# Invariant Gibbs Measures for the 1d Nonlinear Schrödinger Equation with Trapping Potential 

## Van Duong Dinh

ENS de Lyon
(joint work with Nicolas Rougerie (ENS de Lyon), Leonardo Tolomeo (University of Edinburgh), and Yuzhao Wang (University of Birmingham))

Auvergne-Rhône-Alpes PDEs Day
9-10 November 2023
Clermont-Ferrand University
Outline
1 What is Gibbs measure? ..... 1
2 1d NLS with trapping potential ..... 3
3 Motivation ..... 4
4 Related known results ..... 5
5 Main results ..... 7
6 Elements of Proof ..... 9

## What is Gibbs measure?

- In finite dimensional setting. Consider an ODE on $\mathbb{R}^{2 d}$ :

$$
\left\{\begin{array}{rl}
\partial_{t} x_{j} & =\frac{\partial H}{\partial \xi_{j}},  \tag{ODE}\\
\partial_{t} \xi_{j} & =-\frac{\partial H}{\partial x_{j}},
\end{array} \quad j=1, \ldots, d\right.
$$

with a Hamiltonian $H(x, \xi)=H\left(x_{1}, \ldots, x_{d}, \xi_{1}, \ldots, \xi_{d}\right)$.

- The Gibbs measure associated to (ODE) is given by

$$
d \mu(x, \xi)=\frac{1}{Z} e^{-H(x, \xi)} d x d \xi
$$

where $Z$ is the normalized constant.

- $\mu$ is invariant under the flow of (ODE), i.e., for $A$ measurable set of $\mathbb{R}^{2 d}, \mu(A)=\mu(\Phi(t) A)$ for all $t \in \mathbb{R}$ because
- vector field $\left(\partial_{\xi} H,-\partial_{X} H\right)$ is divergence-free $\rightarrow$ (Liouville's theorem) Lebesgue measure $d x d \xi$ is invariant under (ODE);
- conservation of Hamiltonian, i.e., $H(x, \xi)$ is independent of time.


## What is Gibbs measure?

- In infinite dimensional setting. Consider a NLS on $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ :

$$
\begin{equation*}
i \partial_{t} u+\partial_{x}^{2} u+u= \pm|u|^{p-2} u, \quad p>2 \tag{NLS}
\end{equation*}
$$

- (NLS) also has a Hamiltonian structure, i.e., $\partial_{t} u=-i \frac{\partial H}{\partial \bar{u}}$ with the Hamiltonian

$$
H(u)=\frac{1}{2} \int_{\mathbb{T}}\left|\partial_{x} u\right|^{2}+|u|^{2} \pm \frac{1}{p} \int_{\mathbb{T}}|u|^{p} .
$$

- It is expected that the Gibbs measure of the form

$$
d \mu(u)=\frac{1}{Z} e^{-H(u)} d u
$$

is invariant under the flow of (NLS).

## $\triangle$ There is no infinite dimensional Lebesgue measure.

- The construction and invariance of Gibbs measures for NLS (and other dispersive PDEs) have been studied by many mathematicians: Lebowitz, Rose, Speer, Bourgain, Tzvetkov, Burq, Oh, Nahmod, Killip, Visan, Deng, Tolomeo ,...
- Why do we care about invariant Gibbs measure? a sort of "conservation law" to obtain global solutions at low regularity.


## 1d NLS with trapping potential

- We consider 1d nonlinear Schrödinger equation

$$
i \partial_{t} u+\partial_{x}^{2} u-V u= \pm|u|^{p-2} u, \quad x \in \mathbb{R}
$$

with $p>2$ and the trapping potential $V: \mathbb{R} \rightarrow \mathbb{R}_{+}$satisfying

$$
V(x) \sim|x|^{s} \quad(s>0) \quad \text { as } \quad|x| \rightarrow \infty .
$$

- Our goal is to construct the following, formally defined, Gibbs measures

$$
d \mu(u)=\frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{x} u\right|^{2}+V|u|^{2} \mp \frac{1}{p} \int_{\mathbb{R}}|u|^{p}\right) d u
$$

and to prove their invariance under the flow of (NLS).

## Motivation

- Physics: The many-body mean-field approximation of Bose-Einstein condensates:
- the defocusing (+) measure ( Lewin, Nam, Rougerie '15, '18 ; Fröhlich, Knowles, Schlein, Sohinger '17, '19 ).
- the focusing (-) measure ( Sohinger, Rout '22, '23 ).
- Mathematics: Most work on Gibbs measures relies on the explicit knowledge of eigenfunctions of the linear operator $-\Delta+V(x)$, e.g.
- torus (plan waves) Lebowitz, Rose, Speer '88; Bourgain '94; Oh, Quastel '13 ; Oh, Sosoe, Tolomeo '22,...
- harmonic potential $V(x)=|x|^{2}$ (link with Hermite polynomials) Burq, Thomann, Tzvetkov '13; Deng '12; Robert, Seong, Tolomeo, Wang '22 .
- disk/sphere (link with Bessel functions) Tzvetkov '06, '08; Bourgain, Bulut '14.

