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Plan of the talk

• Overview and some remainders.

• Presentation of the model.

• Numerical illustrations.
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Overview and some remainders



Crowd motion models

Microscopic models

• Each person can be tracked individually.

• Usually based on ODEs.

• Literature: Helbing, Blue and Adler, Kirchner and Schadschneider, Maury

and Venel...

Taken from: http://www.cromosim.fr/
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Crowd motion models

Macroscopic models

• The population is presented as whole via a density ρ.

• Usually based on PDEs, optimal transport.

• Literature: Hughes, Bellomo and Dogbé, Kirchner and Schadschneider,

Maury et al., ...

Taken from A.R-Chupins’ thesis
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Macroscopic models

• Density 0 ≤ ρ ≤ ρmax (usually = 1).

• Conservation law: ∂tρ +div(ρU[ρ]) = 0.

Hughes ∼ 2000

U[ρ] = −f (ρ) ∇Φ
‖∇Φ‖ where f (ρ) = (ρ − ρmax) and

‖∇Φ‖= 1/f (ρ).

Maury et al., ∼ 2010

Given velocity V , take U[ρ] = ProjK(ρ)(V)

K(ρ) =

{
v ∈ L2(Ω)2,

∫
Ω
v∇q : ∀q ∈ H1

+(Ω), q = 0 a.e on [ρ < 1]

}
.
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Macroscopic models

Maury et al., ∼ 2010

Given a velocity V , take U[ρ] = ProjK(ρ)(V)

K(ρ) =

{
v ∈ L2(Ω)2,

∫
Ω
v∇q : ∀q ∈ H1

+(Ω), q = 0 a.e on [ρ < 1]

}
.


∂tρ +div(ρU[ρ]) = 0 in Q := (0, T)×Ω

U[ρ] = ProjK(ρ)(V)

ρ(0) = ρ0 inΩ
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Macroscopic models

Maury et al., ∼ 2010

Given a velocity V , take U[ρ] = ProjK(ρ)(V)

K(ρ) =

{
v ∈ L2(Ω)2,

∫
Ω
v∇q : ∀q ∈ H1

+(Ω), q = 0 a.e on [ρ < 1]

}
.


∂tρ +div(ρV) = 0 in Q

U[ρ] = V −∇p

ρ(0) = ρ0 in Ω

0 ≤ ρ ≤ 1, p ≥ 0, p(1− ρ) = 0.
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Macroscopic models

Maury et al., ∼ 2010

Given a velocity V , take U[ρ] = ProjK(ρ)(V)

K(ρ) =

{
v ∈ L2(Ω)2,

∫
Ω
v∇q : ∀q ∈ H1

+(Ω), q = 0 a.e on [ρ < 1]

}
.


∂tρ −∆p+div(ρV) = 0 in Q

ρ(0) = ρ0 in Ω

0 ≤ ρ ≤ 1, p ≥ 0, p(1− ρ) = 0. + BC on p
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Presentation of the model



Minimum flow problem

• Introduced by Martin Beckmann in 1952 as a model for transportation.

• Transference in urbain area:

(BK) : inf
Φ ∈L1(Ω)N

{ ∫
Ω

|Φ(x)| dx : − div(Φ) = µ1 − µ2 in D′(Ω)
}

.

• consumers traffic flow

• transportation cost by consumer

• measure of excess demand

Optimal flow
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Relation to optimal transport

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

µ1
µ2

x y

γ
(x

,y
)

Transport plan γ

IsoValue
-0.201262
-0.167517
-0.145021
-0.122524
-0.100028
-0.0775314
-0.055035
-0.0325386
-0.0100422
0.0124543
0.0349507
0.0574471
0.0799435
0.10244
0.124936
0.147433
0.169929
0.192426
0.214922
0.271163

Kantorovich potential u

(MK) : min
{ ∫

Ω×Ω
|x− y| dγ(x, y) : γ ∈ Γ(µ1, µ2)

}
.

(KR) : sup
{ ∫

Ω
u d(µ1 − µ2) : |∇u|≤ 1

}
.

Left to right: G.Monge, L.Kantorovich and M.Beckmann
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Prediction-correction

• We consider a partition of [0, T] given by tk = kτ, k = 0, . . . , n− 1.

• Transport in [tk , tk+ 1
2
): ∂tρ +div(ρV) = 0, with ρ(tk) = ρk.

 ρk+ 1
2
.

• Decongestion on [tk+ 1
2

, tk+1):

inf
ρ,Φ

{ ∫
Ω F(x,Φ(x))dx : ρ ∈ K,Φ ∈ L1(Ω)N, − div(Φ) = ρk+ 1

2
− ρ in D′(Ω)

}
with K = {ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1 a.e. in Ω}
 ρk+1.

