Introduction

A new hyperbolic dispersive model for coastal waves

Yen Chung Hung¹ M. Kazakova¹ G. L. Richard²

¹LAMA, Université Savoie Mont-Blanc, Chambéry

²Univ. Grenoble Alpes, INRAE, IGE, Grenoble

10 Novembre 2023, Journée EDP

E > < E >

From Navier-Stokes to depth-averaged equations

Consider Navier-Stokes/ Euler equations of incompressible fluid

$$\left\{ \begin{array}{ll} \operatorname{\mathbf{div}}\left(\boldsymbol{u}\right)=0, & (\operatorname{Continuity}\,\operatorname{Eq})\\ \\ \frac{\partial \boldsymbol{u}}{\partial t}+\operatorname{\mathbf{div}}\left(\boldsymbol{u}\otimes\boldsymbol{u}\right)=\boldsymbol{g}-\frac{1}{\rho} \mathbf{grad} \ p+\nu \boldsymbol{u}, & (\operatorname{Momentum}\,\operatorname{Eq}) \end{array} \right.$$

where $\rho:$ density, $\nu:$ kinematic viscosity, p: pressure, and ${\it g}:$ gravitational acceleration.

$$\begin{array}{c} \mbox{Numerical resolution is} \\ \mbox{time-consuming} \end{array} \Rightarrow \begin{array}{c} \mbox{Integrating the equations over} \\ \mbox{the depth} \end{array}$$

∃ ► < ∃ ►</p>

nti DC	roduction O	Motivation O	Derivation 000000	n and numerical result	s Improver 00000	ment of disperive prope
D	epth-ave	raged w	ater waves	models		
	arepsilon = 1 $\mu = 1$	$arepsilon = H/L$ (shallowness) $\mu = a/H$ (nonlinearity)			a	<u>η(</u> έ, ∞)
	BC. no-slip, kinematic, dynamic condition				H Integration	<i>b(x)</i>
	$\begin{cases} \frac{\partial h}{\partial t} + \operatorname{div} \left(h \boldsymbol{U}\right) = 0, \\ \frac{\partial h \boldsymbol{U}}{\partial t} + \operatorname{div} \left(h \boldsymbol{U} \otimes \boldsymbol{U} + \frac{g h^2}{2} \boldsymbol{\mathcal{I}} + \boldsymbol{U} \right) \end{cases}$			$+ P_{NH} \mathcal{I}$	(Mass Eq $=0,$ (Moment	ı) um Eq)
		model	NSWE $\mathcal{O}(\varepsilon)$	$\mathcal{O}(\varepsilon\mu)$	$\mathbf{SGN}\ \mathcal{O}(\varepsilon^2)$	
		Pressure	$P_{NH} = 0$	bs	$P_{NH} = h^2 \ddot{h}/3$	
		μ	no assump	sine	no assump	
		Туре	hyperbolic	Bous	dispersive	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

ntroduction O●O	Motivation O	Derivation a	and numerical result	ts Improver 00000	nent of disperive proper 200
Depth-ave	eraged w	ater waves	models		
$arepsilon = \ \mu =$	$arepsilon = H/L$ (shallowness) $\mu = a/H$ (nonlinearity)				
BC. no-slip, kinematic, dynamic condition $b(x)$					
$\int \frac{\partial h}{\partial t} +$	$\frac{\partial h}{\partial t} + \operatorname{div}\left(h\mathbf{U}\right) = 0,$			(Mass Eq	I)
$\left\{ \begin{array}{c} \frac{\partial h \boldsymbol{U}}{\partial t} \end{array} \right.$	$rac{\partial h oldsymbol{U}}{\partial t}+ {f div}\left(holdsymbol{U}\otimesoldsymbol{U}+rac{gh^2}{2}oldsymbol{\mathcal{I}}+rac{\partial h}{2}oldsymbol{U}+rac{gh^2}{2}oldsymbol{U}+rac{gh^2}{2}oldsymbol{\mathcal{I}}+rac{gh^2}{2}oldsymbol{U}+brac{gh^2}{2}oldsymbol{U}+rac{gh^2}{2}oldsymbol{U}+rac{gh^2}{2}oldsymbol{U}+brac{gh^2}{2}oldsymbol{U}+brac{gh^2}{2}oldsymbo$		$\left(P_{NH} \mathcal{I} \right)$	=0, (Moment	um Eq)
	model	NSWE $\mathcal{O}(\varepsilon)$	$\mathcal{O}(\varepsilon\mu)$	$\mathbf{SGN}\ \mathcal{O}(\varepsilon^2)$	
	Pressure	$P_{NH} = 0$	sq	$P_{NH} = h^2 \ddot{h}/3$	
	μ	no assump	ine	no assump	
	Туре	hyperbolic	Bouss	dispersive	
Gavrilyuk&Favrie, 2017; Escalante, 2019,2020; Richard, 2021					

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Breaking wave: Energy dissipation

Energy dissipation due to breaking wave should be included in depth-averaged context.