For $V(x) \sim|x|^{s}$ at infinity, such an explicit knowledge on eigenfunctions is not available.

## 1d NLS on torus

One can formally think it as (NLS) with $s=\infty, x \in[0,1]$ and a periodic boundary condition.

- defocusing: McKean '95.
- focusing:

$$
d \mu(u)=\frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{T}}\left|\partial_{x} u\right|^{2}+|u|^{2}+\frac{1}{p} \int_{\mathbb{U}}|u|^{p}\right) \mathbb{1}_{\left\{\int_{\mathbb{T}}|u|^{2} \leq m\right\}} d u
$$

- Lebowitz, Rose, Speer '88 proved
- normalizability $(Z<+\infty)$ for $2<p<6$ and any $m>0$;
- non-normalizability $(Z=+\infty)$
+ for $p>6$ and any $m>0$;
+ for $p=6$ and $m>\|Q\|_{L^{2}(\mathbb{R})}^{2}$, where $Q$ is the unique (up to symmetries) optimizer of the
Gagliardo-Nirenberg-Sobolev inequality

$$
\|u\|_{L^{6}(\mathbb{R})}^{6} \leq C_{\mathrm{opt}}\left\|\partial_{x} u\right\|_{L^{2}(\mathbb{R})}^{2}\|u\|_{L^{2}(\mathbb{R})}^{4} .
$$

- Bourgain '94 proved
- normalizability
+ for $2<p<6$ and any $m>0$;
+ for $p=6$ and $m>0$ small;
- invariance for $p>2$ and $p \leq 6$ for the focusing nonlinearity.
- Oh, Sosoe, Tolomeo '22 proved the normalizability for $p=6$ and $0<m<\|Q\|_{L^{2}(\mathbb{R})}^{2}$ and
$m=\|Q\|_{L^{2}(\mathbb{R})}^{2}$. This is remarkable since NLS admits blowup solutions with the minimal mass $\|Q\|_{L^{2}(\mathbb{R})}^{2}$
( Ogawa, Tsutsumi '90 ).

1d NLS with harmonic potential $V(x)=|x|^{2}$

- Burq, Thomann, Tzvetkov '13 constructed the Gibbs measures for - defocusing with $p>2$;
- focusing

$$
d \mu(u)=\frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{x} u\right|^{2}+|x|^{2}|u|^{2}+\frac{1}{p} \int_{\mathbb{R}}|u|^{p}\right) \mathbb{1}_{\left\{\int_{\mathbb{R}}:|u|^{2}: \leq m\right\}} d u
$$

only with $p=4$ and any $m>0$ (the renormalized mass cutoff).
They also proved the invariance for $p$ even integer.

- Robert, Seong, Tolomeo, Wang '22 considered the focusing measures and proved
- normalizability for $2<p<6$ and any $m>0$;
- non-normalizability for $p \geq 6$ and any $m>0$.
$\triangle$ No critical nonlinearity.


## Main results

Theorem 1 (Construction of Gibbs measures) D., Rougerie '23, D., Rougerie, Tolomeo, Wang '23+

- Normalizability for defocusing nonlinearity with $p>\max \left\{2, \frac{4}{s}\right\}$;
- Focusing nonlinearity
- Super-harmonic (s>2)

$$
d \mu(u)=\frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{x} u\right|^{2}+V|u|^{2}+\frac{1}{p} \int_{\mathbb{R}}|u|^{p}\right) \mathbb{1}_{\left\{\int_{\mathbb{R}}|u|^{2} \leq m\right\}} d u
$$

- normalizability
+ for $2<p<6$ and any $m>0$;
+ for $p=6$ and $0<m<\|Q\|_{L^{2}(\mathbb{R})}^{2}$, where $Q$ is the unique (up to symmetries) optimizer of the Gagliardo-Nirenberg-Sobolev inequality.
- non-normalizability

$$
+ \text { for } p=6 \text { and } m>\|Q\|_{L^{2}(\mathbb{R})}^{2}
$$

$$
+ \text { for } p>6 \text { and any } m>0 \text {. }
$$

- harmonic ( $s=2$ )

$$
d \mu(u)=\frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{x} u\right|^{2}+V|u|^{2}+\frac{1}{p} \int_{\mathbb{R}}|u|^{p}\right) \mathbb{1}_{\left\{\int_{\mathbb{R}}:|u|^{2}: \leq m\right\}} d u
$$

- normalizability for $2<p<6$ and any $m>0$.
- non-normalizability for $p \geq 6$ and any $m>0$.


