Modèles effectifs d'écoulements de fluides quasi-newtoniens en milieu poreux mince

Matthieu Bonnivard

ICJ, École Centrale de Lyon

En collaboration avec M. Anguiano et F. Suárez-Grau

JEARA, 9 novembre 2023

Plan de l'exposé

2 Résultats principaux

3 Éléments de preuve (cas pseudoplastique 1 < r < 2)

- Cas $\gamma = 1$
- Cas $\gamma \neq 1$

Plan de l'exposé

Présentation du modèle

2 Résultats principaux

f 3 Éléments de preuve (cas pseudoplastique 1 < r < 2)

- Cas $\gamma = 1$
- Cas $\gamma \neq 1$

Fluides quasi-newtoniens

$$\sigma(u, p) = 2\eta D(u) - p\mathbf{I}, \quad D(u) = \frac{1}{2}(\nabla u + \nabla^T u)$$

- Fluide newtonien : viscosité η constante
- Fluide quasi-newtonien : viscosité dépendant du taux de déformation, à travers une fonction de viscosité empirique

$$\eta = \eta(|D(u)|), \qquad |\xi|^2 = \operatorname{Tr}(\xi\xi^T)$$

- η décroissante : pseudoplastique
 Exemples : fluides polymériques, gel pour cheveux, sang
- η croissante : dilatant
 Plus rares. Exemple : « oobleck » (amidon en suspension dans de l'eau)

Loi de puissance

Modèle d'Ostwald-de Waele (1929)

$$\eta_{\text{pow}} = K |D(u)|^{r-2}, \qquad K > 0, \quad r > 1$$

valeur de r	type de fluide	comportement de $\eta_{ m pow}$	
r=2	newtonien	$\eta_{\rm pow} = K$	
r < 2	pseudoplastique	$\eta_{\rm pow} \to +\infty,$ $\eta_{\rm pow} \to 0,$	$ D(u) \to 0$ $ D(u) \to +\infty$
r > 2	dilatant	$\begin{array}{c} \eta_{\rm pow} \to 0, \\ \eta_{\rm pow} \to +\infty, \end{array}$	$ D(u) \to 0$ $ D(u) \to +\infty$

- Avantage : simplicité de la formule, calculs analytiques possibles
- Inconvénient : comportement non physique pour des taux de déformation très faibles ou très élevés

Loi de Carreau (1968)

$$\begin{split} \eta_{\rm car} &= \eta_{\infty} + (\eta_0 - \eta_{\infty})(1 + \lambda |D(u)|^2)^{(r-2)/2}, \qquad \lambda > 0, \quad r > 1 \\ \text{où } \eta_0 > \eta_{\infty} > 0. \end{split}$$

valeur de r	type de fluide	comportement de $\eta_{ m car}$	
r=2	newtonien	$\eta_{\rm car} = \eta_0$	
r < 2	pseudoplastique	$\begin{array}{c c} \eta_{\rm car} \to \eta_0, & D(u) \to 0\\ \eta_{\rm car} \to \eta_{\infty}, & D(u) \to +\infty \end{array}$	
r > 2	dilatant	$\begin{array}{c c} \eta_{\rm car} \to \eta_0, & D(u) \to 0\\ \eta_{\rm car} \to +\infty, & D(u) \to +\infty \end{array}$	

- Avantages :
 - limite $\eta_0 > 0$ quand $|D(u)| \to 0$
 - \blacktriangleright pour r<2, limite non nulle η_∞ quand $|D(u)|\to+\infty$
- Inconvénient : formule plus complexe, calculs analytique généralement impossibles

Description du milieu poreux mince

Cellule périodique $2d : Y' = (-1/2, 1/2)^2$

• partie solide $T' \subset \subset Y'$ • partie fluide $Y'_f = Y' \setminus \overline{T'}$

