Inference (Part 2)

Inference techniques for the analysis of Brownian image textures.

Frédéric RICHARD

Institut de Mathématiques de Marseille, Aix-Marseille Université.

Journées Statistiques du Sud 2024 june, 19-21, 2024.

Inference (Part 1)

Inference (Part 2)

Context and goal

- Context: analysis of rough anisotropic textures of images,
- Goal: statistical analysis of these textures, classification.

Frédéric Richard, AMU, 2024

Aix*Marseille

Inference (Part 2)

Related topic: analysis of texture heterogeneity

- Context: analysis of textures of irregular images.
- Aim: characterization of heterogeneity in terms of
 - regularity,
 - directional properties (anisotropy).

Frédéric Bichard, AM

Inference (Part 1)

Inference (Part 2)

Stationary fields

Details of a photographic film (Messier coll.) Its empirical semi-variogram.

- Random field : $\{Z(x), x \in \mathbb{R}^d\},\$
- · (Second-order) stationarity : spatial invariance of
 - mean : $\mathbb{E}(Z(x)) = m, \forall x (\Rightarrow \text{no trend}),$
 - covariance : $c(h) = Cov(Z(x+h), Z(x)), \forall h$.
- Semi-variogram :
 - $v(h) = \frac{1}{2} E((Z(x+h) Z(x))^2).$
 - $\lim_{|h|\to+\infty} v(h) = v_0 < +\infty.$

Inference (Part 1)

Non stationarity

Inference (Part 2)

Detail of a mammogram

Vertical increments

Horizontal increments

Fields with stationary increments

• Given two positions $x_1, x_2 \in \mathbb{R}^2$, $V_x = Z(x_1) - Z(x_2)$ is a field increment, and

$$\left\{V_x(y)=Z(x_1+y)-Z(x_2+y), y\in\mathbb{R}^2\right\}$$

an increment field.

- A field Z has stationary increments if, for any couple of positions x = (x₁, x₂), the increment field V_x(·) is stationary, i.e. for any y and z
 - $\mathbb{E}(V_x(y)) = a$,
 - $\mathbb{E}(V_x(y)V_x(z)) = K_x(y-z).$
- If Z is square integrable with stationary increments, then

•
$$\mathbb{E}(Z(x)) = \langle x, a \rangle + m$$
,

the semi-variogram is unbounded.

Inference (Part 1)

Trends

Inference (Part 2)

Photographic film (Messier collection)

Crop of the processed image.

Inference (Part 1)

Inference (Part 2)

Intrinsic random fields

- An increment $V_x = Z(x_1) Z(x_2)$ annihilates constants.
- *M*-increment : $Z_{\lambda,x} = \sum_{i=1}^{m} \lambda_i Z(x_i)$

$$\sum_{i=1}^{m} \lambda_i P(x_i) = 0, \forall P, \text{polynomial } d^o P \leq M$$

M-IRF: fields with zero-mean stationary *M*-increment fields, *i.e.* fields $V_{\lambda,x}(y) = \sum_{i=1}^{m} \lambda_i Z(x_i + y)$ satisfy

$$\mathbb{E}(V_{\lambda,x}(y))=0,orall \, y\in \mathbb{R}^d,\ \mathbb{E}(V_{\lambda,x}(y)V_{\lambda,x}(z))=K_{\lambda,x}(y-z),orall \, y,z\in \mathbb{R}^d.$$

• A *M*-IRF may have a polynomial trend of order *M*.

rédéric Richard, AMU, 2024

Correlation structure of an IRF

• **Stationary fields** are characterized by a covariance *C*, which is definite positive, i.e.

$$\mathbb{E}(Z_{\lambda,x}Z_{\mu,y}) = \sum_{i=1}^{m}\sum_{j=1}^{n}\lambda_{i} \mu_{j}C(x_{i}-y_{j}) \geq 0, \qquad (1)$$

for any linear combinations $Z_{\lambda,x}$ and $Z_{\mu,y}$.

Continuous *M*-IRFs *Z* are characterized by generalized covariances *C* that are *M*-conditionally positive-definite, i.e. Eq. (1) holds for any *M*-increments *Z*_{λ,x} and *Z*_{μ,y}.

Spectral representations (with a density)

• Spectral representation of stationary field covariance:

$$c(h) = \int_{\mathbb{R}^2} \cos(\langle h, w \rangle) f(w) dw,$$

with $\int_{\mathbb{R}^2} f(w) dw < \infty$ (Bochner theorem).

