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Introduction

Motivation

Large scale learning
=

Statistics + Optimization

Stochastic gradient method

single or multiple passes over the data?
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Setting

Problem setting

H separable Hilbert space

ρ probability distribution on H× R

Problem

minimize
w∈H

E(w) =

∫
H×R

(〈w , x〉 − y)2 dρ(x , y),

given {(x1, y1), . . . , (xn, yn)} i.i.d. with respect to ρ.
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Setting

Special cases of interest
Linear and functional regression

Let
yi = 〈w∗, xi 〉+ δi , i = 1, . . . , n

with xi , δi random iid and w∗, xi ∈ H.

random design linear regression, H = Rd

functional regression, H infinite dimensional Hilbert space
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Setting

Special cases of interest
Learning with kernels

Ξ× R input/output space with probability µ.

HK RKHS with reproducing kernel K , w(ξ) = 〈w ,K (ξ, ·)〉H

Problem

minimizew∈HK

∫
Ξ×R

(w(ξ)− y)2dµ(ξ, y)

If ρ is the distribution of (ξ, y) 7→ (K (ξ, ·), y) = (x , y), then

∫
Ξ×R

(w(ξ)−y)2dµ(ξ, y) =

∫
Ξ×R

(〈w ,K (ξ, ·)〉−y)2dµ =

∫
HK×R

(〈w , x〉−y)2dρ(w , y)
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Tikhonov regularization for learning

A classical approach: Tikhonov regularization of the
empirical risk

ŵλ = argmin
H
Ê(w) + λR(w)

empirical risk,

Ê(w) =
1

n

n∑
i=1

(〈w , xi 〉 − yi )
2

regularizer, R = ‖ · ‖2
H

regularization parameter, λ > 0

What about statistics?
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Tikhonov regularization for learning

Assumptions

Boundedness.

There exist κ > 0 and M > 0 such that

|y | ≤ M and ‖x‖2
H ≤ κ a.s.

Existence a (minimal norm) solution

O = argmin
H
E 6= ∅, w † = argmin

O
‖w‖H

More assumptions needed for finite sample error bounds...
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Tikhonov regularization for learning

Source condition

Boundedness assumption implies

T : H → H

w 7→
∫
H
〈w , x〉 x dρH(x), ρH marginal of ρ

is well defined.

Source condition

Let r ∈ [1/2,+∞[ and assume that

∃h ∈ H such that w† = Tr−1/2h. (SC)
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Tikhonov regularization for learning

Source condition: remarks

If r = 1/2, no assumption

if r > 1/2, (SC) implies
w † is in a subspace of H T r2� 1

2 (H)

H
T r1� 1

2 (H)

r1 < r2

Spectral point of view

If (σi , vi )i∈I is the eigenbasis of T , then

‖w †‖2
H =

∑
|〈w †, vi 〉|2 < +∞

If h = T 1/2−rw †, then

‖h‖2
H =

∑
|〈w†, vi〉|2/σ2r−1

i < +∞
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Tikhonov regularization for learning

Results: error bounds

Theorem

Assume boundedness and (SC) for some r ∈ ]1/2,+∞[, Let

λ̂ = n−
1

2r+1 .

then with high probability,

‖ŵλ̂ −w†‖H =

O
(
n−

r−1/2
2r+1

)
if r ≤ 3/2

O
(
n−1/2

)
if r > 3/2
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Tikhonov regularization for learning

Proof: bias-variance trade-off

Set
wλ = argmin

H
E(w) + λ‖w‖2

H,

and decompose the error

‖ŵλ − w †‖H ≤ ‖ŵλ − wλ‖H︸ ︷︷ ︸
Variance

+ ‖wλ − w †‖H︸ ︷︷ ︸
Bias
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Tikhonov regularization for learning

Remarks

The bounds are minimax [Blanchard-Muecke 2016]: if

Pr = {ρ |Boundedness and (SC) are satisfied},

then
min
ŵ∈H

max
ρ∈Pr

E‖ŵ − w †‖H ≥ Cn−
r−1/2
2r+1

saturation for r > 3/2

Adaptivity via Lepskii/Balancing principle [De Vito-Pereverzev-Rosasco

2010]

Improved bounds under further assumptions on the decay of the
eigenvalues of T [De Vito-Caponnetto 2006 . . . ]

BUT...

