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Introduction

Motivation

Large scale learning J

Statistics | +  Optimization |

Stochastic gradient method
single or multiple passes over the data?
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Setting

Problem setting

o H separable Hilbert space
o p probability distribution on H x R

Problem

minimize e(w):/HXR(<W,X>—y)2 dp(x,y),

given {(x1,y1),--.,(Xn, ¥n)} i.i.d. with respect to p.
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Setting

Special cases of interest

Linear and functional regression

Let
yi= (W, xi)+6;, i=1...,n

with x;, §; random iid and w,, x; € H.

o random design linear regression, # = R

o functional regression, H infinite dimensional Hilbert space
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Setting

Special cases of interest

Learning with kernels

o = x R input/output space with probability .
o Hk RKHS with reproducing kernel K, w(§) = (w, K(&,-))y

Problem

minimizeWeHK/ (w(§) —y)2d,u(§,y)

=xR
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Problem
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Setting

Special cases of interest

Learning with kernels

o = x R input/output space with probability .
o Hk RKHS with reproducing kernel K, w(§) = (w, K(&,-))y

Problem

minimizeWeHK/ (w(§) —y)2d,u(§,y)

=xR

If p is the distribution of (£, y) — (K(&,:),y) = (x,y), then

/ (W(€)—y)2du(t.y) = / (w, K(€,))—y)2dp = / (w. x)—y)?dp(w.y)

=xR =xR
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A classical approach: Tikhonov regularization of the
empirical risk

Wy, = argmin E(w) + AR(w) J
H

o empirical risk,
n

Ew) = = 3 (o) — 1Y

i=1
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Tikhonov regularization for learning

A classical approach: Tikhonov regularization of the
empirical risk

Wy, = argmin E(w) + AR(w)
H

o empirical risk,
n

S ((w,x) — yi)?

i=1

1

n

E(w) =

o regularizer, R = || - ||2,

S. Villa (LCSL - IIT and MIT) Multiple passes SG 8 /45



Tikhonov regularization for learning

A classical approach: Tikhonov regularization of the
empirical risk

Wy, = argmin E(w) + AR(w) J
H

o empirical risk,
n

> ((w, ) — i)

i=1

1

n

E(w) =

o regularizer, R = || - ||2,

o regularization parameter, A > 0
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Tikhonov regularization for learning

A classical approach: Tikhonov regularization of the
empirical risk

Wy, = argmin E(w) + AR(w) J
H

o empirical risk,
n

> ((w, ) — i)

i=1

1

n

E(w) =

o regularizer, R = || - ||2,

o regularization parameter, A > 0

What about statistics?
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Assumptions

There exist kK > 0 and M > 0 such that

ly| <M and |x|3, <Kk as.




Tikhonov regularization for learning

Assumptions

Boundedness.
There exist kK > 0 and M > 0 such that

ly| <M and |x[|3, <k as.

Existence a (minimal norm) solution

O =argminé # @, w! = argmin l|wl%
H @

More assumptions needed for finite sample error bounds...
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Tikhonov regularization for learning

Source condition

Boundedness assumption implies
T:H—->H

W [ (wx)xdon().

is well defined.
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Tikhonov regularization for learning

Source condition

Boundedness assumption implies
T:H—->H

w '—>/ (w, x) x dpy(x), py marginal of p
H

is well defined.

Source condition
Let r € [1/2,4+00[ and assume that

JheH such that wh=T1/2h, (SC)

S. Villa (LCSL - IIT and MIT) Multiple passes SG 10 / 45



Source condition: remarks

o If r=1/2, no assumption
o if r>1/2, (SC) implies
w' is in a subspace of H




Tikhonov regularization for learning

Source condition: remarks

o If r=1/2, no assumption
o if r>1/2, (SC) implies
w' is in a subspace of H

Spectral point of view

o If (¢j, vi)ies is the eigenbasis of T, then

w3 =D Hwh, vi)? < 40
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Tikhonov regularization for learning

Source condition: remarks

o If r=1/2, no assumption
o if r>1/2, (SC) implies
w' is in a subspace of H

Spectral point of view

o If (¢j, vi)ies is the eigenbasis of T, then
w5 =Y 1wl vi)P < +o0
o If h=TY2=rwi then

112 = 3 [wh, w)2/o? L < oo
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Tikhonov regularization for learning

Results: error bounds

Theorem

Assume boundedness and (SC) for some r € |1/2, 40|, Let

A~ 1
)\ — n_2r+l .