• Spectral representation of generalized covariances [Ref. Gelfand & Villenkin, 1964; Matheron 1973].

$$C(h) = \int_{\mathbb{R}^2} \left(\cos(\langle w, h \rangle) - \mathbf{1}_{B(0,\epsilon)}(w) P_M(\langle w, h \rangle) \right) f(w) dw,$$

with
$$P_M(t) = 1 - \frac{t^2}{2} + \cdots + \frac{(-1)^M}{(2M)!} t^{2M}$$
, and $\forall \epsilon > 0$,

$$\int_{|w|<\epsilon} |w|^{2M+2} f(w) dw < \infty, \text{ and } \int_{|w|>\epsilon} f(w) dw < \underset{\text{Frédéric Richard, AMU, 2024}}{\otimes} f(w) dw < \underset{\text{Iniversité}}{\otimes} f(w) dw < \underset{\text{Iniversité$$

The *M*-anisotropic fractional Brownian field

• Zero mean M-IRF with a spectral density of the form

$$f(w) = \tau\left(\frac{w}{|w|}\right) |w|^{-2\beta\left(\frac{w}{|w|}\right)-d}.$$

- determined by two directional functions:
 - the topothesy function τ : $\tau(s) \ge 0$
 - the Hurst function β : $\beta(s) > 0$ and

$$H = \min\{\beta(\boldsymbol{s}), \boldsymbol{s} \in \boldsymbol{S}, \tau(\boldsymbol{s}) > \boldsymbol{0}\} \in (\boldsymbol{0}, \boldsymbol{1}),$$

- Polynomial trend of order M =.
- Extension of 0-intrinsic field defined by [Bonami and Estrade, 2004].

[Ref. Richard, 2016].

A model for image micro-textures.

dix*Marseille

Field irregularity.

• $H \in (0, 1)$: critical Hölder exponent of a field Z if, on a compact set C and for a positive random variable A

$$|Z(x)-Z(y)|\leq A|x-y|^{\alpha}$$

holds with probability one for any $\alpha < H$, but not for $\alpha > H$.

 Spectral characterization for IRF [Ref. Bonami and Estrade, 2004; Biermé, 2005]. (i) If $\forall \mathbf{0} < \alpha < \mathbf{H}, \exists A_1, B_1 > \mathbf{0}$.

$$|w| \geq A_1 \Rightarrow f(w) \leq B_1 |w|^{-2\alpha-d},$$

then the field Z is Hölder of order > H. (ii) If $\forall H < \beta < 1$, $\exists A_2, B_2 > 0$, a pos. meas. subset E s.t.

 $|w| \ge A_2$ and $\arg(w) \in E \Rightarrow f(w) \ge B_2 |w|^{-2\beta-d}$ then the field Z is Hölder of order $\le H$.

Asymptotic topothesy

Irregularity determined by the order *H* of Hölder irregularity.

Directional properties characterized by the asymptotic topothesy:

$$au^*(\boldsymbol{s}) = \lim_{
ho o +\infty} f(
ho \boldsymbol{s})
ho^{2H+d}.$$

- $E_0 = \{s, \tau^*(s) > 0\}$ gathers directions where
 - density convergence is at lowest speeds of order ρ^{2H+d},
 - high-frequencies are the largest.
- Proposition (ii): due to high-frequencies in these directions, the field irregularity is as low as *H*.
- The larger $\tau^*(s)$, the larger high-frequencies in s.
- The asymptotic topothesy τ^{*} quantifies contributions of directional high-frequencies to the field irregularity. (Aix*Marseille

Inference (Part 2)

An example of texture classification.

Microscopic images of photographic films (source: Paul Messier, MoMA, NY).

Glossy

Matte

Hurst index : $H = \arg \min_{s} \{\beta(s), \tau(s) > 0\}$.

Asymptotic topothesy: $\tau^*(s) = \tau(s)$ if $\beta(s) = H$ and 0 otherwise.

Anisotropy index: $I = \frac{\sqrt{\int (\tau^*(s) - \overline{\tau}^*)^2 ds}}{\overline{\tau^*}}$, with $\overline{\tau^*} = \int \tau^*(s) ds$. [FR, Stat & Comput, 2018; Spatial Stat, 2017].