Couche mince $\omega \times (0, \epsilon)$, $\omega \subset \mathbb{R}^2$ domaine régulier $K_{\epsilon} = \{k' \in \mathbb{Z}^2, \ \epsilon(k' + Y') \cap \omega \neq \emptyset\}$ $\omega_{\epsilon} = \omega \setminus (\cup_{k' \in K_{\epsilon}} \epsilon(k' + Y'))$

 $\Omega_{\epsilon}=\omega_{\epsilon}\times(0,\epsilon)$: domaine occupé par le fluide

Modèle d'écoulement suivant la loi de Carreau

$$\eta_{\rm car} = \eta_{\infty} + (\eta_0 - \eta_{\infty})(1 + \lambda |D(u)|^2)^{(r-2)/2}$$

- Écoulement laminaire dans Ω_ϵ
- Viscosité proportionnelle à ϵ^{γ} , $\gamma \in \mathbb{R}$
- Force extérieure f = (f'(x'), 0)
- $(u_{\epsilon},p_{\epsilon})$ solution faible du problème

$$\begin{cases} -\epsilon^{\gamma} \operatorname{div} \left(\eta_{\operatorname{car}}(D(u_{\epsilon}))D(u_{\epsilon}) \right) + \nabla p_{\epsilon} = f \quad \operatorname{dans} \, \Omega_{\epsilon} \\ \\ \operatorname{div} u_{\epsilon} = 0 \quad \operatorname{dans} \, \Omega_{\epsilon} \\ \\ u_{\epsilon} = 0 \quad \operatorname{sur} \, \partial \Omega_{\epsilon} \end{cases}$$

$$1 < r \le 2 \quad (u_{\epsilon}, p_{\epsilon}) \in H_0^1(\Omega_{\epsilon}, \mathbb{R}^3) \times L_0^2(\Omega_{\epsilon})$$

$$r > 2 \qquad (u_{\epsilon}, p_{\epsilon}) \in W_0^{1,r}(\Omega_{\epsilon}, \mathbb{R}^3) \times L_0^{r'}(\Omega_{\epsilon}), \quad \frac{1}{r} + \frac{1}{r'} = 1$$

Références bibliographiques

Milieu poreux (non mince)

- Tartar, Convergence of the homogenization process (1980)
- Allaire, Homogenization of Stokes flow in connected porous medium (1989)
- Bourgeat & Mikelić, Homogenization of a polymer flow through a porous medium (1996)

Couche mince

- Boughanim & Tapiéro, Derivation of the two-dimensional Carreau law for a quasi-Newtonian fluid flow through a thin slab (1995)
- Fabricius & Gahn, Homogenization and dimension reduction of the Stokes problem with slip condition in thin perforated layers (2023)

Plan de l'exposé

Présentation du modèle

2 Résultats principaux

f 3 Éléments de preuve (cas pseudoplastique 1 < r < 2)

- Cas $\gamma = 1$
- Cas $\gamma \neq 1$

Cadre général de l'étude asymptotique

• Dilatation
$$y_3 = rac{x_3}{\epsilon}$$
 qui transforme $\Omega_\epsilon = \omega_\epsilon imes (0,\epsilon)$ en

$$\tilde{\Omega}_{\epsilon} = \omega_{\epsilon} \times (0, 1)$$

• Vitesse et pression redimensionnées

$$\tilde{u}_{\epsilon}(x',y_3) = u_{\epsilon}(x',\epsilon y_3), \quad \tilde{p}_{\epsilon}(x',y_3) = p_{\epsilon}(x',\epsilon y_3), \quad (x',y_3) \in \tilde{\Omega}_{\epsilon}$$

- Extensions de $(\widetilde{u}_{\epsilon},\widetilde{p}_{\epsilon})$ sur $\Omega = \omega \times (0,1)$
 - pour \tilde{u}_{ϵ} : par 0
 - ▶ pour \tilde{p}_{ϵ} : argument de dualité basé sur des opérateurs de restriction $W_0^{1,q}(\Omega, \mathbb{R}^3) \to W_0^{1,q}(\tilde{\Omega}_{\epsilon}, \mathbb{R}^3)$ (Tartar, Allaire)