Classic methods are:

- Extra terms in the mass and/or the momentum equation to provide a necessary dissipation.
 - Svendsen, 1984, 1996; Zelt, 1991; Schäffer et al., 1993; Musumeci et al., 2005 etc.
- 2 Switching or hybrid methods (natural dissipation through the shock)
 - Bonneton et al., 2011; Tissier et al., 2012; Kazolea et al., 2014; Duran & Marche, 2015,2017

Both methods need a **breaking criterion** to determine when the wave breaks.

b) A (E) b) A (E) b)

New hyperbolic model for breaking waves

Objectives:

Introduction

- New hyperbolic model with cheaper numerical cost
- 2 Model which is capable to capture breaking phenomenon
- 3 Model with good dispersive properties

Introduction 000	Motivation O	Derivation and numerical results	Improvement of disperive properties
Assumptions	5		

Mimic large-eddy simulation (LES), decompose the velocity

Model of Kazakova & Richard

- u' the vertical variation of the horizontal velocity is arbitrary
- Hypothesis of weakly turbulent flow from Teshukov (2007): $u' \approx O(\varepsilon)$
- The non-hydrostatic pressure is taken into account
- No surface tension and shear stress at the free surface

Breaking waves model

Model derivation: equations for h, U, W

Dimensionless equations

Mass equation:

$$\frac{\partial \tilde{h}}{\partial \tilde{t}} + \frac{\partial \tilde{h} \tilde{U}}{\partial \tilde{x}} = 0$$

Ox-Momentum equation:

+ dissipation Residual stress tensor is modeled

by turbulent viscosity ν_T

and shear stress

$$\frac{\partial \tilde{h}\tilde{U}}{\partial \tilde{t}} + \frac{\partial}{\partial \tilde{x}} \left(\tilde{h}\tilde{U}^2 + \frac{\tilde{h}^2}{2} + \varepsilon^2 \tilde{h} \left\langle \tilde{u}'^2 \right\rangle + \varepsilon^2 \tilde{h} \left\langle \tilde{p}_N \right\rangle - \varepsilon^2 \boxed{2\tilde{\nu}_T \tilde{h} \frac{\partial \tilde{U}}{\partial \tilde{x}}} \right) = -\tilde{p}(b) \frac{\partial \tilde{b}}{\partial \tilde{x}}$$

 $\int \underbrace{O(\varepsilon^2)}_{O(\varepsilon^2)} \underbrace{O(\varepsilon^2)}$

Oz-Momentum equation:

$$\frac{\partial \tilde{h}\tilde{W}}{\partial \tilde{t}} + \frac{\partial \tilde{h}\tilde{U}\tilde{W}}{\partial \tilde{x}} = \tilde{p}_N(b)$$

Defining $\tilde{\varphi}$ (enstrophy), \tilde{W} , and \tilde{P}

$$\tilde{\varphi} := \frac{\left\langle \tilde{u}'^2 \right\rangle}{\tilde{h}^2} \equiv \frac{1}{\tilde{h}^3} \int_{\tilde{b}}^{\tilde{\eta}} \tilde{u}'^2 d\tilde{z}, \quad \underbrace{\tilde{W} = \left\langle \tilde{w} \right\rangle, \quad \tilde{P} = \left\langle \tilde{p}_N \right\rangle}_{\tilde{V}}$$

Introduction 000	Motivation O	Derivation and numerical results	Improvement of disperive properties

Breaking waves model

Model derivation: equations for P and φ

Energy equation
$$\xrightarrow{\int \mathcal{D}} O(\varepsilon^2)$$

Hyperbolicity admits slight compressibility in non-hydrostatic pressure!

$$= -h \left\langle P^r \right\rangle - \left(hP - 2\nu_T h \frac{\partial U}{\partial x} \right) \frac{\partial U}{\partial x} - 2 \left(P + 2\nu_T \frac{\partial U}{\partial x} \right) (W - \dot{b}),$$

where e_a is the acoustic energy and P^r is the energy transfer from large-scale turbulence to small-scale turbulence.