 \sim

Heterogeneous models

Satellite image (Sentinel, CNES) Biphoton microscopy (La Timone, AMU) Multifractional Brownian fields [Benassi et al, 1997]:

$$Z(x) = C_x \int_{\mathbb{R}^d} rac{e^{i\langle x,\omega
angle} - 1}{|\omega|^{H_x + d/2}} \; d\widehat{W}(\omega)$$

Anisotropic multifract. Brownian fields [Polisano, 17; FR and Vu, 18]:

$$Z(x) = \int_{|w|>A} (e^{i\langle x,\omega\rangle} - 1) \sqrt{h_{\tau_x,\beta_x}(\omega)} \ d\widehat{W}(\omega),$$
where $h_{\tau_x,\beta_x}(\omega) = \tau_x(\omega) |\omega|^{2\beta_x(\omega)-d}$ (with assumptions on τ and
$$\frac{16/52}{16}$$

Inference (Part 2)

Tangent fieldsTheorem (Polisano, 2017; FR & Vu, 2018)Let $x \in \mathbb{R}^d$ and $H_x = ess \inf \beta_x(s)$. Then,

$$\lim_{t\to 0^+} \left(\frac{Z(x+tu)-Z(x)}{t^{H_x}}\right)_{u\in\mathbb{R}^d} = (\tilde{Z}_x(u))_{u\in\mathbb{R}^d},$$

for a tangent field

$$ilde{Z}_{x}(y) = \int_{\mathbb{R}^{d}} (e^{i\langle y,\omega
angle} - 1) \sqrt{h_{\tau_{x}^{*},H_{x}}(\omega)} \ dW(\omega),$$

determined by a density $h_{\tau_x^*,H_x}(\omega) = \tau_x^*(\omega)|\omega|^{2H_x-d}$ defined with a local asymptotic topothesy

$$\tau_{x}^{*}(w) = \begin{cases} \tau_{x}(w) & \text{if } \beta_{x}(w) = H_{x}, \\ 0 & \text{otherwise.} \end{cases}$$

Examples of texture segmentations

Fré

[ED Staticipion 2015]

50 100 150 200 250 300

350 400 450

300

350

400

450

е

 Inference (Part 2)

Inference setting

- $Y = (Y[i])_i$: image at some grid points $i \in \llbracket 1, I \rrbracket^2$,
- *Z*: 0-AFBF with unknown semi-variogram $v(\cdot; \tau, \beta)$,
- $W = (W[i])_i$ centered Gaussian noise of variance τ_0 .
- Observation model:

$$\mathbf{Y}[i] = \mathbf{Z}\left(\frac{i}{\bar{I}}\right) + \mathbf{W}[i], i \in \llbracket \mathbf{1}, I \rrbracket^2.$$

• Goal: estimate τ and β from Y.

Turning-band approximation

• Semi-variogram of an AFBF (in polar coordinates):

$$v_0(h;\tau,\beta) = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \nu_{\beta(\theta)} \tau(\theta) \left| \langle h, u(\theta) \rangle \right|^{2\beta(\theta)} d\theta,$$

with $u(\theta) = (\cos \theta, \sin \theta)$ and a constant ν_H .

Can be approximated by a semi-variogram of the form

$$\mathbf{v}(\mathbf{x}; \tau, \beta) = \frac{1}{2} \sum_{m=1}^{M} \tilde{\tau}(\theta_m) |\langle \mathbf{x}, \mathbf{u}(\theta_m) \rangle|^{2\beta(\theta_m)},$$

for some appropriate angles θ_m in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Corresponds to the semi-variogram of a turning-band field

$$Z_M(x) = \sum_{m=1}^M \sqrt{\tilde{\tau}(\theta_m)} Y_m(\langle x, u(\theta_m) \rangle),$$

 Y_m being a fractional Brownian motion of Hurst index $\beta(\theta_m)$. [H. Biermé, L. Moisan, FR, J Comput Graphic Stat; 2015].