Forme générale des théorèmes de convergence

• Il existe $u\in W^{1,q}_0(0,1;L^q(\omega,\mathbb{R}^3))$ avec $u_3=0,$ et $p=p(x')\in L^{s'}(\omega)$ t.q.

$$\begin{array}{ll} \epsilon^{\alpha} \tilde{u}_{\epsilon} \rightharpoonup u & \quad \text{faible } W^{1,q}(0,1;L^{q}(\omega,\mathbb{R}^{3})) \\ \tilde{p}_{\epsilon} \rightarrow p & \quad \text{fort } L^{s'}(\Omega) \end{array}$$

• $V'(x') = \int_0^1 u'(x', y_3) \, dy_3$ satisfait une loi de Darcy 2d

$$\begin{split} V'(x') &= \mathcal{U}(f'(x') - \nabla_{x'} p(x')), \quad \operatorname{div}_{x'} V' = 0 \quad \operatorname{dans} \, \omega \\ V' \cdot n &= 0 \quad \operatorname{sur} \, \partial \omega \end{split}$$

- Les exposants q, s, α peuvent dépendre de r, γ, λ .
- L'opérateur de perméabilité

$$\mathcal{U}:\mathbb{R}^2\to\mathbb{R}^2$$

dépend, en plus, de la forme de l'obstacle T^\prime à travers la résolution d'un problème de cellule sur $Y_f.$

Cas newtonien (r=2)

- $\bullet \ \, {\rm Pour \ tout} \ \gamma \in \mathbb{R}, \quad q=s=2 \ {\rm et} \ \alpha=\gamma-2$
- Pour tout $\xi' \in \mathbb{R}^2$,

$$\mathcal{U}(\xi') = \frac{1}{\eta_0} A \xi'$$

A est la matrice 2×2 donnée par $A_{i,j}=\int_{Y_f} w_j^i$ w^i solution du problème de cellule

$$\left\{ \begin{array}{ll} -\Delta w^{i} + \nabla \pi^{i} = e_{i} & \text{dans } Y_{f} \\ & \text{div } w^{i} = 0 & \text{dans } Y_{f} \\ & w^{i} = 0 & \text{sur } \partial T \cup (Y'_{f} \times \{0,1\}) \\ & y \to w^{i}, \pi^{i} \quad Y' - \text{périodique} \end{array} \right.$$

avec $\{e_k\}_{k=1,2,3}$: base canonique de \mathbb{R}^3

Cas pseudoplastique (1 < r < 2)Pour tout $\gamma \in \mathbb{R}$, q = s = 2 et $\alpha = \gamma - 2$. • $\gamma \neq 1$: $\mathcal{U}(\xi') = \frac{1}{n}A\xi'$ avec $\eta = \begin{cases} \eta_0 & \text{si } \gamma < 1\\ \eta_\infty & \text{si } \gamma > 1 \end{cases}$ • $\gamma = 1$: $\mathcal{U}(\xi') = \int_{V_{\epsilon}} w'_{\xi'}$

 $w_{\xi'}$ solution du problème de cellule avec loi de Carreau

$$\begin{aligned} & -\operatorname{div}(\eta_{\operatorname{car}}(|D(w_{\xi'})|)D(w_{\xi'})) + \nabla \pi_{\xi'} &= \xi' \quad \operatorname{dans} \, Y_f \\ & \operatorname{div} w_{\xi'} &= 0 \quad \operatorname{dans} \, Y_f \\ & w_{\xi'} &= 0 \quad \operatorname{sur} \, \partial T \cup (Y'_f \times \{0,1\}) \\ & y \to w_{\xi'}, \pi_{\xi'} \quad Y' - \operatorname{p\acute{e}riodique} \end{aligned}$$

