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From Navier-Stokes to depth-averaged equations

Consider Navier-Stokes/ Euler equations of incompressible fluid
div (u) = 0, (Continuity Eq)

∂u

∂t
+ div (u⊗ u) = g − 1

ρ
grad p+ νu, (Momentum Eq)

where ρ: density, ν: kinematic viscosity, p: pressure, and g: gravitational
acceleration.

Numerical resolution is
time-consuming

⇒ Integrating the equations over
the depth
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Depth-averaged water waves models

ε = H/L (shallowness)
µ = a/H (nonlinearity)

BC. no-slip, kinematic, dynamic
condition

∂h

∂t
+ div (hU) = 0, (Mass Eq)

∂hU

∂t
+ div

(
hU ⊗U +

gh2

2
I + PNH I

)
= 0, (Momentum Eq)

model NSWE O(ε) O(εµ) SGN O(ε2)

Pressure PNH = 0

B
o
u
ss
in
e
sq

PNH = h2ḧ/3

µ no assump no assump

Type hyperbolic dispersive
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Gavrilyuk&Favrie, 2017; Escalante, 2019,2020; Richard, 2021

Yen Chung Hung Hyperbolic dispersive model for coastal waves 3 / 28



Introduction Motivation Derivation and numerical results Improvement of disperive properties

Breaking wave: Energy dissipation

Energy dissipation due to breaking wave should be included in
depth-averaged context.

Classic methods are:

1 Extra terms in the mass and/or the momentum equation to provide
a necessary dissipation.

Svendsen, 1984, 1996; Zelt, 1991; Schäffer et al., 1993;
Musumeci et al., 2005 etc.

2 Switching or hybrid methods (natural dissipation through the shock)

Bonneton et al., 2011; Tissier et al., 2012; Kazolea et al., 2014;
Duran & Marche, 2015,2017

Both methods need a breaking criterion to determine when the wave
breaks.
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New hyperbolic model for breaking waves

Objectives:

1 New hyperbolic model with cheaper numerical cost

2 Model which is capable to capture breaking phenomenon

3 Model with good dispersive properties
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Assumptions

Mimic large-eddy simulation (LES), decompose the velocity

u = ū+

modeled by turbulent viscosity︷ ︸︸ ︷
small-scale turbulence

u′ – the vertical variation of the horizontal velocity is arbitrary

Hypothesis of weakly turbulent flow from Teshukov (2007):
u′ ≈ O(ε)

The non-hydrostatic pressure is taken into account

No surface tension and shear stress at the free surface
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Breaking waves model
Model derivation: equations for h,U ,W

Dimensionless equations
O(ε2)−→ + dissipation

Mass equation:

∂h̃

∂t̃
+

∂h̃Ũ

∂x̃
= 0

Ox-Momentum equation:

∂h̃Ũ

∂t̃
+

∂

∂x̃

h̃Ũ2 +
h̃2

2
+ ε2h̃

〈
ũ′2〉+ ε2h̃ ⟨p̃N ⟩ − ε2 2ν̃T h̃

∂Ũ

∂x̃

 = −p̃(b)
∂b̃

∂x̃

Oz-Momentum equation:

∂h̃W̃

∂t̃
+

∂h̃ŨW̃

∂x̃
= p̃N (b)

Residual stress tensor is modeled

by turbulent viscosity νT

and shear stress

Defining φ̃ (enstrophy), W̃ , and P̃

φ̃ :=

〈
ũ′2〉
h̃2

≡ 1

h̃3

ˆ η̃

b̃

ũ′2dz̃,

hyperbolic structure︷ ︸︸ ︷
W̃ = ⟨w̃⟩ , P̃ = ⟨p̃N ⟩
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Breaking waves model
Model derivation: equations for P and φ

Energy equation
O(ε2)−→

h2

2

(
∂hφ

∂t
+

∂hUφ

∂x

)
+

∂h⟨ea⟩
∂t

+
∂hU⟨ea⟩

∂x

= −h ⟨P r⟩ −
(
hP − 2νT h

∂U

∂x

)
∂U

∂x
− 2

(
P + 2νT

∂U

∂x

)
(W − ḃ),

where ea is the acoustic energy and P r is the energy transfer from
large-scale turbulence to small-scale turbulence.

Postulate ⟨ea⟩ + decouple −→ equations for P and φ

1

h

ˆ η

b

eadz = ⟨ea⟩ =
P 2

2a2c

where ac is the constant sound velocity.