Inference (Part 1)

Inference (Part 2)

The inverse problem

 The semi-variogram of the observation Y = Z() + W is approached by

$$w(x;\tau,\beta) = \tau_0 + v(x;\tau,\beta)$$

It is fitted to the empirical semi-variogram of Y at some lags (x_n)_n:

$$\widehat{w}_n = \frac{1}{N_n} \sum_i (Y[i+x_n] - Y[i])^2,$$

by minimizing the least-square criterion

$$h(\tau,\beta) = \frac{1}{2} \sum_{n=1}^{N} \left(w(x_n;\tau,\beta) - \widehat{w}_n \right)^2.$$

A non-linear separable least square criterion

• With function representations,

$$\tau(\theta) = \sum_{j=1}^{J} \tau_j T_j(\theta) \text{ and } \beta(\theta) = \sum_{k=1}^{K} \beta_k B_k(\theta).$$

• express *h* as a non-linear separable least square criterion

$$h(\tau,\beta)=\frac{1}{2}\sum_{n=1}^{N}(F_n(\beta)\tau-\widehat{w}_n)^2,$$

 F_n being a vector-valued function with components $F_n(\beta)_{nj} = w(x_n; T_j, \beta)$ for $j \neq 0$ and $F(\beta)_{n0} = 1$.

[Escande and FR, TPMS, 2024]

Inference (Part 2)

A variable projection method.

VARPRO [Golub and Peyrera, 2003]:

Define

$$g(\beta) = h(\tau^*(\beta), \beta),$$

where, for a fixed β , $\tau^*(\beta) \in \arg \min_{\tau} h(\tau, \beta)$.

• Minimize g instead of h (with a Gauss-Newton method).

Our implementation:

- Multi-grid approach: successive minimization in embedded finite dimensional subspaces of piecewise constant functions.
- Definition of a "non-redundant" set of lags (*x_n*) to avoid problem to be ill-posed.
- Levenberg-Marquardt to find minimizers of h w.r.t. τ and g.
 Isq_linear, least_square of package Optimize of Python library Scipy Aix*Marseille
- Constraints to ensure that $eta\in(0,1)$ and $au_{ ext{Frederic}}$ $ext{rQ}_{ ext{ard}}$, AMU, 2024

 Inference (Part 2)

Numerical study.

- Radial precision: (1 1/M)% where M is the number of intervals for the approximation β by piecewise constant functions.
- Error: L1 error between the estimated and true values of β .
- Number of experiments: 100.
- Image size: 1024×1024 .

Frédéric Richard, AMU, 2024

Inference (Part 2)

Estimating texture models from mammograms.

 $H = 0.33, H_l = 0.23, \beta_{std} = 0.08, \beta_{tv} = 0.03, \tau_{std} = 0.63, \tau_{tv} = 0.32.$

 $H = 0.46, H_l = 0.11, \beta_{std} = 0.04, \beta_{tv} = 0.01, \tau_{std} = 0.19, \tau_{tv} = 0.23.$

 $H = 0.31, H_l = 0.51, \beta_{std} = 0.14, \beta_{tv} = 0.06, \tau_{std} = 2.07, \tau_{tv} = 1.09.$

Inference (Part 1)

Inference (Part 2)

Sampling realistic textures.

Inference (Part 2)

Analysis of the mammogram regularity.

Analysis of full-field digital mammograms of 58 patients (courtesy of Dpt of Radiology, University of Pennsylvania).

Inference (Part 2)

Analysis of the mammogram anisotropy.

Inference (Part 2)

Semi-variogram shape of stationary fields.

29/52

Inference (Part 2)

Stationary turning-band fields.

• Consider a semi-variogram of the form

$$\mathbf{v}_{\kappa}(\mathbf{x};\tau,\beta) = \frac{1}{2} \sum_{m=1}^{M} \tilde{\tau}(\theta_m) \mathbf{w}_{\kappa}(\langle \mathbf{x}, u(\theta_m) \rangle).$$

where

$$w_{\kappa}(t)=2|\kappa|^{2\beta(\theta_m)}+2|t|^{2\beta(\theta_m)}-|\kappa-t|^{2\beta(\theta_m)}-|\kappa+t|^{2\beta(\theta_m)}.$$

Corresponds to the semi-variogram of a turning-band field

$$Z_M(x) = \sum_{m=1}^M \sqrt{ ilde{ au}(heta_m)} Y_m(\langle x, u(heta_m)
angle),$$

 Y_m being an increment of step κ of a fractional Brownian $\kappa_{\text{Marseille}}$ motion of Hurst index $\beta(\theta_m)$.

Inference (Part 2)

Fitting semi-variograms of stationary fields.

Frédéric Richard, AMU, 2024

Inference (Part 1)

Inference (Part 2)

Simulation of stationary fields.

Inference (Part 1)

Inference (Part 2)

Limitations.