Cas dilatant r>2

•
$$\gamma < 1$$
: $q = 2, s = r, \alpha = \gamma - 2, \quad \mathcal{U}(\xi') = \frac{1}{\eta_0} A \xi'$
• $\gamma > 1$: $q = r, s = r, \alpha = \frac{\gamma - r}{r - 1},$
 $\mathcal{U}(\xi') = \lambda^{\frac{r' - 2}{2}} (\eta_0 - \eta_\infty)^{1 - r'} \int_{Y_f} w'_{\xi'}$

 $w_{\xi'} \text{ solution du problème de cellule avec loi de puissance } \eta_{\rm pow}$ • $\gamma = 1$: q = r, s = r, $\alpha = -1$,

$$\mathcal{U}(\xi') = \int_{Y_f} w'_{\xi'}$$

 $w_{\xi'}$ solution du problème de cellule avec loi de Carreau $\eta_{\rm car}$

Récapitulatif des modèles effectifs

	1 < r < 2	r=2	r > 2
$\gamma < 1$	Linéaire	Loi de Darcy $2d$	Linéaire
	(viscosité η_0)		(viscosité η_0)
$\gamma = 1$	Non linéaire	Linéaire	Non linéaire
	(loi de Carreau)		(loi de Carreau)
$\gamma > 1$	Linéaire	(viscosité η_0)	Non linéaire
	(viscosité η_∞)		(loi de puissance)

Type de loi de Darcy 2d obtenue en fonction de r et $\gamma.$

Plan de l'exposé

Présentation du modèle

2 Résultats principaux

3 Éléments de preuve (cas pseudoplastique 1 < r < 2)

- Cas $\gamma = 1$
- Cas $\gamma \neq 1$

Forme variationnelle dans $\Omega = \omega \times (0, 1)$ $\tilde{v}_{\epsilon} = \tilde{v}_{\epsilon}(x', y_3) \in H^1_0(\tilde{\Omega}_{\epsilon}, \mathbb{R}^3)$, prolongée par zéro sur Ω

$$\epsilon^{\gamma}(\eta_{0} - \eta_{\infty}) \int_{\Omega} (1 + \lambda |D_{\epsilon}(\tilde{u}_{\epsilon})|^{2})^{\frac{r}{2} - 1} D_{\epsilon}(\tilde{u}_{\epsilon}) : D_{\epsilon}(\tilde{v}_{\epsilon}) \, dx' dy_{3}$$
$$+ \epsilon^{\gamma} \eta_{\infty} \int_{\Omega} D_{\epsilon}(\tilde{u}_{\epsilon}) : D_{\epsilon}(\tilde{v}_{\epsilon}) \, dx' dy_{3}$$
$$- \int_{\Omega} \tilde{p}_{\epsilon} \operatorname{div}_{\epsilon} \tilde{v}_{\epsilon} \, dx' dy_{3} = \int_{\Omega} f' \cdot \tilde{v}_{\epsilon}' \, dx' dy_{3}$$

оù

$$D_{\epsilon}(\varphi) = \frac{1}{2} \left(\nabla_{\epsilon} \varphi + \nabla_{\epsilon}^{T} \varphi \right)$$
$$(\nabla_{\epsilon} \varphi)_{i,j} = \begin{cases} \partial_{x_{j}} \varphi_{i} & j = 1, 2\\ \epsilon^{-1} \partial_{y_{3}} \varphi_{i} & j = 3 \end{cases}$$
$$\operatorname{div}_{\epsilon} \varphi = \operatorname{div}_{x'} \varphi' + \epsilon^{-1} \partial_{z_{3}} \varphi_{3}$$