Examples of cost functions

• Homogenous case: F(x, ξ) = |ξ|.
• Quadratic case F(x, ξ) = 1

2 |ξ|2.
• More generally a Finsler metric.
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Duality: case F(x, ξ) = |ξ|

Théorème (EIJ 2023)

For any 0 ≤ ρ̃ ∈ Ls(Ω) , we have

inf
(ρ,Φ)

{∫
Ω|Φ(x)| dx : Φ ∈ F(ρ̃ − ρ) and ρ ∈ K

}
= maxp∈G

{ ∫
Ω ρ̃ p dx−

∫
Ω p+ dx

}
where

G :=
{
z ∈ W1,∞(Ω) : z = 0 on ΓD and |∇z(x)|≤ k a.e. x ∈ Ω

}
,

K = {ρ ∈ L∞(Ω) : 0 ≤ ρ ≤ 1 a.e. in Ω},

and

F(ρ̃ − ρ) :=
{
Φ ∈ Ls(Ω)N : − div(Φ) = ρ̃ − ρ in Ω

}
.
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Duality: case F(x, ξ) = |ξ|

Idea of the proof

Define on Mb(Ω) the following functional

H(h) = inf
Φ

{∫
Ω
|Φ(x)|dx : F(ρ̃ − ρ + h)

}
 H is convex and l.s.c.

 Use that H∗∗ = H, where:

H∗(p) = sup
q
〈p, q〉 −H(q).
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Numerical approximation and

examples



Discretization

• Room Ω ⊂ R2, (∂Ω = ΓN ∪ ΓD).

• We define discrete divergence is defined by:

(divhΦ)i,j =
Φ1
i+ 1

2 ,j
−Φ1

i− 1
2 ,j

h
+

Φ2
i,j+ 1

2

−Φ2
i,j− 1

2

h
.

Exit Door
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Discretization

Subdivise [0, T] into subintervals [tk , tk+ 1
2
] and [tk+ 1

2
, tk+1], with

k = 0, . . . , n− 1. On each interval [tk , tk+ 1
2
) we solve the continuity equation

FD︷︸︸︷
∂tρ +

FV︷ ︸︸ ︷
div(Vρ) = 0

ρ(tk) = ρk ,

where V = (Vx ,Vy) is the velocity field given by V = −∇D/‖∇D‖, and D

solves: 
‖∇D‖= f in Ω,

D = 0 on ΓD.
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Discretization of the minimum flow problem

On each [tk+ 1
2

, tk+1) we solve

inf
(ρ,Φ)

{∫
Ω|Φ(x)|dx: − div(Φ) = ρk+

1
2 − ρ in Ω, Φ · ν = 0 on ΓN, 0 ≤ ρ ≤ 1

}
.

We rewrite it as

(M) : inf
(ρ,Φ)

A(ρ,Φ)+ B(Λ(ρ,Φ))

where

A(ρ,Φ) =
∫
Ω
|Φ(x)|dx+ I[0,1](ρ), Λ(ρ,Φ) = ρ − div Φ and B = I

{ρk+
1
2 }

.
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Discretization of the minimum flow problem

Discrete problem:

(M)d : min
(ρ,Φ)

Ah(ρ,Φ)+ Bh(Λh(ρ,Φ)),

where

Ah(ρ,Φ) = h2
m+1

∑
i=1

n+1

∑
j=1

‖Φi,j‖+I[0,1](ρ) and Bh = IC .

Here:

C :=

{
(ai,j) ai,j = ρ

k+ 1
2

i,j , ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

}
and Λh(ρ,Φ) = ρ − divh Φ.

Primal-dual form:

min
(ρ,Φ)

max
p

Ah(ρ,Φ)+ 〈u,Λh(ρ,Φ)〉 − B∗
h(p),

 Chambolle-Pock’s primal-dual algorithm.

We only need to compute the ”proximal” operators ofAh and Bh.

15



Discretization of the minimum flow problem

Discrete problem:

(M)d : min
(ρ,Φ)

Ah(ρ,Φ)+ Bh(Λh(ρ,Φ)),

where

Ah(ρ,Φ) = h2
m+1

∑
i=1

n+1

∑
j=1

‖Φi,j‖+I[0,1](ρ) and Bh = IC .

Here:

C :=

{
(ai,j) ai,j = ρ

k+ 1
2

i,j , ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

}
and Λh(ρ,Φ) = ρ − divh Φ.

Primal-dual form:

min
(ρ,Φ)

max
p

Ah(ρ,Φ)+ 〈u,Λh(ρ,Φ)〉 − B∗
h(p),

 Chambolle-Pock’s primal-dual algorithm.

We only need to compute the ”proximal” operators ofAh and Bh.