- (a): 100 experiments with a radial precision of 87.5 % (8 parameters).
- L1 error without estimation of the semi-variogram (i2%) Aix*Marseille

Frédéric Richard, AMU, 2024

Inference (Part 1)

Inference (Part 2)

Penalized criterion

Minimize a penalized least square criterion

$$h(\tau,\beta) = \frac{1}{2} \sum_{n=1}^{N} (F_n(\beta)\tau - \widehat{w}_n)^2 + \alpha |D\tau|_2^2,$$

where D is a finite difference operator of order 2.

Inference (Part 1)

Inference (Part 2)

Numerical study.

- Radial precision: 98 % (64 parameters).
- Image size 512×512 .
- 100 experiments.

	without regularization	with regularization
Bias	0	0
RMSE	21.5	8.1
L1-error	16.22	6.4

Work in progress: Minimize a penalized least square criterion

$$h(\tau,\beta) = \frac{1}{2} \sum_{n=1}^{N} (F_n(\beta)\tau - \widehat{w}_n)^2 + \alpha |D\tau|_2^2 + \gamma |D\beta|_1^2.$$

Adaptation of the variable projection method.

Inference (Part 1)

Inference (Part 2)

Conclusion (Part 1).

- A model for image microtextures:
 - can be simulated,
 - can be fully estimated,
 - can serve for texture classification.
- Remaining challenge:
 - local estimation of the model,
 - use the model for image segmentation.

Inference (Part 2) •••••••••

Local regularity of textures

Local Hölder exponent H_x of a field Z at position x

$$H_{x} = \sup_{\text{a.s.}} \sup \left\{ \alpha, \exists \rho > 0, \sup_{y \neq y' \in \mathcal{B}(x,\rho)} \frac{|Z(y) - Z(y')|}{|y - y'|^{\alpha}} < + \infty \right\}_{\text{Frédéric Fichard, AMU, 2024}}$$

Multifractional anisotropic fractional Brownian field Gaussian field defined by

$$\widetilde{Y}_{\tau,\beta}(x) = \int_{\mathbb{R}^2} \left(e^{i \langle \omega, x \rangle} - 1 \right) \sqrt{\tau_x(\arg \omega)} \|\omega\|^{-\beta_x(\arg \omega) - 1} d\widehat{W}(\omega),$$

where *W* is a complex Brownian measure and, τ_x and β_x , two spatially varying functions (topothesy and Hurst functions).

Let

$$H_{x} = \operatorname{ess\,inf}_{s} \{\beta_{x}(s), \tau_{x}(s) > 0\},\$$

and

$$\tilde{\tau}_{x}(s) = \tau_{x}(s)\mathbf{1}_{\beta_{x}(s)=H_{x}}.$$

Then, $\tilde{Y}_{\tau,\beta}$ is tangent at *x* (l.a.s.s.) to an AFBF of topothesy and Hurst functions $\tilde{\tau}_x$ and H_x .

Hölder regularity at x given by H_x . [ref. Benassi et al, 97; Polisano et al, 2014; Vu and R., 2020] Chard, AMU, 2024

Inference (Part 2)

Estimation of the local regularity.

Previous works:

- Quadratic variations: Coeurjoly, 2001; Vu et R., 2020.
- Wavelet leaders coupled with a regularization by total variation: Pascal, Pustelnik, Abry, 2021.

Main numerical challenges:

- achieve a good spatial precision,
- be robust to image noise and transforms (e.g. encoding of image values),
- develop benchmarks.

Local analysis of images.

- Let Z be observed on a grid: $Z^{N}[m] = Z(\frac{m}{N}), m \in \llbracket 1, N \rrbracket^{2}$.
- Given some u_{jk} = ρ_{jk}(cos φ_j, sin φ_j) ∈ Z²\{(0,0)}, rescale the image of a factor ρ_{jk} and rotate it of an angle φ_k

$$T_{jk} = \rho_{jk} \begin{pmatrix} \cos(\varphi_j) & -\sin(\varphi_j) \\ \sin(\varphi_j) & \cos(\varphi_j) \end{pmatrix}.$$

Convolve the transformed images

$$V_{jk}^{N}[m] = \sum_{n} v[n] Z^{N}[m - T_{jk}n]$$

with a kernel v annihilating polynomials of order < 2.

