbage out: if the variance of the inputs is very

large, the variance of our estimator will be large as well.

Paper
Chopin N., Crucinio F.R. and S. S. Singh (2024). Towards a
turnkey approach to unbiased Monte Carlo estimation of smooth
functions of expectations, arxiv 2403.20313.

Figure 10: https://arxiv.org/abs/2403.20313

	Introduction
	Theoretical properties
	Calibration of tuning parameters
	Numerical experiments: log
	Numerical experiments: reciprocal
	Conclusion