then with high probability,
o(n—%) if r < 3/2
O(nfl/z) if r>3/2
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Tikhonov regularization for learning

Proof: bias-variance trade-off

Set
wy = argmin S(W) + )\HW”?H’
H

and decompose the error

W — Wz < [ — willo + lwa — wi|ln

Variance Bias
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Tikhonov regularization for learning

Remarks

o The bounds are minimax [Blanchard-Muecke 2016]: if
P, = {p| Boundedness and (SC) are satisfied},

then

r—1/2
min max E||w — WTHH > Cn~ zi1
WeH pEP,
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Remarks

o The bounds are minimax [Blanchard-Muecke 2016]: if
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o saturation for r > 3/2
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Tikhonov regularization for learning

Remarks

o The bounds are minimax [Blanchard-Muecke 2016]: if
P, = {p| Boundedness and (SC) are satisfied},

then

r—1/2
min max E||w — WTHH > Cn~ zi1
WeH pEP,

o saturation for r > 3/2

o Adaptivity via Lepskii/Balancing principle [De Vito-Pereverzev-Rosasco
2010]

o Improved bounds under further assumptions on the decay of the
eigenvalues of T [De Vito-Caponnetto 2006 ... ]

BUT...
...what about the optimization error? J
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Tikhonov regularization for learning

A new perspective [Bottou-Bousquet 2008]

Let W) ; the t-th iteration of some algorithm for regularized empirical risk
minimization,
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Tikhonov regularization for learning

A new perspective [Bottou-Bousquet 2008]

Let W) ; the t-th iteration of some algorithm for regularized empirical risk
minimization, then

10n,e = whlle < [[hne = Wallze + [|Wn = wallag + [wa — w3

Optimization Variance Bias

Statistics
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Tikhonov regularization for learning

A new perspective [Bottou-Bousquet 2008]

Let W) ; the t-th iteration of some algorithm for regularized empirical risk
minimization, then

10n,e = whlle < [[hne = Wallze + [|Wn = wallag + [wa — w3

Optimization Variance Bias

Statistics

A new trade-off
=- Optimization accuracy tailored to statistical accuracy J
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Optimization error

Recently a *lot* of interest in methods to solve

n

min Vi
WEI'H ey I(W)



Tikhonov regularization for learning

Optimization error

Recently a *lot* of interest in methods to solve

n
i Vi
g, 2 Vi)

i=1

o Let Vi(w) = V({w,x;)3,yi) + A|w||3, for some loss function V
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Tikhonov regularization for learning

Optimization error

Recently a *lot* of interest in methods to solve

n

min > Vi(w)

i=1

o Let Vi(w) = V({w,x;)3,yi) + A|w||3, for some loss function V

o Large scale setting, n “large”
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Tikhonov regularization for learning

Optimization error

Recently a *lot* of interest in methods to solve

n

min > Vi(w)

i=1

o Let Vi(w) = V({w,x;)3,yi) + A|w||3, for some loss function V
o Large scale setting, n “large”

o Focus on batch and stochastic first order methods
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Tikhonov regularization for learning

A new perspective [Bottou-Bousquet 2008]

e — willgg < [Wae — Wallp + || — wallag + lwa — wi|la

Optimization Variance Bias

Statistics

This suggests
o Approach 1: combine statistics with optimization

o Approach 2: use a different decomposition
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Tikhonov regularization for learning

Outline

o Learning with the stochastic gradient method

o Algorithms
o Theoretical results and discussion
o Proof
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Another approach: stochastic gradient method

Directly minimize the expected risk £

We = W1 — e ((We—1, Xe) — Ye)Xe



Learning with the stochastic gradient method

Another approach: stochastic gradient method

Directly minimize the expected risk £

\th = Wtfl - ’Yt(<wt717 xt> - yt)xt

o each iteration corresponds to one sample/gradient evaluation
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Learning with the stochastic gradient method

Another approach: stochastic gradient method

Directly minimize the expected risk £
Wy = W1 — % ((We—1, Xi,) — i, )X,
o each iteration corresponds to one sample/gradient evaluation

o no explicit regularization

o several theoretical results

BUT...
...in practice, MULTIPLE PASSES over the data are used
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Learning with the stochastic gradient method

Multiple passes stochastic gradient learning

Rewrite the iteration

Let wp =0 and v > 0. For t € N, iterate:
\70 = Wt
fori=1,...,n
| 0 = Vi1 — (v/n) (i1, %) — yi)xi