. . . what about the optimization error?
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ŵ∈H

max
ρ∈Pr

E‖ŵ − w †‖H ≥ Cn−
r−1/2
2r+1

saturation for r > 3/2

Adaptivity via Lepskii/Balancing principle [De Vito-Pereverzev-Rosasco

2010]

Improved bounds under further assumptions on the decay of the
eigenvalues of T [De Vito-Caponnetto 2006 . . . ]

BUT...

. . . what about the optimization error?

S. Villa (LCSL - IIT and MIT) Multiple passes SG 14 / 45



Tikhonov regularization for learning

Remarks

The bounds are minimax [Blanchard-Muecke 2016]: if

Pr = {ρ |Boundedness and (SC) are satisfied},

then
min
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Tikhonov regularization for learning

A new perspective [Bottou-Bousquet 2008]

Let ŵλ,t the t-th iteration of some algorithm for regularized empirical risk
minimization,

then

‖ŵλ,t − w †‖H ≤ ‖ŵλ,t − ŵλ‖H︸ ︷︷ ︸
Optimization

+ ‖ŵλ − wλ‖H︸ ︷︷ ︸
Variance

+ ‖wλ − w †‖H︸ ︷︷ ︸
Bias︸ ︷︷ ︸

Statistics

A new trade-off

⇒ Optimization accuracy tailored to statistical accuracy
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Optimization
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Tikhonov regularization for learning

Optimization error

Recently a *lot* of interest in methods to solve

min
w∈H

n∑
i=1

Vi (w)

Let Vi (w) = V (〈w , xi 〉H , yi ) + λ‖w‖2
H for some loss function V

Large scale setting, n “large”

Focus on batch and stochastic first order methods
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Tikhonov regularization for learning

A new perspective [Bottou-Bousquet 2008]

‖ŵλ,t − w †‖H ≤ ‖ŵλ,t − ŵλ‖H︸ ︷︷ ︸
Optimization

+ ‖ŵλ − wλ‖H︸ ︷︷ ︸
Variance

+ ‖wλ − w †‖H︸ ︷︷ ︸
Bias︸ ︷︷ ︸

Statistics

This suggests

Approach 1: combine statistics with optimization

Approach 2: use a different decomposition
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Tikhonov regularization for learning

Outline

Problem setting

Tikhonov regularization for learning
Assumptions: source condition
Theoretical results

Learning with the stochastic gradient method
Algorithms
Theoretical results and discussion
Proof
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Learning with the stochastic gradient method

Another approach: stochastic gradient method

Directly minimize the expected risk E

ŵt = ŵt−1 − γt(〈ŵt−1, xt〉 − yt)xt

each iteration corresponds to one sample/gradient evaluation

no explicit regularization

several theoretical results

BUT...

. . . in practice, MULTIPLE PASSES over the data are used
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ŵt = ŵt−1 − γt(〈ŵt−1, xt〉 − yt)xt

each iteration corresponds to one sample/gradient evaluation

no explicit regularization

several theoretical results

BUT...

. . . in practice, MULTIPLE PASSES over the data are used

S. Villa (LCSL - IIT and MIT) Multiple passes SG 19 / 45



Learning with the stochastic gradient method

Another approach: stochastic gradient method

Directly minimize the expected risk E
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Learning with the stochastic gradient method

Multiple passes stochastic gradient learning

Rewrite the iteration

Let ŵ0 = 0 and γ > 0. For t ∈ N, iterate:
v̂0 = ŵt

for i = 1, . . . , n⌊
v̂i = v̂i−1 − (γ/n)(〈v̂i−1, xi 〉 − yi )xi

ŵt+1 = v̂n

incremental gradient method for the empirical risk Ê [Bertsekas

-Tsitsiklis 2000]

each inner step is one pass of stochastic gradient method

t is the number of passes over the data (epochs)
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ŵt+1 = v̂n

incremental gradient method for the empirical risk Ê [Bertsekas
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ŵt+1 = v̂n

incremental gradient method for the empirical risk Ê [Bertsekas

-Tsitsiklis 2000]

each inner step is one pass of stochastic gradient method

t is the number of passes over the data (epochs)

S. Villa (LCSL - IIT and MIT) Multiple passes SG 20 / 45



Learning with the stochastic gradient method

Multiple passes stochastic gradient learning

Rewrite the iteration
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Learning with the stochastic gradient method

Main question

How many passes we need to approximately minimize
the expected risk E?
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Learning with the stochastic gradient method

Multiple passes stochastic gradient learning

We have
ŵt → argmin

H
Ê ,

but we would like
ŵt → argmin

H
E .