## Main results

## Theorem 1 (Construction of Gibbs measures, continue)

- sub-harmonic $(1<s<2)$

$$
d \mu(u)=\frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{x} u\right|^{2}+|x|^{2}|u|^{2}+\frac{\alpha}{p} \int_{\mathbb{R}}|u|^{p}\right) \mathbb{1}_{\left\{\int_{\mathbb{R}}:|u|^{2}: \leq m\right\}} d u
$$

- normalizability

$$
\begin{aligned}
& + \text { for } \frac{4}{s}<p<2+2 s, \text { any } \alpha>0 \text { and any } m>0 ; \\
& + \text { for } p=2+2 s, 0<\alpha<\alpha_{0} \text { with some } \alpha_{0}>0 \text { and any } m>0 .
\end{aligned}
$$

- non-normalizability
+ for $p=2+2 s, \alpha>\alpha_{0}$ and any $m>0$;
+ for $p>2+2 s$, any $\alpha>0$ and any $m>0$.


## Theorem 2 (Invariance of Gibbs measures)

The above Gibbs measures are invariant under the flow of (NLS) provided

- super-harmonic (s>2): $2<p<4+s$;
- (sub)-harmonic $(1<s \leq 2): \frac{4}{s}<p<6$.

Consequently, (NLS) is globally well-posed almost surely on the support of Gibbs measures.

## - Open questions:

? normalizability for $m=\|Q\|_{L^{2}(\mathbb{R})}^{2}$ (for $s>2$ ) and $\alpha=\alpha_{0}$ (for $1<s<2$ );
? invariance for $p \geq 4+s$ (for $s>2$ ) and $p \geq 6$ (for $1<s \leq 2$ ).

## Sobolev spaces

- Denote

$$
H=-\partial_{x}^{2}+V(x)
$$

Since $V$ is trapping, the spectral theorem yields

$$
H=\sum_{j \geq 1} \lambda_{j}\left|u_{j}\right\rangle\left\langle u_{j}\right|,
$$

where

$$
0<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{j} \rightarrow+\infty
$$

are eigenvalues of $H$ and $\left\{u_{j}\right\}_{j \geq 1}$ are the corresponding normalized eigenfunctions which form an orthonormal basis of $L^{2}(\mathbb{R})$.

- Let $1 \leq p \leq \infty$ and $\beta \in \mathbb{R}$. Sobolev spaces associated to $H$ are defined by

$$
\mathscr{W}^{\beta, p}(\mathbb{R})=\left\{u \in \mathscr{S}^{\prime}(\mathbb{R}): H^{\beta / 2} u \in L^{p}(\mathbb{R})\right\} .
$$

When $p=2$, we write $\mathscr{W}^{\theta, 2}(\mathbb{R})=\mathscr{H}^{\theta}(\mathbb{R})$.

- Equivalence norms (Yajima, Zhang '01) :

For $\beta>0$ and $1<p<\infty$,

$$
\left\|H^{\beta / 2} u\right\|_{L^{p}(\mathbb{R})} \sim\left\|\langle D\rangle^{\beta} u\right\|_{L^{p}(\mathbb{R})}+\left\|\langle X\rangle^{\beta s / 2} u\right\|_{L^{p}(\mathbb{R})},
$$

where $\langle D\rangle=\sqrt{1-\partial_{x}^{2}}$.

## Gaussian measure

- By writing

$$
d \mu(u)=\frac{1}{Z} \exp \left(\mp \frac{1}{p} \int_{\mathbb{R}}|u|^{p}\right) \exp \left(-\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{x} u\right|^{2}+V|u|^{2}\right) d u,
$$

we aim at defining $\mu$ as an absolutely continuous probability measure with respect to the Gaussian measure formally given by

$$
d \rho(u)=\frac{1}{C} \exp \left(-\frac{1}{2} \int_{\mathbb{R}}\left|\partial_{x} u\right|^{2}+V|u|^{2}\right) d u
$$

- Observe that

$$
\int_{\mathbb{R}}\left|\partial_{X} u\right|^{2}+V|u|^{2}=\langle u, H u\rangle_{L^{2}}=\|u\|_{\not \mathscr{C}^{1}}^{2} .
$$