Wiyl = Vp
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Learning with the stochastic gradient method

Multiple passes stochastic gradient learning

Rewrite the iteration

Let wp =0 and v > 0. For t € N, iterate:
\70 - Wt
fori=1,...,n
| 0= 0ic1 — (v/n)((Vic1, xi) — yi)xi
Wt-i—l = Vn

o incremental gradient method for the empirical risk & [Bertsekas
~Tsitsiklis 2000]

o each inner step is one pass of stochastic gradient method
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Learning with the stochastic gradient method

Multiple passes stochastic gradient learning

Rewrite the iteration

Let wp =0 and v > 0. For t € N, iterate:
\70 - Wt
fori=1,...,n
| 0= 0ic1 — (v/n)((Vic1, xi) — yi)xi
Wt-i—l = Vn

o incremental gradient method for the empirical risk & [Bertsekas
~Tsitsiklis 2000]
o each inner step is one pass of stochastic gradient method

o t is the number of passes over the data (epochs)
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Learning with the stochastic gradient method

Main question

How many passes we need to approximately minimize
the expected risk £7
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Multiple passes stochastic gradient learning
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Wy — argmin &,
H
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Learning with the stochastic gradient method

Multiple passes stochastic gradient learning

We have

Wy — argmin &,
H

but we would like

Wy — argmin £.
H

What'’s the catch?
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Learning with the stochastic gradient method

Stability and early stopping

Consider the gradient descent iteration for the expected risk.

wo=0€eH
Vo = Wt
fori=1,....n
L Vi= Vi1 — (7/”) f'H(<Vi—1’X> —y)Xd,O(X,y)
Wi+l = Vn

Note: step-size v/n.
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Learning with the stochastic gradient method

Stability and early stopping

Consider the gradient descent iteration for the expected risk.

wo=0€eH
Vo — Wt
fori=1,....n
L Vi = Vi1 — (’Y/n) f'H(<Vi—1’X> _y)Xdp(Xay)

Wiyl = Vp

Note: step-size v/n.

Wy — Wegrp —> ... —> —argminé
H
Wt—>V,|\/t+1 — ...
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Learning with the stochastic gradient method

Stability and early stopping

Consider the gradient descent iteration for the expected risk.

wo=0€eH
Vo — Wt
fori=1,....n
L Vi = Vi1 — (’Y/n) f'H(<Vi—1’X> _y)Xdp(Xay)

Wiyl = Vp

Note: step-size v/n.

Wy — Wegrp —> ... —> —argminé
H
Wt — Vll\/t+1 — ...
argminé
H
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Early stopping - semi-convergence
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Empirical Error
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NN el
Early stopping - example

First epoch:
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Early stopping - example

10-th epoch:
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Early stopping - example

100-th epoch:




Learning with the stochastic gradient method

Main results: consistency
Theorem
Assume boundedness. Let v € |0, x7[. Let t.(n) be such that

t.(n) = +oo and t.(n) (logn/n)¥3 =0

Assume O = argminy £ # @. Then

[0, (m) — Wi =0 p—as.

S. Villa (LCSL - IIT and MIT) Multiple passes SG

28 / 45




Learning with the stochastic gradient method

Main results: consistency
Theorem
Assume boundedness. Let v € |0, x7[. Let t.(n) be such that

t.(n) = +oo and t.(n) (logn/n)¥3 =0

Assume O = argminy £ # @. Then

[0, (m) — Wi =0 p—as.

o universal step-size fixed a priori
o early stopping needed for consistency

o multiple passes are needed

S. Villa (LCSL - IIT and MIT) Multiple passes SG

28 / 45




Learning with the stochastic gradient method

First comparison with one pass stochastic gradient

Consistency in the following cases:
o Multiple passes Stochastic Gradient method:

ye=7/n,  t(n)~ (n/logn)"/?
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First comparison with one pass stochastic gradient

Consistency in the following cases:
o Multiple passes Stochastic Gradient method:

ye=7/n,  t(n)~ (n/logn)"/?
o One pass Stochastic Gradient method:

ve=7/Vn,  t(n)=1(+ averaging)

[~ Ying-Pontil 2008 and Dieuleveut-Bach 2014]
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Learning with the stochastic gradient method

First comparison with one pass stochastic gradient

Consistency in the following cases:
o Multiple passes Stochastic Gradient method:

ye=7/n,  t(n)~ (n/logn)"/?