• Compute the quadratic variations in neighborhood of some positions *x_i*:

$$W_{ijk}^{N} = \frac{1}{|\mathcal{V}_{N}|} \sum_{m \in \mathcal{V}_{N}} (V_{jk}^{N}[m + p_{i}])^{2}.$$
Frederic Richard, AMU, 2024 Aix*Marseille

Estimation of the local Hurst index Theorem (Ref. Hu and F.R., 2020) Let $Y_{ijk}^N = \log(W_{ijk}^N)$ and $x_{jk0} = \log(\rho_{jk}^2)$. Then, under appropriate assumptions,

$$N^{\frac{d}{2}}(Y^N-\zeta^N) \xrightarrow[N \to +\infty]{d} \mathcal{N}(0,\Sigma),$$

for a covariance matrix Σ , and an expectation ζ^N of the form

$$\zeta_{ijk}^{N} = x_{jk0}H_{x_i} + \beta_{ij}^{N}.$$

Estimation: For any *i*, let $\theta_{(i)} = (H_{x_i}, \beta_{i1}^N, \cdots, \beta_{iJ}^N)^T$, then $\zeta_{(i)}^N = X\theta_{(i)} + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \Sigma_{(i)})$

So that

$$\widehat{H}_{X_i} = (1, 0, \cdots, 0) (X^T \Sigma_{(i)}^{-1} X)^{-1} X^T \Sigma_{\mathsf{Fr(ii)C}}^{-1} \Upsilon_{\mathsf{Fr(ii)C}}^{\mathsf{N}} \bigwedge_{\mathsf{Ref}_{\mathsf{rd}}, \mathsf{AMU}, \mathsf{2024}} \left(\mathsf{Ai}_{\mathsf{rd}} \right)$$

x_{*}Marseille

Inference (Part 2)

Analogy with neural networks

- Construction of a feature vector:
 - Convolution layer:

$$V_{jk}^{N}[m] = \sum_{n} v[n] Z^{N}[m - T_{jk}n] = \sum_{n} v_{jk}[k] Z^{N}[m - n].$$

- Square activation: (V^N_{ik}[m])²
- Average pooling:

$$W_{ijk}^N = rac{1}{|\mathcal{V}_N|} \sum_{m \in \mathcal{V}_N} (V_{jk}^N[m+p_i])^2.$$

Log activation:

$$Y_{ijk}^N = \log(W_{ijk}^N)$$

• Regression with a dense layer:

$$\widehat{H}_{X_{i}} = (1, 0, \cdots, 0) (X^{T} \Sigma_{(i)}^{-1} X)^{-1} X^{T} \Sigma_{(i)}^{-1} Y_{i}^{N}.$$

Design of the CNN: convolutional part

Inference (Part 2)

Design of the CNN: complete architecture

Inference (Part 1)

CNN Learning

• Parameter summary:

-				
Layer type	height	size	parameters	
Conv pyramid	5	$3 \times 3 + 1$	6 138	
Dense layers	8	20 + 1	5 501	
Total			11 639	

- Generation of a dataset using the package PyAFBF:
 - Images of size 64×64 sampled from AFBF.
 - Parameters of AFBF models are set randomly; the Hurst index is uniformly sampled.

		Size		
	Training set	98 000		
Set sizes	Validation set	1 000		
	Test set	1 000		
	Total	100 000		

 Tensorflow (Keras): optimizer (Adam), loss (MSE) batch size (20), nb epochs (20), time (46 min).

Inference (Part 2)

Error analysis

Test error: **1.23 %** (on 1000 images of size 64×64). to be compared with 3.5 % for the classical method. Criterium: root mean square error (RMSE, in percent).

Inference (Part 2)

Error as a function of the image size.

Inference (Part 2)

Application to image segmentation

Image

Hurst index estimates

- 0.8 - 0.7 - 0.6 - 0.5 - 0.4

Frédéric Bichard, AM

Segmentation

- Source: Max Planck Institute for Meteorology (Understanding Clouds from Satellite Images).
- Processing : 0.48s per image (1200 × 1750) with non-overlapping patches (40 × 40).

Inference (Part 2)

Conclusion (Part 2)

- First attempt to use ML for the local estimation of model paramters.
- Good results for the Hurst index.
- Remaining challenges: estimating other parameters.

Benchmark on Kaggle.