Postulate $\langle e_a \rangle$ + decouple \longrightarrow equations for P and φ

 $\frac{h^2}{2}\left(\frac{\partial h\varphi}{\partial t}+\frac{\partial hU\varphi}{\partial x}\right)+\frac{\partial h\langle e_a\rangle}{\partial t}+\frac{\partial hU\langle e_a\rangle}{\partial x}$

$$\frac{1}{h} \int_{b}^{\eta} e_{a} dz = \langle e_{a} \rangle = \frac{P^{2}}{2a_{c}^{2}}$$

where a_c is the constant sound velocity.

Breaking waves model Full system of equations

Under the mild slope condition

$$\begin{split} \frac{\partial h}{\partial t} &+ \frac{\partial hU}{\partial x} = 0\\ \frac{\partial hU}{\partial t} &+ \frac{\partial}{\partial x} \left(hU^2 + \frac{gh^2}{2} + h^3\varphi + hP \right) = \frac{\partial}{\partial x} \left(2\nu_T h \frac{\partial U}{\partial x} \right) - gh \frac{\partial h}{\partial x}\\ \frac{\partial hW}{\partial t} &+ \frac{\partial hUW}{\partial x} = \frac{3}{2}P + 3\nu_T \frac{\partial U}{\partial x}\\ \frac{\partial hP}{\partial t} &+ \frac{\partial hUP}{\partial x} = -a_c^2 \left(h \frac{\partial U}{\partial x} + 2W \right)\\ \frac{\partial h\varphi}{\partial t} &+ \frac{\partial hU\varphi}{\partial x} = -\frac{2}{h} \left\langle P^r \right\rangle + \frac{4\nu_T}{h} \left(\frac{\partial U}{\partial x} \right)^2 - \frac{8\nu_T W}{h^2} \frac{\partial U}{\partial x} \end{split}$$

4 A I

★ 문 ► ★ 문 ►

э

Breaking waves model Full system of equations

Without turbulence and enstrophy φ

$$\begin{split} \frac{\partial h}{\partial t} &+ \frac{\partial hU}{\partial x} = 0\\ \frac{\partial hU}{\partial t} &+ \frac{\partial}{\partial x} \left(hU^2 + \frac{gh^2}{2} + hP \right) = -gh\frac{\partial b}{\partial x}\\ \frac{\partial hW}{\partial t} &+ \frac{\partial hUW}{\partial x} = \frac{3}{2}P\\ \frac{\partial hP}{\partial t} &+ \frac{\partial hUP}{\partial x} = -a_c^2 \left(h\frac{\partial U}{\partial x} + 2W \right) \end{split}$$

Hyperbolic model of the SGN equation developed by \boxplus Richard, $\mathbf{2021}$ in an incompressible context.

Full system of equations

Acoustic sound velocity $a_c \to \infty$

$$\begin{aligned} \frac{\partial h}{\partial t} &+ \frac{\partial hU}{\partial x} = 0\\ \frac{\partial hU}{\partial t} &+ \frac{\partial}{\partial x} \left(hU^2 + \frac{gh^2}{2} + h^3\varphi + \frac{h^2\ddot{h}}{3} \right) = \frac{\partial}{\partial x} \left(4\nu_T h \frac{\partial U}{\partial x} \right) - gh \frac{\partial b}{\partial x}\\ \frac{\partial h\varphi}{\partial t} &+ \frac{\partial hU\varphi}{\partial x} = -\frac{2}{h} \left\langle P^r \right\rangle + \frac{8\nu_T}{h} \left(\frac{\partial U}{\partial x} \right)^2 \end{aligned}$$

Breaking wave model developed by 🕮 Kazakova & Richard, 2019.

Further without turbulence and enstrophy would reduce to SGN equation

$$\frac{\partial h}{\partial t} + \frac{\partial hU}{\partial x} = 0$$

$$\frac{\partial hU}{\partial t} + \frac{\partial}{\partial x} \left(hU^2 + \frac{gh^2}{2} + \frac{h^2\ddot{h}}{3} \right) = -gh\frac{\partial b}{\partial x}$$

$$\Box \to \partial \partial \phi \in \mathbb{R}$$
Yen Chung Hung
Hyperbolic dispersive model for coastal waves

Introduction 000	Motivation O	Derivation and numerical results	Improvement of disperive properties
Hyperbolicit	V		

The primitive form of the system has the Jacobian matrix

$$\left(\begin{array}{cccccc} U & h & 0 & 0 & 0 \\ g + 3h\varphi + \frac{P}{h} & U & 0 & 1 & h^2 \\ 0 & 0 & U & 0 & 0 \\ 0 & a^2 & 0 & U & 0 \\ 0 & 0 & 0 & 0 & U \end{array}\right)$$

The eigenvalues are

J

J

$$\lambda = U(\text{triple roots}), \ U \pm \sqrt{gh + 3h^2\varphi + P + a^2},$$

with the corresponding eigenvectors form a basis in $\mathbb{R}^5.$ The model is hyperbolic if h>0.