15



Discretization of the minimum flow problem

Discrete problem:

(M)d : min
(ρ,Φ)

Ah(ρ,Φ)+ Bh(Λh(ρ,Φ)),

where

Ah(ρ,Φ) = h2
m+1

∑
i=1

n+1

∑
j=1

‖Φi,j‖+I[0,1](ρ) and Bh = IC .

Here:

C :=

{
(ai,j) ai,j = ρ

k+ 1
2

i,j , ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

}
and Λh(ρ,Φ) = ρ − divh Φ.

Primal-dual form:

min
(ρ,Φ)

max
p

Ah(ρ,Φ)+ 〈u,Λh(ρ,Φ)〉 − B∗
h(p),

 Chambolle-Pock’s primal-dual algorithm.

We only need to compute the ”proximal” operators ofAh and Bh.

15



Discretization of the minimum flow problem

Discrete problem:

(M)d : min
(ρ,Φ)

Ah(ρ,Φ)+ Bh(Λh(ρ,Φ)),

where

Ah(ρ,Φ) = h2
m+1

∑
i=1

n+1

∑
j=1

‖Φi,j‖+I[0,1](ρ) and Bh = IC .

Here:

C :=

{
(ai,j) ai,j = ρ

k+ 1
2

i,j , ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

}
and Λh(ρ,Φ) = ρ − divh Φ.

Primal-dual form:

min
(ρ,Φ)

max
p

Ah(ρ,Φ)+ 〈u,Λh(ρ,Φ)〉 − B∗
h(p),

 Chambolle-Pock’s primal-dual algorithm.

We only need to compute the ”proximal” operators ofAh and Bh.

15



Discretization of the minimum flow problem

Reminder

ProxE(p) = argmin
q

1

2
‖p− q‖2+E(q).

Steps of (PD) algorithm:

• Initialization: Take α, β > 0, ρ0,Φ0, p0, p̄0.

• Primal-Dual updates:

(ρl+1,Φl+1) = ProxβAh

(
(ρl ,Φl)− βΛ∗

h(p̄
l)
)
;

pl+1 = ProxαB∗
h

(
pl + αΛh(ρ

l+1,Φl+1)
)
;

• Extragradient: p̄l+1 = 2pl+1 − pl .
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pl+1 = ProxαB∗
h

(
pl + αΛh(ρ

l+1,Φl+1)
)
;

• Extragradient: p̄l+1 = 2pl+1 − pl .

Convergence: αβ‖Λh‖2< 1
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Discretization of the minimum flow problem

Reminder

ProxE(p) = argmin
q

1

2
‖p− q‖2+E(q).

Computing the proximal operators:

• We have Ah(ρ,Φ) = I[0,1](ρ) + ‖Φ‖1, so,(
ProxAh

(ρ,Φ)
)
i,j =

(
max(0,min(1, ρi,j)),max(0, 1− 1

|Φi,j |
)Φi,j

)

• To compute ProxαB∗
h
, we make use of Moreau’s identity

p = ProxαB∗
h
(p) + αProxα−1Bh

(p/α).

We get, (
ProxαB∗

h
(p)

)
i,j
=

(
pi,j − αProjCi,j (pi,j/α)

)
.
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Simulations

The initial density is ρ0(x) = 1S1(x) + 1S2(x) with S1 = [0, 12 ]× [0, 13 ],
S2 = [0, 12 ]× [23 , 1], ΓD = {1} × [0.4, 0.6] and f (x) ≡ 1.
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Simulations

With the same ρ0(x), ΓD = ({1} × [0.2, 0.3]) ∪ ({1} × [0.7, 0.8]) and

f (x) = e
−3×

(
(x− 1

2 )
2+(y− 1

2 )
2
)
.
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Homogeneous case vs quadratic case

• We compare our model F(x, ξ) = |ξ|, with F(x, ξ) = 1
2 |ξ|2.

• Take ρ0(x) = 1S1(x) with

S1 = [0,
1

2
]× [0, 1] and ΓD = ({1} × [0, 0.4]) ∪ ({1} × [0.9, 1]) .

(a) F(x, ξ) = |ξ| (b) F(x, ξ) = 1
2 |ξ|2
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Homogeneous case vs quadratic case

• We compare our model F(x, ξ) = |ξ|, with F(x, ξ) = 1
2 |ξ|2.

• Take ρ0(x) = 1S1(x) with

S1 = [0,
1

2
]× [0, 1] and ΓD = ({1} × [0, 0.4]) ∪ ({1} × [0.9, 1]) .

(a) Top line: F(x, ξ) = |ξ|. Bottom line: F(x, ξ) = 1
2 |ξ|2
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Thank you for your attention!
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