Hyperbolicity admits
slight compressibility in
non-hydrostatic pressure!
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Breaking waves model
Full system of equations

Under the mild slope condition

∂h

∂t
+

∂hU

∂x
= 0

∂hU

∂t
+

∂

∂x

(
hU2 +

gh2

2
+ h3φ+ hP

)
=

∂

∂x

(
2νTh

∂U

∂x

)
− gh

∂b

∂x

∂hW

∂t
+

∂hUW

∂x
=

3

2
P + 3νT

∂U

∂x
∂hP

∂t
+

∂hUP

∂x
= −a2

c

(
h
∂U

∂x
+ 2W

)
∂hφ

∂t
+

∂hUφ

∂x
= − 2

h
⟨P r⟩+ 4νT

h

(
∂U

∂x

)2

− 8νTW

h2

∂U

∂x
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Breaking waves model
Full system of equations

Without turbulence and enstrophy φ

∂h

∂t
+

∂hU

∂x
= 0

∂hU

∂t
+

∂

∂x

(
hU2 +

gh2

2
+ hP

)
= −gh

∂b

∂x

∂hW

∂t
+

∂hUW

∂x
=

3

2
P

∂hP

∂t
+

∂hUP

∂x
= −a2

c

(
h
∂U

∂x
+ 2W

)
Hyperbolic model of the SGN equation developed by Richard, 2021 in
an incompressible context.
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Breaking waves model
Full system of equations

Acoustic sound velocity ac → ∞

∂h

∂t
+

∂hU

∂x
= 0

∂hU

∂t
+

∂

∂x

(
hU2 +

gh2

2
+ h3φ+

h2ḧ

3

)
=

∂

∂x

(
4νTh

∂U

∂x

)
− gh

∂b

∂x

∂hφ

∂t
+

∂hUφ

∂x
= − 2

h
⟨P r⟩+ 8νT

h

(
∂U

∂x

)2

Breaking wave model developed by Kazakova & Richard, 2019.

Further without turbulence and enstrophy would reduce to SGN equation

∂h

∂t
+

∂hU

∂x
= 0

∂hU

∂t
+

∂

∂x

(
hU2 +

gh2

2
+

h2ḧ

3

)
= −gh

∂b

∂x
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Hyperbolicity

The primitive form of the system has the Jacobian matrix

U h 0 0 0

g + 3hφ+
P

h
U 0 1 h2

0 0 U 0 0

0 a2 0 U 0

0 0 0 0 U


The eigenvalues are

λ = U(triple roots), U ±
√
gh+ 3h2φ+ P + a2,

with the corresponding eigenvectors form a basis in R5. The model is
hyperbolic if h > 0.
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Asymptotic dispersion relation to SGN model

The dispersion relation of the model is

M2
0

3
ω̃4 − ω̃2

[
1 +

k̃2

3

(
1 +M2

0

)]
+ k̃2 = 0

where M0 =
√
gh0/ac is the Mach number at the reference state. As

ac → ∞, the dispersion relation of the model approaches to that of SGN
model

ω̃2 =
k̃2

1 +
ε2k̃2

3
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Asymptotic dispersion relation to SGN model
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Asymptotic dispersion relation to SGN model
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From energy dissipation to breaking criterion

Recall

∂hU

∂t
+

∂

∂x

(
hU2 +

gh2

2
+ h3φ+ hP

)
=

∂

∂x

(
2νTh

∂U

∂x

)
− gh

∂b

∂x

∂hW

∂t
+

∂hUW

∂x
=

3

2
P + 3νT

∂U

∂x

∂hφ

∂t
+

∂hUφ

∂x
= − 2

h
⟨P r⟩+ 4νT

h

(
∂U

∂x

)2

− 8νTW

h2

∂U

∂x

Mean of dissipation ⟨P r⟩ and the turbulent viscosity νT have the forms

⟨P r⟩ = Cr

2
h2φ3/2, νT =

h2√φ

R
,

where Cr is a dimensionless quantity and R is an analogue of Reynold’s

number. (See Kazakova & Richard, 2019)
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Breaking criterion explain

If there’s NO criterion, we resolve the full system from the very
beginning. The dissipation is too significant for some cases.
Therefore, a breaking criterion is needed.

The enstrophy φ has definition similar to vorticity magnitude. Good for
capturing the turbulence generated by the breaking.

Numerical treatment of breaking:
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Breaking criteria

Kazakova&Richard, 2019

φ0 =
g

h0
φ̃0, φ̃0 =


(
0.1 +

0.031

µ0

)
, µ0 > 0.05

0, µ0 < 0.05

Criterion: Activate once φ̃ > φ̃0.