Fonctions test oscillantes

Fixons $v(x', y) \in \mathcal{D}(\omega; C^{\infty}_{\#}(Y)^3)$ avec v(x', y) = 0 dans $\omega \times T$ et sur $\omega \times Y' \times \{0, 1\}$. Suite de fonctions test $v_{\epsilon}(x', y_3) = v(x', x'/\epsilon, y_3)$

$$\begin{aligned} \epsilon^{\gamma}(\eta_{0} - \eta_{\infty}) \int_{\Omega} (1 + \lambda |D_{\epsilon}(\tilde{u}_{\epsilon})|^{2})^{\frac{r}{2} - 1} D_{\epsilon}(\tilde{u}_{\epsilon}) &: \left(D_{x'}(v) + \epsilon^{-1} D_{y}(v) \right) \, dx' dy_{3} \\ &+ \epsilon^{\gamma} \eta_{\infty} \int_{\Omega} D_{\epsilon}(\tilde{u}_{\epsilon}) : \left(D_{x'}(v) + \epsilon^{-1} D_{y}(v) \right) \, dx' dy_{3} \\ &- \int_{\Omega} \tilde{p}_{\epsilon} \left(\operatorname{div}_{x'} v' + \epsilon^{-1} \operatorname{div}_{y} v \right) \, dx' dy_{3} = \int_{\Omega} f' \cdot v' \, dx' dy_{3} \end{aligned}$$

Introduction des fonctions « dépliées » $\hat{u}_{\epsilon}, \hat{p}_{\epsilon}$

- ω recouvert d'une grille carrée de taille $\epsilon \times \epsilon$
- $\hat{u}_{\epsilon}, \hat{p}_{\epsilon} : \omega \times Y \to \mathbb{R}$ définies par

 $\hat{u}_{\epsilon}(x',y) = \tilde{u}_{\epsilon}(\epsilon k' + \epsilon y',y_3), \quad \hat{p}_{\epsilon}(x',y) = \tilde{p}_{\epsilon}(\epsilon k' + \epsilon y',y_3)$

si x' est dans la cellule de centre $\epsilon k' \quad (k' \in \mathbb{Z}^2), \quad y \in Y$

• Par construction, $\hat{u}_{\epsilon}(x',y)$ est indépendante de x' si $x' \in \epsilon(k'+Y')$ donc

$$\operatorname{div}_{x'}\hat{u}'_{\epsilon} = 0$$
 p.p. dans $\omega \times Y$

et $\operatorname{div}_{\epsilon} \tilde{u}_{\epsilon} = 0$ dans Ω entraîne

$$\operatorname{div}_y \hat{u}_{\epsilon} = 0 \quad \mathsf{dans} \ \omega \times Y$$

Résultats de compacité

II existe

•
$$ilde{u}\in H^1_0(0,1;L^2(\omega)^3)$$
 où $ilde{u}_3\equiv 0$, t.q.

 $\epsilon^{\gamma-2}\tilde{u}_{\epsilon}
ightarrow (\tilde{u}', 0)$ faible $H^1(0, 1; L^2(\omega)^3)$

• $\hat{u}\in L^2(\omega; H^1_{0,\#}(Y)^3),$ avec $\hat{u}=0$ sur $\omega\times Y'\times\{0,1\},$ t.q.

$$\epsilon^{\gamma-2} \hat{u}_\epsilon
ightarrow \hat{u}$$
 faible $L^2(\omega; H^1(Y)^3)$

• \tilde{u} et \hat{u} vérifient

$$\tilde{u}(x',y_3) = \int_{Y'} \hat{u}(x',y) \, dy'$$

• $p = p(x') \in L^2_0(\omega)$

$$\begin{split} \tilde{p}_{\epsilon} &
ightarrow p \quad ext{fort } L^2(\Omega) \\ \hat{p}_{\epsilon} &
ightarrow p \quad ext{fort } L^2(\omega imes Y) \end{split}$$

Conditions supplémentaires

On définit
$$V'(x') = \int_0^1 \tilde{u}'(x', y_3) \, dy_3 = \int_{Y_f} \hat{u}(x', y) \, dy$$
 p.p. $x' \in \omega$.