o One pass Stochastic Gradient method:

ve=7/Vn,  t(n)=1(+ averaging)
[~ Ying-Pontil 2008 and Dieuleveut-Bach 2014]

Why multiple passes make sense?
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Learning with the stochastic gradient method

Main results: error bounds

Theorem

Assume boundedness and (SC) with r € ]1/2, +oo[. If
t.(n) = {n1/(2r+1)w

then with high probability,

—1/2
% — whl =0 (n~ =)
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Learning with the stochastic gradient method

Main results: error bounds

Theorem

Assume boundedness and (SC) with r € ]1/2, +oo[. If
t.(n) = {nl/(2r+l)—‘

then with high probability,

r—1/2

I = whllpe = O (n= %7 )

o optimal capacity independent rates for ||W; — w'||%

o no saturation w.r.t. r

o the stopping rule depends on the source condition =- a balancing
principle can be used

S. Villa (LCSL - IIT and MIT) Multiple passes SG 30/ 45




Learning with the stochastic gradient method

Stochastic gradient method (one pass)

We = We—1 — 7 ((We—1, Xe) — Ye)Xe+AeWe—1)

o classically studied in stochastic optimization, for strongly convex
functions (At = 0) (Robbins-Monro), in the finite dimensional setting
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Learning with the stochastic gradient method

Stochastic gradient method (one pass)

Wy = W1 — e ((We—1, Xe) — Ye)Xe+AeWe 1)
o classically studied in stochastic optimization, for strongly convex

functions (At = 0) (Robbins-Monro), in the finite dimensional setting

o In a RKHS, square loss first in [Smale-Yao 2006]
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Learning with the stochastic gradient method

Stochastic gradient method (one pass) in RKHS - square
loss

Assume Source Condition
o Let re]1/2,400[ 7: = n~ 2/ X\, = 0, then [Ying-Pontil 2008]

_r71/2
Ellwe — wiljy < ct™ 21

o Let r €]1/2,1], let v = n27/Crit) X\, = p~1/+1) then
[Tarres-Yao 2011]

r—1/2
[we — wi|y = O(t_ i ) with h. p.

o Optimal rates, capacity dependent bounds in expectation on the risk
[Dieuleveut-Bach 2014] (saturation for r > 1).
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Learning with the stochastic gradient method

Comparison between multiple passes and one pass

There are two regimes with optimal error bounds
o Multiple passes Stochastic Gradient method:

- ’)/nil t*(n) ~ nl/(2r+1)
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Learning with the stochastic gradient method

Comparison between multiple passes and one pass

There are two regimes with optimal error bounds
o Multiple passes Stochastic Gradient method:

- ’)/nil t*(n) ~ nl/(2r+1)

o One pass Stochastic Gradient method:

o ,Ynf2r/(2r+1) t*(n) -1

...in practice

model selction is needed and multiple passes stochastic gradient is a
natural approach
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Comparison with gradient descent learning

Let wp =0 and v > 0. lterate:

n
Wep1 = Wy — ’y/nZ(<VT/t—1,Xi> — Yi)Xi
i=1




Learning with the stochastic gradient method

Comparison with gradient descent learning

Let wp = 0 and v > 0. lterate:

n
Wip1 = We — 7/”Z(<Wt—laxi> — yi)Xi
i=1

Multiple passes Stochastc gradient vs. Gradient descent: same
computational and statistical properties [Bauer-Pereverzev-Rosasco
2007],[Caponnetto-Yao 2008],[Raskutti-Wainwright-Yu 2013]
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Proof

Proof: Bias-Variance trade-off

Define
wo=0€eH
Vo = Wt
fori=1,...,n
| vi=viea = (v/n) [ ({(vie1, x) = y)xdp(x, y)
Wii1 = Vp

(wy) is the nt-th gradient descent iteration with step-size «y/n on the risk.
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Proof

Proof: Bias-Variance trade-off

Define
wo=0€eH
Vo = Wt
fori=1,...,n
| vi=viea = (v/n) [ ({(vie1, x) = y)xdp(x, y)
Wii1 = Vp

(wy) is the nt-th gradient descent iteration with step-size «y/n on the risk.
Then

e — wilz < || — wella+ [lwe — wi|jy

-~

Variance Bias=Optimization
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Proof

Variance - Step 1

W; can be written as a perturbed gradient descent iteration on the
empirical risk

o>

Werr = (1 =y T) e + 78 + 72 (A —

)

with
o T= (1/n) 31 xi ® x;, where (x ® x)w = (w, x) x
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Proof