What’s the catch?
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Ê ,

but we would like
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Learning with the stochastic gradient method

Stability and early stopping

Consider the gradient descent iteration for the expected risk.

w0 = 0 ∈ H
v0 = wt

for i = 1, . . . , n⌊
vi = vi−1 − (γ/n)

∫
H(〈vi−1, x〉 − y)xdρ(x , y)

wt+1 = vn

Note: step-size γ/n.

wt −→ wt+1 −→ . . . −→ −→ argmin
H
E

ŵt −→ ŵt+1 −→ . . .
↘
↘

argmin
H
Ê
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Learning with the stochastic gradient method

Early stopping - semi-convergence

Iteration
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Learning with the stochastic gradient method

Early stopping - example

First epoch:
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Learning with the stochastic gradient method

Early stopping - example

10-th epoch:
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Learning with the stochastic gradient method

Early stopping - example

100-th epoch:
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Learning with the stochastic gradient method

Main results: consistency

Theorem

Assume boundedness. Let γ ∈
]
0, κ−1

[
. Let t∗(n) be such that

t∗(n)→ +∞ and t∗(n) (log n/n)1/3 → 0

Assume O = argminH E 6= ∅. Then

‖ŵt∗(n) − w †‖ → 0 ρ− a.s.

universal step-size fixed a priori

early stopping needed for consistency

multiple passes are needed
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Learning with the stochastic gradient method

First comparison with one pass stochastic gradient

Consistency in the following cases:

Multiple passes Stochastic Gradient method:

γt = γ/n, t∗(n) ∼ (n/ log n)1/3

One pass Stochastic Gradient method:

γt = γ/
√
n, t∗(n) = 1 (+ averaging)

[∼ Ying-Pontil 2008 and Dieuleveut-Bach 2014]

Why multiple passes make sense?
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Learning with the stochastic gradient method

Main results: error bounds

Theorem

Assume boundedness and (SC) with r ∈ ]1/2,+∞[. If

t∗(n) =
⌈

n1/(2r+1)
⌉

then with high probability,

‖ŵt − w †‖H = O
(

n−
r−1/2
2r+1

)

optimal capacity independent rates for ‖ŵt − w †‖H
no saturation w.r.t. r

the stopping rule depends on the source condition ⇒ a balancing
principle can be used
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Learning with the stochastic gradient method

Stochastic gradient method (one pass)

ŵt = ŵt−1 − γt(〈ŵt−1, xt〉 − yt)xt+λtŵt−1)

classically studied in stochastic optimization, for strongly convex
functions (λt = 0) (Robbins-Monro), in the finite dimensional setting

In a RKHS, square loss first in [Smale-Yao 2006]
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Learning with the stochastic gradient method

Stochastic gradient method (one pass) in RKHS - square
loss

Assume Source Condition

Let r ∈ ]1/2,+∞[ γt = n−2r/(2r+1), λt = 0, then [Ying-Pontil 2008]

E‖wt − w †‖H ≤ ct−
r−1/2
2r+1

Let r ∈ ]1/2, 1], let γt = n−2r/(2r+1), λt = n−1/(2r+1), then
[Tarrès-Yao 2011]

‖wt − w †‖H = O
(
t−

r−1/2
2r+1

)
with h. p.

Optimal rates, capacity dependent bounds in expectation on the risk
[Dieuleveut-Bach 2014] (saturation for r > 1).
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Learning with the stochastic gradient method

Comparison between multiple passes and one pass

There are two regimes with optimal error bounds

Multiple passes Stochastic Gradient method:

γt = γn−1 t∗(n) ∼ n1/(2r+1)

One pass Stochastic Gradient method:

γt = γn−2r/(2r+1) t∗(n) = 1

...in practice

model selction is needed and multiple passes stochastic gradient is a
natural approach
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Learning with the stochastic gradient method

Comparison with gradient descent learning

Let ŵ0 = 0 and γ > 0. Iterate:

ŵt+1 = ŵt − γ/n
n∑

i=1

(〈ŵt−1, xi 〉 − yi )xi

Multiple passes Stochastc gradient vs. Gradient descent: same
computational and statistical properties [Bauer-Pereverzev-Rosasco
2007],[Caponnetto-Yao 2008],[Raskutti-Wainwright-Yu 2013]
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Proof

Proof: Bias-Variance trade-off

Define

w0 = 0 ∈ H
v0 = wt

for i = 1, . . . , n⌊
vi = vi−1 − (γ/n)

∫
H(〈vi−1, x〉 − y)xdρ(x , y)

wt+1 = vn

(wt) is the nt-th gradient descent iteration with step-size γ/n on the risk.