New criterion depends on the local dimensionless quantities

φ̃1 =
φη

g
> α1, φ̃2 =

φh

g
> α2,

where α1 > α2 are two thresholds for the activation of the breaking.

Criterion: Activate once φ̃1 > α1 and deactivate when φ̃2 > α2.

Note. the new criterion now depends only on local variables/quantaties!
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Experiment of Hsiao et. al, 2008

Gauge points of the Experiment Hsiao et. al, 2008
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Numerical Comparison: Hsiao Trial 41
Free surface and breaking criteria

In this scenario, we take trial 41 for example. The wave conditions are

h0 = 2.2 m, µ = 0.137

The numerical parameters we take

R = 1.7, α1 = 0.09, α2 = 0.005
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Numerical Comparison: Hsiao Trial 41
Gauge points comparison

Time series

Amplitude

Breaking position:

real:148m

numerical:148.7m
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Numerical Comparison
Deviation in position and amplitude of breaking point

Trial Breaking position Breaking amplitude
3 −0.3/−0.7 −0.0496/−0.0423
9 0.9/1 −0.0341/−0.0345
14 −0.4/0 −0.101/−0.0983
15 0.9/1.4 −0.0899/−0.0866
17 1.2/1.7 −0.112/−0.1083
19 1.2/1.7 −0.0978/−0.0942
21 2.4/1 0.0206/0.018
25 0.6/0.3 0.006/0.002
31 0.3/0.1 −0.022/−0.027
37 0.4/0.4 −0.0815/−0.082
41 0.7/0.9 −0.1018/−0.1008
43 1.1/1.4 −0.076/−0.074
49 0.4/−0.6 −0.057/−0.057
54 0.6/0.3 −0.101/−0.1064

Average 0.7143/0.6357 −0.0641/−0.0637

Blue data is with
the criteria of
Kazakova &
Richard that

depends on initial
global µ0. Red data
is with new local
breaking criteria.

Yen Chung Hung Hyperbolic dispersive model for coastal waves 18 / 28



Introduction Motivation Derivation and numerical results Improvement of disperive properties

Experiments of Beji & Battjes, 1993

Experimental setup of Beji & Battjes, 1993
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Numerical Comparison: Beji & Battjes SLS case
Free Surface and breaking criteria

In this scenario, we take Sinusoidal Long Spilling (SLS) wave for
example. The wave conditions are

T = 2.5 s, a = 0.016 m

The numerical parameters we take

R = 7.5, α1 = 0.01, α2 = 0.005
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Numerical Comparison: Beji & Battjes SLS case
Gauge points comparison
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Model with improved dispersive properties

Follow Bonneton et al., 2011, the idea is to use w at some height
above the bottom as a variable instead of the average vertical velocity

w|z=b+α
2 h ×⟨w⟩

The choice of α follows Bonneton et al., 2011 with an optimal value

α = 1.159
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Improved dispersion relation

Airy wave theory gives
ω̃2 = k̃ tanh(k̃)

accurate for shallow water and deep water.

The dispersion relation of the model with improved dispersive properties is

M2
0

3
ω̃4−ω̃2

[
1 +

k̃2

3

(
α+

2α− 1

α
M2

0

)]
+k̃2

[
1 + k̃2

α− 1

3

(
1 +

M2
0

α

)]
= 0

where M0 =
√
gh0/ac is the Mach number at the reference state.
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Improved dispersion relation
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Improved dispersion relation
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Numerical Comparison: Beji & Battjes SLS case
Gauge points comparison

Time series

Amplitude
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Numerical Comparison: Beji & Battjes Irregular wave
Free Surface and breaking criteria

In this scenario, irregular waves are generated by JONSWAP stectrum,
the breaker is of spilling type. The numerical parameters we take

R = 7.5, α1 = 0.01, α2 = 0.005

Yen Chung Hung Hyperbolic dispersive model for coastal waves 25 / 28



Introduction Motivation Derivation and numerical results Improvement of disperive properties

Numerical Comparison: Beji & Battjes Irregular wave
Gauge points comparison

Time series

Amplitude
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Conclusions & Perspectives

Conclusions:

Capable to capture breaking phenomenon

Improved dispersive property

Hyperbolic structure gives cheaper numerical cost

Validated by the comparison to several experiments

Local breaking criterion

Perspectives:

More stable numerical scheme can be implemented (A.
Duran, in prep.)

Sediment transport coupling (Julien Chauchat, LEGI)

Implementation in TOLOSA (https://tolosa-project.com)
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Merci de votre attention
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