Variance - Step 1
W; can be written as a perturbed gradient descent iteration on the

empirical risk

o>

Wer1 = (I =y T) e + 78 +~+?(Ad — b)

with
o T = (1/n) 31 xi ® x;, where (x ® x)w = (w, x) x
° &=(1/n) > yixi
AU QR gl S
o A= [H (I—Ex,'®X;> (Xk®Xk)ZXj®Xj
k=2 Li=k+1 =1
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Proof

Variance - Step 1

W; can be written as a perturbed gradient descent iteration on the
empirical risk

~ ~

Wer1 = (I =y T) e + 78 +~+?(Ad — b)

o T= (1/n) 31 xi ® x;, where (x ® x)w = (w, x) x
g

° &=(1/n) 31y yixi
) k—1
ZHQZ[H (/—;Xi@)xi) (% @ X)) Y% @ %
k=2 Li=k+1 j=1
k-1
5= 3| IT (1= vem) v S
=2 Li=k+1 Jj=1
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B
Variance - Step 1

w; is a perturbed gradient descent iteration with step + on the risk

wer1 = (I = yT)we + 78 + 7> (Awe — b)

with
o T=E[x®x],
° g = E[gy(x)x]



Proof

Variance - Step 1

w; is a perturbed gradient descent iteration with step v on the risk
weyr = (I =y T)we + 78 +7*(Aw; — b)

with
o T=E[x®x],
° g = Elgy(x)x]

_ 22[,111( —%T) Tjk;lr
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Variance - Step 1

Proof

w; is a perturbed gradient descent iteration with step v on the risk

wep1 = (I —yT)we +vg + WZ(AWt —b)

with
o T=E[x®x],
° g = Elgy(x)x]

k=2 Li=k+1

k=2 Li=k+1

S. Villa (LCSL - IIT and MIT)

ZT)

oA:,;lzzn:[f[ (/—n

17)

G

k—1

T T

Jj=1

k—1

TZg

J=1
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Proof

Variance - Step 2

t—1
e = wellze <73 H(/ —yT+ 724)#“1“

k=0
[(T = Pywic+ (A~ Aywic+ (& — 8) ~ 4(b - b)|
t—1
<Y (T = Tl+ 7 [|IA—= Al lwklln+118 — glla+ 16— bl
pard —_——— —— —_——
sum of  bounded sum of
martingales martingales

+ Pinelis concentration inequality

c log(16/0)t
sa—
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Proof
Bias
o Convergence results for the gradient descent applied to £
o Standard approach based on spectral calculus (square loss used here!)

o Convergence depends on the step-size v € ]0, n/fl[ and the source
condition

r—1/2>"1/2

—whly <c
e = wil < ¢ (7
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Bias-Variance trade-off - again

Then, with probability greater than 1 — §,

16
I — w3 < log (7) atn V24 opt!/2T



Proof

Contributions and future work

Contributions

o first results on generalization properties of multiple passes stochastic
gradient method

o results support commonly used heuristics, e.g. early stopping
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Proof

Contributions and future work

Contributions

o first results on generalization properties of multiple passes stochastic
gradient method

o results support commonly used heuristics, e.g. early stopping

Future work
o extension to other losses and sampling techniques [Lin-Rosasco 2016]
o capacity dependent bounds and optimal bounds for the risk

o unified analysis for one pass and multiple passes
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Proof

Finite sample bounds for the risk

Corollary

Assume boundedness and source condition with r € |1/2, +o0o[. Then,
Choosing t.(n) = [n'/20)] with high probability

E(#) —inf€ =0 (nnﬁ)
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Proof

Finite sample bounds for the risk

Corollary

Assume boundedness and source condition with r € ]1/2, +oc[. Then,
Choosing t.(n) = [n'/20)] with high probability

E(#) —inf€ =0 (nm%)

The rates are not optimal...

but valid under more general source condition (even in the nonattainable
case)
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Experimental results

Incremental gradient in a RKHS

H RKHS of functions from X to ) with kernel K: X x X — R. Let
wp = 0, then

n

Wy = Z(Oét)kak

k=1
where ay = ((at)1, - - -, (at)n) € R” satisfy

n
Qi1 = G

d=ar, (k= {(Cé_l)k — (T KON —3i) , k=
(¢t Do ki

S. Villa (LCSL - IIT and MIT) Multiple passes SG

44 / 45



	Introduction
	Setting
	Tikhonov regularization for learning
	Learning with the stochastic gradient method
	Proof
	Experimental results