Then
‖ŵt − w †‖H ≤ ‖ŵt − wt‖H︸ ︷︷ ︸

Variance

+ ‖wt − w †‖H︸ ︷︷ ︸
Bias=Optimization
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Proof

Variance - Step 1

ŵt can be written as a perturbed gradient descent iteration on the
empirical risk

ŵt+1 = (I − γT̂ )ŵt + γĝ + γ2(Âŵt − b̂)

with

T̂ = (1/n)
∑n

i=1 xi ⊗ xi , where (x ⊗ x)w = 〈w , x〉 x

ĝ = (1/n)
∑n

i=1 yixi

Â =
1

n2

n∑
k=2

[
n∏

i=k+1

(
I − γ

n
xi ⊗ xi

)]
(xk ⊗ xk)

k−1∑
j=1

xj ⊗ xj

b̂ =
1

n2

n∑
k=2

[
n∏

i=k+1

(
I − γ

n
xi ⊗ xi

)]
(xk ⊗ xk)

k−1∑
j=1

yjxj
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Proof

Variance - Step 1

wt is a perturbed gradient descent iteration with step γ on the risk

wt+1 = (I − γT )wt + γg + γ2(Awt − b)

with

T = E[x ⊗ x ],

g = E[gρ(x)x ]

A =
1

n2

n∑
k=2

[
n∏

i=k+1

(
I − γ

n
T
)]

T
k−1∑
j=1

T

b =
1

n2

n∑
k=2

[
n∏

i=k+1

(
I − γ

n
T
)]

T
k−1∑
j=1

g
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Proof

Variance - Step 2

‖ŵt − wt‖H ≤ γ
t−1∑
k=0

∥∥∥(I − γT̂ + γ2Â)t−k+1
∥∥∥∥∥∥(T − T̂ )wk + γ(Â− A)wk + (ĝ − g)− γ(b̂ − b)

∥∥∥
≤ γ

t−1∑
k=0

(‖T − T̂‖+ γ ‖Â− A‖︸ ︷︷ ︸
sum of

martingales

)‖wk‖H︸ ︷︷ ︸
bounded

+‖ĝ − g‖H+ γ ‖b̂ − b‖H︸ ︷︷ ︸
sum of

martingales

+ Pinelis concentration inequality

≤ c1
log(16/δ)t√

n
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Proof

Bias

Convergence results for the gradient descent applied to E

Standard approach based on spectral calculus (square loss used here!)

Convergence depends on the step-size γ ∈
]
0, nκ−1

[
and the source

condition

‖wt − w †‖H ≤ c

(
r − 1/2

γt

)r−1/2
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Proof

Bias-Variance trade-off - again

Then, with probability greater than 1− δ,

‖ŵt − w †‖H ≤ log

(
16

δ

)
c1tn−1/2 + c2t1/2−r

S. Villa (LCSL - IIT and MIT) Multiple passes SG 40 / 45



Proof

Contributions and future work

Contributions

first results on generalization properties of multiple passes stochastic
gradient method

results support commonly used heuristics, e.g. early stopping

Future work

extension to other losses and sampling techniques [Lin-Rosasco 2016]

capacity dependent bounds and optimal bounds for the risk

unified analysis for one pass and multiple passes
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Proof
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Proof

Finite sample bounds for the risk

Corollary

Assume boundedness and source condition with r ∈ ]1/2,+∞[. Then,
Choosing t∗(n) =

⌈
n1/2(r+1)

⌉
, with high probability

E(ŵt)− inf
H
E = O

(
n−

r
r+1

)

The rates are not optimal...
but valid under more general source condition (even in the nonattainable
case)
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Experimental results

Incremental gradient in a RKHS

H RKHS of functions from X to Y with kernel K : X × X → R. Let
ŵ0 = 0, then

ŵt =
n∑

k=1

(αt)kKxk

where αt = ((αt)1, . . . , (αt)n) ∈ Rn satisfy

αt+1 = cnt

c0
t = αt , (c it)k =

{
(c i−1

t )k −
γ

n

(∑n
j=1 K (xi , xj)(c i−1

t )j − yi

)
, k = i

(c i−1
t )k , k 6= i
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