	AUTHENTIFICATION X	Stochastic Geometry 🗶 – Grille 20	23-24 du Dept Ii 🛪 🛛 🛓 Dépe	riement Mathe 🗴 🛛 🖪 (21) M	organ Diskal 🗙 🔋 Amadica	× k PpATER testanes - s	× + ~ -	0 ×
← ·	- C D	🗢 🗄 în 💷 🗿 🔿	A # https://www.kaggle	accerny/datasets/fridricrichaed/ iences 🕞 690 🗀 State-GOG	pyulal-teatures-set-001 🕑 ş	Q. Rechercher scheur. ⊕ Accuel (Xrichi, une c	 43 G € Ω 1946 >> ⊡ Ааза 	= A C
=	kaggle	Q, Search					٢	
+	Create	Data Card Code (3	es - set 001) Discussion (0) S	ettings	C	1 New Notebook	157 MB	
Ø	Home	First column is minimum of the Hunt function (Hunt) index), Second column is length of the argenics set of the Hunt function, Third column - ansate of the arminis set of the Hunt function. Fronth relations already of the invest function for analysism - is:						
	Datasets	minimum).	# 17181229/2003	* 100000114044 =	* 4 512000402044			
& <>	Models Code			distanti	L.			
	Discussions	0.05 0.95	0.03 3.14	-1.57 1.57	0 0.05			
ଡ ~	Learn	4.425(254991354232269 e-01 2.176341982399838242 e-01	1.73822013943964073 e+60 1.325425060231203744	1.019166134944566312 e+89 4.3222349244179568561 e-82	4.513996802014378395 e-01 2.538788616821691963 e-01			
ė	Your Work	2.341837796348582637 e-01	1.387437124292999645 e+60	4.985278659429629951 e-81	4.432842890089359944 e-01		Summary C 20.0k files	
÷ @	RECENTLY VIEWED	1.630267794174526306 #-91 9.206478982906175429	1.744494744433441547 ++60 3.609849626282999668	9.482032971616659343 e-81 -9.47280492887362719	1.630945952512852322 e-01 1.3380458145868537758		> III 4 columns	_

- Repository of 50000 images with associated features.
- Features to estimate from the Hurst function (*β*):
 - Hurst index: $H = \min_{s} \beta(s)$.
 - Length of the argmin set: $\mathcal{L}(\arg \min_{s} \beta(s))$.
 - Center of the argmin set: $C(\arg \min_{s} \beta(s))$.
 - Range length: $\mathcal{R} = \max_{s} \beta(s) H$
- Features $H, \mathcal{L}, \mathcal{C}$ are uniformly distributed over the set.

Inference (Part 1)

Inference (Part 2)

PyAFBF library.

PyAFBF (https://fjprichard.github.io/PyAFBF/), [FR, JOSS, 2022].

 A Python library for sampling image textures from the anisotropic fractional Brownian field.

Estimation of the asymptotic topothesy. • Z': field observed on a grid $\left\{ \begin{pmatrix} i \\ l \end{pmatrix} \in \llbracket 1, l \rrbracket^2 \right\}$.

- Increments $V_{s,\varphi}^{I} = v_{s,\varphi} * Z^{I}$ at scale *s* in direction φ .
- Quadratic variations: $W_{s,\varphi}^N = \frac{1}{N_0} \sum_m (V_{s,\varphi}^N[m])^2$.
- Breuer-Major Theorem \rightarrow asymptotic anormality (as I tends to $+\infty$):

$$\log(W_{s,\varphi}^{I}) = H \ \log(s^{2}) + \log(\gamma_{H,\tau^{*}}(\varphi)) + \epsilon_{U}^{I},$$

where

where

$$\gamma_{\mathcal{H},\tau^*}(\varphi) = \tau^* \circledast \Gamma_{\mathcal{H}}(\varphi) \text{ with } \Gamma_{\mathcal{H}}(\varphi) = \int_{\mathbb{R}^+} |\hat{\mathbf{v}}(\rho\varphi)|^2 \rho^{-2\mathcal{H}-1} d\rho.$$

An inverse problem: Minimize

$$\mathcal{J}(\tau) = \sum_{\varphi} \left(\tilde{\gamma}(\varphi) - \Gamma_{\tilde{H}} \circledast \tau(\varphi) \right)^{2} + \lambda |\tau|_{W}^{2}.$$
Frédéric Richard, AMU, 2024
$$\lambda > 0 \text{ and } |\cdot|_{W} \text{ is a Sobolev norm.}$$
Frédéric Richard, AMU, 2024