For $u \in \mathscr{S}^{\prime}(\mathbb{R})$, we decompose

$$
u=\sum_{j \geq 1} \alpha_{j} u_{j}, \quad \alpha_{j}=\left\langle u_{j}, u\right\rangle_{L^{2}} \in \mathbb{C}
$$

and write

$$
d \rho(u)=\frac{1}{C} \exp \left(-\frac{1}{2} \sum_{j \geq 1} \lambda_{j}\left|\alpha_{j}\right|^{2}\right) \prod_{j \geq 1} d \alpha_{j} .
$$

- We can think of defining $\rho$ as

$$
\begin{equation*}
d \rho(u)=\prod_{j \geq 1} \frac{\lambda_{j}}{2 \pi} e^{-\frac{1}{2} \lambda_{j}\left|\alpha_{j}\right|^{2}} d \alpha_{j} \tag{GM}
\end{equation*}
$$

with

$$
C=\prod_{j \geq 1} \frac{2 \pi}{\lambda_{j}} .
$$

## Gaussian measure

- To define rigorously the Gaussian measure $\rho$, we will take the limit $\Lambda \rightarrow \infty$ of the finite dimensional Gaussian measure

$$
d \rho_{\Lambda}(u)=\prod_{\lambda_{j} \leq \Lambda} \frac{\lambda_{j}}{2 \pi} e^{-\frac{1}{2} \lambda_{j}\left|\alpha_{j}\right|^{2}} d \alpha_{j}
$$

defined on

$$
E_{\Lambda}=\operatorname{span}\left\{u_{j}: \lambda_{j} \leq \Lambda\right\}
$$

- But, taking the limit on which topology?
- to view $\rho_{\Lambda}$ as an induced probability measure under the randomization

$$
u_{\Lambda}^{\omega}=\sum_{\lambda_{j} \leq \Lambda} \frac{g_{j}(\omega)}{\sqrt{\lambda_{j}}} u_{j}
$$

where $\left\{g_{j}\right\}_{j \geq 1}$ are i.i.d. complex-valued standard Gaussian random variables $\left(\mathscr{N}_{\mathbb{C}}(0,1)\right)$ on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

- to show

$$
\mathbb{E}_{\mathbb{P}}\left[\left\|u_{\Theta}^{\omega}-u_{\Lambda}^{\omega}\right\|_{\mathscr{\not C}}^{2}\right]=\sum_{\Lambda<\lambda_{j} \leq \Theta} \lambda_{j}^{\theta-1} \rightarrow 0 \text { as } \Theta, \Lambda \rightarrow \infty
$$

for a suitable $\theta$. For that, we need

$$
\sum_{j \geq 1} \lambda_{j}^{\theta-1}<\infty .
$$

## Regularity of Gaussian measure

- Under which condition on $\theta$, we have $\sum_{j \geq 1} \lambda_{j}^{\theta-1}<\infty$ ?
- For 1 d torus, $\lambda_{j} \sim j^{2}$, so we need $\theta<\frac{1}{2}$.
- For 1d harmonic potential, $\lambda_{j} \sim j$, hence we require $\theta<0$.
- For general trapping potential, we use the Lieb-Thirring inequality ( Dolbeault, Felmer, Loss, Paturel '06 ): for $p>\frac{1}{2}$,

$$
\operatorname{Tr}\left[H^{-p}\right] \leq C(p) \iint_{\mathbb{R} \times \mathbb{R}} \frac{d x d \xi}{\left(|\xi|^{2}+V(x)\right)^{p}}
$$

Applying this, we have

$$
\begin{aligned}
& \qquad \sum_{j \geq 1} \lambda_{j}^{\theta-1}=\operatorname{Tr}\left[H^{\theta-1}\right] \leq 2^{1-\theta} \operatorname{Tr}\left[\left(H+\lambda_{1}\right)^{\theta-1}\right] \leq C(\theta) \iint_{\mathbb{R} \times \mathbb{R}} \frac{d x d \xi}{\left(|\xi|^{2}+V(x)+\lambda_{1}\right)^{1-\theta}} . \\
& \text { If } V(x) \geq C|x|^{s} \text {, then } \sum_{j \geq 1} \lambda_{j}^{\theta-1}<\infty \text { provided } \theta<\frac{1}{2}-\frac{1}{s} .
\end{aligned}
$$

Lemma 1 (Regularity of $\rho$ )
$\rho$ is supported on $\mathscr{H}^{\theta}(\mathbb{R})$ for any $\theta<\frac{1}{2}-\frac{1}{s}$.
$\rightarrow$ When $s \leq 2$, a mass renormalization is needed, i.e.,

$$
\int_{\mathbb{R}}:|u|^{2}:=\int_{\mathbb{R}}\left(|u|^{2}-\mathbb{E}_{\rho}\left[|u|^{2}\right]\right)=\int_{\mathbb{R}}|u|^{2}-\mathbb{E}_{\rho}\left[\int_{\mathbb{R}}|u|^{2}\right] .
$$