Incompressibilité

$$div_{x'}V' = 0 \text{ dans } \omega$$
$$div_y \hat{u}(x', y) = 0 \text{ dans } \omega \times Y_f$$

• Condition aux limites

$$V'\cdot n=0\quad {\rm sur}\;\partial\omega$$

Forme variationnelle sur $\omega \times Y$

En adaptant les résultats de Cioranescu, Damlamian & Griso, *The periodic unfolding method in homogenization* (2008) :

$$\begin{split} \epsilon^{\gamma-1}(\eta_0 - \eta_\infty) \int_{\omega \times Y} (1 + \lambda |\epsilon^{-1} D_y(\hat{u}_{\epsilon})|^2)^{\frac{r}{2} - 1}(\epsilon^{-1} D_y(\hat{u}_{\epsilon})) &: D_y(v) \, dx' dy \\ &+ \epsilon^{\gamma-1} \eta_\infty \int_{\omega \times Y} \epsilon^{-1} D_y(\hat{u}_{\epsilon}) : D_y(v) \, dx' dy \\ &- \int_{\omega \times Y} \hat{p}_{\epsilon} \left(\operatorname{div}_{x'} v' - \epsilon^{-1} \operatorname{div}_y v \right) \, dx' dy \\ &= \int_{\omega \times Y} f' \cdot v' \, dx' dy + O_{\epsilon} \end{split}$$

où $|O_{\epsilon}| \leq C\epsilon$ pour tout $\gamma \in \mathbb{R}$.

Argument de monotonie

• La fonctionnelle J_r définie

$$J_{r}(v) = \frac{\eta_{0} - \eta_{\infty}}{r\lambda} \int_{\omega \times Y} (1 + \lambda |D_{y}(v)|^{2})^{\frac{r}{2}} + \frac{\eta_{\infty}}{2} \int_{\omega \times Y} |D_{y}(v)|^{2}$$

est convexe et Gateaux-differentiable sur $L^2(\omega; H^1_\#(Y)^3)$ • $A_r:=J'_r$ défini par

$$(A_r(w), v)_{L^2(\omega; H^1_{\#}(Y)^3)} = (\eta_0 - \eta_\infty) \int_{\omega \times Y} (1 + \lambda |D_y(w)|^2)^{\frac{r}{2} - 1} D_y(w) : D_y(v) + \eta_\infty \int_{\omega \times Y} D_y(w) : D_y(v)$$

est donc un opérateur monotone :

$$(A_r(w) - A_r(v), w - v) \ge 0 \qquad \forall w, v \in L^2(\omega; H^1_{\#}(Y)^3)$$

Plan de l'exposé

Présentation du modèle

2 Résultats principaux

3 Éléments de preuve (cas pseudoplastique 1 < r < 2) • Cas $\gamma = 1$

• Cas $\gamma \neq 1$

« Minty's trick »

Tester contre $v_{\epsilon} = \varphi - \epsilon^{-1} \hat{u}_{\epsilon}$, avec $\operatorname{div}_y \varphi = 0$:

$$\epsilon^{\gamma-1}(A_r(\epsilon^{-1}\hat{u}_{\epsilon}), \varphi - \epsilon^{-1}\hat{u}_{\epsilon}) - \int_{\omega \times Y} \hat{p}_{\epsilon} \operatorname{div}_{x'} \varphi'$$
$$= \int_{\omega \times Y} f' \cdot (\varphi - \epsilon^{-1}\hat{u}_{\epsilon})' + O_{\epsilon}$$

donne l'inégalité

$$\epsilon^{\gamma-1}(A_r(\varphi), \varphi - \epsilon^{-1}\hat{u}_{\epsilon}) - \int_{\omega \times Y} \hat{p}_{\epsilon} \operatorname{div}_{x'} \varphi'$$

$$\geq \int_{\omega \times Y} f' \cdot (\varphi - \epsilon^{-1}\hat{u}_{\epsilon})' + O_{\epsilon}$$
(1)