Motivation

Introduction

Asymptotic dispersion relation to SGN model

The dispersion relation of the model is

$$\frac{M_0^2}{3}\tilde{\omega}^4 - \tilde{\omega}^2 \left[1 + \frac{\tilde{k}^2}{3} \left(1 + M_0^2 \right) \right] + \tilde{k}^2 = 0$$

where $M_0 = \sqrt{gh_0}/a_c$ is the Mach number at the reference state. As $a_c \to \infty$, the dispersion relation of the model approaches to that of SGN model

$$\tilde{\omega}^2 = \frac{k^2}{1 + \frac{\varepsilon^2 \tilde{k}^2}{3}}$$

Asymptotic dispersion relation to SGN model

< ∃⇒

Asymptotic dispersion relation to SGN model

.∋⇒

From energy dissipation to breaking criterion

Recall

$$\begin{split} \frac{\partial hU}{\partial t} &+ \frac{\partial}{\partial x} \left(hU^2 + \frac{gh^2}{2} + h^3 \varphi + hP \right) = \frac{\partial}{\partial x} \left(2\nu_T h \frac{\partial U}{\partial x} \right) - gh \frac{\partial b}{\partial x} \\ \frac{\partial hW}{\partial t} &+ \frac{\partial hUW}{\partial x} = \frac{3}{2}P + 3\nu_T \frac{\partial U}{\partial x} \\ \frac{\partial h\varphi}{\partial t} &+ \frac{\partial hU\varphi}{\partial x} = -\frac{2}{h} \left\langle P^r \right\rangle + \frac{4\nu_T}{h} \left(\frac{\partial U}{\partial x} \right)^2 - \frac{8\nu_T W}{h^2} \frac{\partial U}{\partial x} \end{split}$$

Mean of dissipation $\langle P^r \rangle$ and the turbulent viscosity ν_T have the forms

$$\langle P^r \rangle = \frac{C_r}{2} h^2 \varphi^{3/2}, \ \nu_T = \frac{h^2 \sqrt{\varphi}}{R},$$

where C_r is a dimensionless quantity and R is an analogue of Reynold's number. (See \square Kazakova & Richard, **2019**)

Breaking criterion explain

If there's NO criterion, we resolve the full system from the very beginning. The dissipation is too significant for some cases. Therefore, a breaking criterion is needed.

The enstrophy φ has definition similar to vorticity magnitude. Good for capturing the turbulence generated by the breaking.

Numerical treatment of breaking:

Introduction 000	Motivation O	Derivation and numerical results	Improvement of disperive properties
Breaking c	riteria		

🕮 Kazakova&Richard, 2019

$$\varphi_0 = \frac{g}{h_0} \widetilde{\varphi}_0, \quad \widetilde{\varphi}_0 = \begin{cases} \left(0.1 + \frac{0.031}{\mu_0} \right), & \mu_0 > 0.05 \\ 0, & \mu_0 < 0.05 \end{cases}$$

Criterion: Activate once $\tilde{\varphi} > \tilde{\varphi}_0$.

New criterion depends on the local dimensionless quantities

$$\tilde{\varphi}_1 = \frac{\varphi \eta}{g} > \alpha_1, \quad \tilde{\varphi}_2 = \frac{\varphi h}{g} > \alpha_2,$$

where $\alpha_1 > \alpha_2$ are two thresholds for the activation of the breaking.

Criterion: Activate once $\tilde{\varphi}_1 > \alpha_1$ and deactivate when $\tilde{\varphi}_2 > \alpha_2$. Note. the new criterion now depends only on local variables/quantaties!