## Integrability of Gaussian measure

- For $\beta>0$ and $1<p<\infty$, we can use Khintchine's inequality

$$
\mathbb{E}_{\mathbb{P}}\left[\left|\sum_{j} a_{j} g_{j}(\omega)\right|^{p}\right] \leq C(p)\left\|a_{j}\right\|_{\ell^{2}}^{p}
$$

to estimate $\mathbb{E}_{\rho}\left[\|u\|_{W \beta, p}^{p}\right]$. Indeed,

$$
\begin{aligned}
\mathbb{E}_{\rho}\left[\|u\|_{W^{\beta, p}}^{p}\right] & =\int_{\mathbb{R}} \mathbb{E}_{\rho}\left[\left|H^{\beta / 2} u(x)\right|^{p}\right] d x \\
& =\int_{\mathbb{R}} \mathbb{E}_{\mathbb{P}}\left[\left|H^{\beta / 2}\left(\sum_{j} \frac{g_{j}(\omega)}{\sqrt{\lambda_{j}}} u_{j}(x)\right)\right|^{p}\right] d x \\
& =\int_{\mathbb{R}} \mathbb{E}_{\mathbb{P}}\left[\left|\sum_{j} \lambda_{j}^{\frac{\beta-1}{2}} u_{j}(x) g_{j}(\omega)\right|^{p}\right] d x \\
& \leq C(p) \int_{\mathbb{R}}(\underbrace{\sum_{j} \lambda_{j}^{\beta-1}\left|u_{j}(x)\right|^{2}}_{=H^{\beta-1}(x, x)})^{p / 2} d x,
\end{aligned}
$$

where $H^{\beta-1}(x, y)=\sum_{j \geq 1} \lambda_{j}^{\beta-1} u_{j}(x) \overline{u_{j}}(y)$ is the integral kernel of $H^{\beta-1}$.
$\Rightarrow \rho$ is supported in $\mathscr{W}^{\beta, p}(\mathbb{R})$ as long as

$$
H^{\beta-1}(., .) \in L^{p / 2}(\mathbb{R})
$$

## Integrability of Gaussian measure

For which values of $\beta$ and $q$, we have $H^{\beta-1}(\ldots) \in L^{q}$ ?

- For $1 d$ torus, $\left|u_{j}(x)\right|^{2}=1$, so for $q \geq 1$,

$$
\left\|H^{\beta-1}(\ldots)\right\|_{L^{q}(\mathbb{T})} \leq \sum_{j \geq 1} \lambda_{j}^{\beta-1}<\infty
$$

provided $\beta<\frac{1}{2}$. So $H^{\beta-1}(.,.) \in L^{q}(\mathbb{T})$ for all $0 \leq \beta<\frac{1}{2}$ and any $1 \leq q \leq \infty$.

- For 1d harmonic potential, we have (Koch, Tataru '05 )

$$
\left\|u_{j}\right\|_{L^{p}(\mathbb{R})} \lesssim \begin{cases}\lambda_{j}^{-\frac{1}{6}+\frac{1}{3 p}} & \text { if } 2 \leq p<4 \\ \lambda_{j}^{-\frac{1}{12}} & \text { if } p \geq 4\end{cases}
$$

Thus

$$
\left\|H^{\beta-1}(., .)\right\|_{L^{q}(\mathbb{R})} \leq \sum_{j \geq 1} \lambda_{j}^{\beta-1}\left\|u_{j}\right\|_{L^{2 q}(\mathbb{R})}^{2} \lesssim \begin{cases}\sum_{j \geq 1} \lambda_{j}^{\beta-1-\frac{1}{3}+\frac{1}{3 q}} & \text { if } 1 \leq q<2 \\ \sum_{j \geq 1} \lambda_{j}^{\beta-1-\frac{1}{6}} & \text { if } q \geq 2\end{cases}
$$

Since $\lambda_{j} \sim j$, we have $H^{\beta-1}(. ..) \in L^{q}(\mathbb{R})$ for

$$
\begin{cases}0 \leq \beta<\frac{1}{3}-\frac{1}{3 q} & \text { if } 1 \leq q<2, \\ 0 \leq \beta<\frac{1}{6} & \text { if } q \geq 2 .\end{cases}
$$

## Integrability of Gaussian measure

Lemma 2 (Integrability of diagonal integral kernel)
Let $0 \leq \beta<\frac{1}{2}$. Then $H^{\beta-1}(.,.) \in L^{q}(\mathbb{R})$ for any

$$
\max \left\{1, \frac{2}{s(1-2 \beta)}\right\}<q \leq \infty
$$

Proof:

- $q=\infty: H \geq C\left(1-\partial_{x}^{2}\right) \rightarrow H^{\beta-1} \leq C(\beta)\left(1-\partial_{x}^{2}\right)^{\beta-1}$ (operator monotonicity)
$\rightarrow H^{\beta-1}(x, x) \leq C(\theta) G(x, x)$, where

$$
G(x, y)=\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{e^{i(x-y) \xi}}{\left(1+|\xi|^{2}\right)^{1-\beta}} d \xi
$$

is the Green function of $\left(1-\partial_{x}^{2}\right)^{1-\beta}$. Note that $G(x, x)<\infty$ as long as $\beta<\frac{1}{2}$.

- For $1<q<\infty$, we want to show

$$
\sup _{\substack{x \in q^{\prime}(\mathbb{R}) \\ x \geq 0}} \int_{\mathbb{R}} H^{\beta-1}(x, x) \chi(x) d x \leq C\|\chi\|_{L^{q^{\prime}}(\mathbb{R})} .
$$

## Integrability of Gaussian measure

We write

$$
\int_{\mathbb{R}} H^{\beta-1}(x, x) \chi(x) d x=\operatorname{Tr}\left[\chi^{1 / 2} H^{\beta-1} \chi^{1 / 2}\right]=\left\|H^{(\beta-1) / 2} \chi^{1 / 2}\right\|_{\mathfrak{S}^{2}}^{2},
$$

where

$$
\mathfrak{S}^{p}=\left\{A:\|A\|_{\mathfrak{S}^{p}}=\left(\operatorname{Tr}\left[\left(A^{*} A\right)^{p / 2}\right]\right)^{1 / p}<\infty\right\}
$$

is the $p$-th Schatten space. For $\alpha>0$, we write

$$
H^{(\beta-1) / 2} \chi^{1 / 2}=\underbrace{H^{\alpha+(\beta-1) / 2}}_{\mathfrak{S}^{2 q}}(\underbrace{H^{-\alpha}\left(1-\partial_{x}^{2}\right)^{\alpha}}_{\mathfrak{S}^{\infty}}) \underbrace{\left(1-\partial_{x}^{2}\right)^{-\alpha} \chi^{1 / 2}}_{\mathfrak{S}^{2 q^{\prime}}}
$$

- $H^{\alpha+(\beta-1) / 2} \in \mathfrak{S}^{2 q} \rightarrow\left(\frac{1-\beta}{2}-\alpha\right) 2 q>\frac{1}{2}+\frac{1}{s}$.
- $H \geq C\left(1-\partial_{x}^{2}\right) \rightarrow H^{-2 \alpha} \leq C^{-2 \alpha}\left(1-\partial_{x}^{2}\right)^{-2 \alpha} \rightarrow\left(1-\partial_{x}^{2}\right)^{\alpha} H^{-2 \alpha}\left(1-\partial_{x}^{2}\right)^{\alpha} \leq C^{-2 \alpha}$, hence $H^{-\alpha}\left(1-\partial_{x}^{2}\right)^{\alpha} \in \mathfrak{S}^{\infty}$.
- $\left(1-\partial_{x}^{2}\right)^{-\alpha} \chi^{1 / 2} \in \mathfrak{S}^{2 q^{\prime}}$. We use the Kato-Seiler-Simon inequality: for $1 \leq p<\infty$,

$$
\|f(-i \nabla) g(x)\| \mathbb{S}^{p} \leq\|f\|_{L^{p}(\mathbb{R})}\|g\|_{L^{p}(\mathbb{R})}
$$

It requires $4 \alpha q^{\prime}>1$ or $\alpha>\frac{1}{4}-\frac{1}{4 q}$.

## Normalizability

Lemma 3 (Integrability of Gaussian measure)
$\rho$ is supported on $\mathbb{W}^{\beta, p}(\mathbb{R})$ for any $0 \leq \beta<\frac{1}{2}$ and

$$
\max \left\{2, \frac{4}{s(1-2 \beta)}\right\}<p \leq \infty
$$

- Defocusing : We want to show

$$
Z=\mathbb{E}_{\rho}\left[\exp \left(-\frac{1}{p} \int_{\mathbb{R}}|u|^{p}\right)\right] \in(0, \infty)
$$

Jensen's inequality gives

$$
Z \geq \exp \left(-\frac{1}{p} \mathbb{E}_{\rho}\left[\int_{\mathbb{R}}|u|^{p}\right]\right)>0
$$

provided $p>\max \left\{2, \frac{4}{s}\right\}$.