 $\begin{array}{l} \mathsf{Cas} \ \gamma = 1 \\ \texttt{(1) s'écrit} \end{array}$

$$(A_r(\varphi), \varphi - \epsilon^{-1}\hat{u}_{\epsilon}) - \int_{\omega \times Y} \hat{p}_{\epsilon} \operatorname{div}_{x'} \varphi' \ge \int_{\omega \times Y} f' \cdot (\varphi - \epsilon^{-1}\hat{u}_{\epsilon})' + O_{\epsilon}$$

À la limite :

•
$$\hat{p}_{\epsilon} \rightarrow p = p(x')$$
 fort $L^{2}(\omega \times Y)$ donc

$$\int_{\omega \times Y} \hat{p}_{\epsilon} \operatorname{div}_{x'} \varphi' \rightarrow \int_{\omega \times Y} p \operatorname{div}_{x'} \varphi'$$

$$= \int_{\omega} p(x') \operatorname{div}_{x'} \left(\int_{Y} \varphi' \, dy \right) dx' = 0$$
en imposant $\operatorname{div}_{x'} \left(\int_{Y} \varphi' \, dy \right) = 0$
• $\epsilon^{-1} \hat{u}_{\epsilon} \rightharpoonup \hat{u}$ faible $L^{2}(\omega, H^{1}(Y)^{3})$ d'où

$$(A_r(\varphi), \varphi - \hat{u}) \ge \int_{\omega \times Y} f' \cdot (\varphi - \hat{u})'$$

Obtention du système limite (lemme de Minty) \hat{u} est dans l'espace de Hilbert \mathcal{V} défini par

$$\mathcal{V} = \left\{ \begin{array}{l} v(x',y) \in L^2(\omega; H^1_{\#}(Y)^3) \text{ t.q.} \\ \operatorname{div}_{x'} \Big(\int_{Y_f} v' \, dy \Big) = 0 \quad \text{dans } \omega \\ \Big(\int_{Y_f} v' \, dy \Big) \cdot n = 0 \quad \text{sur } \partial \omega \\ \operatorname{div}_y v = 0 \quad \text{dans } \omega \times Y_f \\ v = 0 \quad \text{dans } \omega \times T \text{ et sur } \omega \times Y' \times \{0,1\} \end{array} \right.$$

et

$$(A_r(\varphi), \varphi - \hat{u}) \ge \int_{\omega \times Y} f' \cdot (\varphi - \hat{u})' \qquad \forall \varphi \in \mathcal{V}$$

Puisque $A_r: \mathcal{V} \to \mathcal{V}'$ est maximal,

$$(A_r(\hat{u}), \varphi) = \int_{\omega \times Y} f' \cdot \varphi' \qquad \forall \varphi \in \mathcal{V}$$

Plan de l'exposé

Présentation du modèle

2 Résultats principaux

Section 2 Eléments de preuve (cas pseudoplastique 1 < r < 2)
Cas γ = 1
Cas γ ≠ 1

Inégalité variationnelle

- $\bullet\,$ Même démarche en testant contre $v_\epsilon = \epsilon^{1-\gamma} \varphi \epsilon^{-1} \hat{u}_\epsilon$
- Après division par $\epsilon^{1-\gamma}$:

$$(\eta_0 - \eta_\infty) \int_{\omega \times Y} (1 + \lambda \epsilon^{2(1-\gamma)} |D_y(\varphi)|^2)^{\frac{r}{2} - 1} D_y(\varphi) : D_y(\varphi - \epsilon^{\gamma - 2} \hat{u}_\epsilon) + \eta_\infty \int_{\omega \times Y} D_y(\varphi) : D_y(\varphi - \epsilon^{\gamma - 2} \hat{u}_\epsilon) - \int_{\omega \times Y} \hat{p}_\epsilon \operatorname{div}_{x'} \varphi' \geq \int_{\omega \times Y} f' \cdot (\varphi - \epsilon^{\gamma - 2} \hat{u}_\epsilon)' + O_\epsilon$$

où $|O_\epsilon| \leq C\epsilon$

Passage à la limite ($\gamma < 1$)