글 🖌 🔺 글 🕨

 Introduction
 Motivation
 Derivation and numerical results
 Improvement of disperive properties

 COO
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 <t

Gauge points of the Experiment III Hsiao et. al, 2008

Introduction	Motivation

Numerical Comparison: Hsiao Trial 41

Free surface and breaking criteria

In this scenario, we take trial 41 for example. The wave conditions are

$$h_0 = 2.2 \ m, \ \mu = 0.137$$

The numerical parameters we take

$$R = 1.7, \ \alpha_1 = 0.09, \ \alpha_2 = 0.005$$

▶ < ∃ >

Introd	
000	

Numerical Comparison

Deviation in position and amplitude of breaking point

Trial	Breaking position	Breaking amplitude
3	-0.3/-0.7	-0.0496/-0.0423
9	0.9/1	-0.0341/-0.0345
14	-0.4/0	-0.101/-0.0983
15	0.9/1.4	-0.0899/-0.0866
17	1.2/1.7	-0.112/-0.1083
19	1.2/1.7	-0.0978/-0.0942
21	2.4/1	0.0206/0.018
25	0.6/0.3	0.006/0.002
31	0.3/0.1	-0.022/-0.027
37	0.4/0.4	-0.0815/-0.082
41	0.7/0.9	-0.1018/-0.1008
43	1.1/1.4	-0.076/-0.074
49	0.4/-0.6	-0.057/-0.057
54	0.6/0.3	-0.101/-0.1064
Average	0.7143/0.6357	-0.0641/-0.0637

Blue data is with the criteria of Kazakova & Richard that depends on initial global μ_0 . Red data is with new local breaking criteria. Introduction

Motivation

Derivation and numerical results

Improvement of disperive properties

Experiments of Beji & Battjes, 1993

-∢ ⊒ →

Numerical Comparison: Beji & Battjes SLS case

Free Surface and breaking criteria

In this scenario, we take Sinusoidal Long Spilling (SLS) wave for example. The wave conditions are

$$T = 2.5 \ s, \ a = 0.016 \ m$$

The numerical parameters we take

$$R = 7.5, \ \alpha_1 = 0.01, \ \alpha_2 = 0.005$$

→ < ∃→

Introduction	Motiva
000	

Motivation

Derivation and numerical results

Improvement of disperive properties

Numerical Comparison: Beji & Battjes SLS case

Gauge points comparison

Introduction

Model with improved dispersive properties

Follow E Bonneton et al., **2011**, the idea is to use w at some height above the bottom as a variable instead of the average vertical velocity

$$\checkmark w|_{z=b+\frac{\alpha}{2}h} \quad X \langle w \rangle$$

The choice of α follows E Bonneton et al., **2011** with an optimal value

 $\alpha = 1.159$

きょうきょう

000	O	

Improved dispersion relation

Airy wave theory gives

$$\tilde{\omega}^2 = \tilde{k} \tanh(\tilde{k})$$

accurate for shallow water and deep water.

The dispersion relation of the model with improved dispersive properties is

$$\frac{M_0^2}{3}\tilde{\omega}^4 - \tilde{\omega}^2 \left[1 + \frac{\tilde{k}^2}{3} \left(\alpha + \frac{2\alpha - 1}{\alpha} M_0^2 \right) \right] + \tilde{k}^2 \left[1 + \tilde{k}^2 \frac{\alpha - 1}{3} \left(1 + \frac{M_0^2}{\alpha} \right) \right] = 0$$

where $M_0 = \sqrt{gh_0}/a_c$ is the Mach number at the reference state.

Introduction	Motivati
000	

Improved dispersion relation

2

< ∃ >

Introduction	Motiva
000	

Improved dispersion relation

æ

Introduction	Moti
000	

Motivation O

Improvement of disperive properties

Numerical Comparison: Beji & Battjes SLS case

Gauge points comparison

∃ ► < ∃ ►</p>

Introduction	Motivation	Derivation and nu
000		000000000

Numerical Comparison: Beji & Battjes Irregular wave

Free Surface and breaking criteria

In this scenario, irregular waves are generated by JONSWAP stectrum, the breaker is of spilling type. The numerical parameters we take

$$R = 7.5, \ \alpha_1 = 0.01, \ \alpha_2 = 0.005$$

Introduction	Motivation

Derivation and numerical results

Improvement of disperive properties

Numerical Comparison: Beji & Battjes Irregular wave

Gauge points comparison

▶ < ∃ >

Conclusions & Perspectives

Conclusions:

Introduction

- Capable to capture breaking phenomenon
- Improved dispersive property
- Hyperbolic structure gives cheaper numerical cost
- Validated by the comparison to several experiments
- Local breaking criterion

Perspectives:

- More stable numerical scheme can be implemented (A. Duran, in prep.)
- Sediment transport coupling (Julien Chauchat, LEGI)
- Implementation in TOLOSA (https://tolosa-project.com)

• • = • • = •

Merci de votre attention

э