## Normalizability

- Focusing : The idea is to use the Boué-Dupuis variational formula as follows. Denote a centered Gaussian process $Y(t)$ by

$$
Y(t)=\sum_{j} \frac{B_{j}(t)}{\sqrt{\lambda_{j}}} e_{j}
$$

where $\left\{B_{j}\right\}_{j \geq 1}$ is a sequence of independent complex-valued Brownian motions, i.e., $B_{j}(t) \sim \mathscr{N}_{\mathbb{C}}(0, t)$.

## Lemma 4 (Boué-Dupuis variational formula)

Fix $\Lambda>0$ and denote $P_{\Lambda}$ the projection on $E_{\Lambda}$, i.e., $P_{\Lambda} u=\sum_{\lambda_{j} \leq \Lambda} \alpha_{j} u_{j}$. Let $F: C^{\infty}(\mathbb{R}) \rightarrow \mathbb{R}$ be measurable such that

$$
\mathbb{E}_{\mathbb{P}}\left[\left|F\left(P_{\Lambda} Y(1)\right)\right|^{p}\right]+\mathbb{E}_{\mathbb{P}}\left[\left|\exp \left(-F\left(P_{\Lambda} Y(1)\right)\right)\right|^{q}\right]<\infty
$$

for some $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
-\log \mathbb{E}_{\mathbb{P}}\left[\exp \left(-F\left(P_{\Lambda} Y(1)\right)\right)\right]=\inf _{\theta \in \mathbb{H}_{a}} \mathbb{E}_{\mathbb{P}}\left[F\left(P_{\Lambda} Y(1)+P_{\Lambda} I(\theta)(1)\right)+\frac{1}{2} \int_{0}^{1}\|\theta(t)\|_{L^{2}(\mathbb{R})}^{2} d t\right]
$$

where $\mathbb{H}_{a}$ is the space of drifts (progressively measurable processes belonging to $L^{2}\left([0,1], L^{2}(\mathbb{R})\right)$ ) and

$$
I(\theta)(t)=\int_{0}^{t} H^{-\frac{1}{2}} \theta(\tau) d \tau
$$

## Normalizability

It suffices to prove that

$$
\sup _{\Lambda} \mathbb{E}_{\rho}\left[\exp \left(\frac{1}{p} \int_{\mathbb{R}}\left|P_{\Lambda} u\right|^{p} \cdot \mathbb{1}_{\left\{\left.\left|\int_{\mathbb{R}}\right| P_{\Lambda} u\right|^{2} \mid \leq m\right\}}\right)\right]<\infty .
$$

By monotone convergence theorem, it is enough to prove for $L>0$,

$$
\sup _{\Lambda} \mathbb{E}_{\rho}\left[\exp \left(\min \left\{\frac{1}{p} \int_{\mathbb{R}}\left|P_{\Lambda} u\right|^{p}, L\right\} \cdot \mathbb{1}_{\left\{\left.\left|\int_{\mathbb{R}}\right| P_{\Lambda} u\right|^{2} \mid \leq m\right\}}\right)\right] \leq C
$$

for some constant $C>0$ independent of $L$. Since $\operatorname{Law}(Y(1))=\rho$, it is equivalent to show

$$
\sup _{\Lambda} \mathbb{E}_{\mathbb{P}}\left[\exp \left(\min \left\{\frac{1}{p} \int_{\mathbb{R}}\left|P_{\Lambda} Y(1)\right|^{p}, L\right\} \cdot \mathbb{1}_{\left\{\left.\left|\int_{\mathbb{R}}\right| P_{\Lambda} Y(1)\right|^{2} \mid \leq m\right\}}\right)\right] \leq C
$$

for some constant $C>0$ independent of $L$. Applying the Boué-Dupuis variational formula to

$$
F\left(P_{\Lambda} Y(1)\right)=-\min \left\{\frac{1}{p} \int_{\mathbb{R}}\left|P_{\Lambda} Y(1)\right|^{p}, L\right\} \cdot \mathbb{1}_{\left\{\left.\left|\int_{\mathbb{R}}\right| P_{\Lambda} Y(1)\right|^{2} \mid \leq m\right\}}
$$

it suffices to bound from below

$$
\mathbb{E}_{\mathbb{P}}\left[-\min \left\{\frac{1}{p} \int_{\mathbb{R}}\left|P_{\Lambda} Y(1)+P_{\Lambda} I(\theta)(1)\right|^{p}, L\right\} \cdot \mathbb{1}_{\left\{\left|\int_{\mathbb{R}}\right| P_{\Lambda} Y(1)+\left.P_{\Lambda} I(\theta)(1)\right|^{2} \mid \leq m\right\}}+\frac{1}{2} \int_{0}^{1}\|\theta(t)\|_{L^{2}(\mathbb{R})}^{2} d t\right]
$$

independent of $\theta \in \mathbb{H}_{a}$ and independent of $\Lambda, L$.