$$\epsilon^{\gamma-2}\hat{u}_{\epsilon} \rightharpoonup \hat{u} \quad \text{faible } L^2(\omega, H^1(Y)^3)$$

$$\begin{split} 2(1-\gamma) < 0 \quad \text{donc} \quad \lambda \epsilon^{2(1-\gamma)} \\ \quad \text{donc} \quad (1+\lambda \epsilon^{2(1-\gamma)} |D_y(\varphi)|^2)^{\frac{r}{2}-1} \to 1 \end{split}$$

$$(\eta_0 - \eta_\infty) \int_{\omega \times Y} D_y(\varphi) : D_y(\varphi - \hat{u}) + \eta_\infty \int_{\omega \times Y} D_y(\varphi) : D_y(\varphi - \hat{u})$$
$$= \eta_0 \int_{\omega \times Y} D_y(\varphi) : D_y(\varphi - \hat{u}) \ge \int_{\omega \times Y} f' \cdot (\varphi - \hat{u})'$$

d'où pour tout $\varphi \in \mathcal{V}$:

$$\eta_0 \int_{\omega \times Y_f} D_y(\hat{u}) : D_y(\varphi) = \int_{\omega \times Y_f} f' \cdot \varphi'$$

Passage à la limite ($\gamma > 1$)

$$\epsilon^{\gamma-2}\hat{u}_{\epsilon} \rightharpoonup \hat{u}$$
 faible $L^2(\omega, H^1(Y)^3)$

$$\begin{split} 2(1-\gamma) < 0 \quad \text{donc} \quad \lambda \epsilon^{2(1-\gamma)} \to +\infty \\ \quad \text{donc} \quad (1+\lambda \epsilon^{2(1-\gamma)} |D_y(\varphi)|^2)^{\frac{r}{2}-1} \to 0 \end{split}$$

$$\eta_{\infty} \int_{\omega \times Y} D_y(\varphi - \hat{u}) : D_y(\varphi) \ge \int_{\omega \times Y} f' \cdot (\varphi - \hat{u})'$$

d'où pour tout $\varphi \in \mathcal{V}$:

$$\eta_{\infty} \int_{\omega \times Y_f} D_y(\hat{u}) : D_y(\varphi) = \int_{\omega \times Y_f} f' \cdot \varphi'$$

Système limite à deux pressions $p, \hat{\pi}$

$$\begin{split} -\mathrm{div}_y\left(\eta\left(D_y(\hat{u})\right)D_y(\hat{u})\right) + \nabla_y\hat{\pi} &= f' - \nabla_{x'}p \quad \mathrm{dans}\; \omega \times Y_f \\ \mathrm{div}_y\hat{u} &= 0 \quad \mathrm{dans}\; \omega \times Y_f \\ \mathrm{div}_{x'}\Big(\int_{Y_f}\hat{u}'\,dy\Big) &= 0 \quad \mathrm{dans}\; \omega \\ \Big(\int_{Y_f}\hat{u}'\,dy\Big) \cdot n &= 0 \quad \mathrm{sur}\; \partial\omega \\ \hat{u} &= 0 \quad \mathrm{dans}\; \omega \times T \end{split}$$

où

$$\eta(D_y(\hat{u})) = \begin{cases} \eta_0 & \text{si } \gamma < 1\\ \eta_{\text{car}}(D_y(\hat{u})) & \text{si } \gamma = 1\\ \eta_{\infty} & \text{si } \gamma > 1 \end{cases}$$

Les lois de Darcy s'en déduisent en posant $V' = \int_{Y_f} \hat{u}' \, dy$.

Anguiano, B & Suárez-Grau, Carreau law for non-Newtonian fluid flow through a thin porous medium, *Q. J. Mech. Appl. Math.*

Anguiano, B & Suárez-Grau, Effective models for generalized Newtonian fluids through a thin porous medium following the Carreau law. *Soumis*

Merci pour votre attention !