## Normalizability

## Main ingredients :

- Gagliardo-Nirenberg-Sobolev inequality;
- regularity and integrability of Gaussian measure;
- the pathwise regularity bound

$$
\|I(\theta)(1)\|_{\mathscr{H}^{1}(\mathbb{R})}^{2} \leq \int_{0}^{1}\|\theta(t)\|_{L^{2}(\mathbb{R})}^{2} d t .
$$

## Invariance of Gibbs measures

The invariance of Gibbs measures follows from Bourgain's argument '94, '96:

- Step 1. Local theory :
- When $s>2$ : deterministic LWP in the support of Gibbs measure, i.e., for $u_{0} \in \mathscr{H}^{\theta}(\mathbb{R}) \supset \operatorname{supp}(\mu)$, there exists $\delta \sim\left\|u_{0}\right\|_{\mathscr{H} e^{\theta}}^{-\sigma}$ with $\sigma>0$ such that solution to (NLS) exists on $[-\delta, \delta]$.
Tool: Strichartz estimates with a loss of derivatives due to Yajima, Zhang '04.
- When $s \leq 2$ : probabilistic LWP in the support of the Gibbs measure, i.e., there exists $\Sigma \subset \mathscr{H}^{\theta}(\mathbb{R}) \supset \operatorname{supp}(\mu)$ with $\mu(\Sigma)=1$ such that for $u_{0} \in \Sigma$, there exists $\delta>0$ so that solution to (NLS) exists on $[-\delta, \delta]$.
Idea: to use the integrability of Gaussian measure: For $0 \leq \beta<\frac{1}{2}$ and $\max \left\{2, \frac{4}{s(1-2 \beta)}\right\}<p \leq \infty$, there exist $C, c>0$ such that

$$
\mathbb{E}_{\rho}\left[\exp \left(c\left\|e^{-i t H} f\right\|_{W^{\beta, p}}^{2}\right)\right] \leq C, \quad \forall t \in \mathbb{R}
$$

to derive probabilistic Strichartz estimates: for all $T>0, q \geq 1$ and all $\lambda>0$,

$$
\rho\left(\left\|e^{-i t H} f\right\|_{L q}\left([-T, T], W^{\beta, p}\right)>\lambda\right) \leq C e^{-c \frac{\lambda^{2}}{T^{2} / q}} .
$$

## Invariance of Gibbs measures

- Step 2. Approximate NLS : Consider

$$
i \partial_{t} u_{\Lambda}-H u_{\Lambda}= \pm Q_{\Lambda}\left(\left|Q_{\Lambda} u_{\Lambda}\right|^{2} Q_{\Lambda} u_{\Lambda}\right)
$$

where $Q_{\Lambda}=\chi(H / \Lambda)$ for a suitable cutoff $\chi$. Decomposition

$$
u_{\Lambda}=u_{\Lambda}^{\mathrm{low}}+u_{\Lambda}^{\mathrm{high}}, \quad u_{\Lambda}^{\mathrm{low}}=P_{\Lambda} u_{\Lambda}, \quad u_{\Lambda}^{\mathrm{high}}=P_{\Lambda}^{\perp} u_{\Lambda} .
$$

$\rightarrow u_{\Lambda}$ exists globally in time.
The approximate measure

$$
d \mu_{\Lambda}(u)=d \mu_{\Lambda}(u) \otimes d \rho_{\Lambda}^{\perp}(u)
$$

where

$$
d \mu_{\Lambda}(u)=\frac{1}{Z_{\Lambda}} \exp \left(\mp \frac{1}{2} \int_{\mathbb{R}}\left|Q_{\Lambda} u\right|^{4}\right) d \rho_{\Lambda}(u)
$$

is invariant under the flow of the approximate NLS.
$\rightarrow$ to use it as a substitution for the conservation law to derive a uniform (in $\Lambda$ ) estimate for the approximate solutions.

## Invariance of Gibbs measures

- Step 3. Estimation of the difference : to use a PDE approximation argument to estimate the difference between the approximate and the exact solutions.
$\rightarrow$ the same uniform estimate holds for the exact solution. Moreover, for $T$ and $\varepsilon>0$, there exists $\Sigma_{T, \varepsilon}$ such that
- $\mu\left(\Sigma_{T, \varepsilon}^{c}\right)<\varepsilon$;
- solution to (NLS) exists on $[-T, T]$ for $u_{0} \in \Sigma_{T, \varepsilon}$.


## - Step 4. Almost sure GWP and measure invariance :

- Fix $\varepsilon>0$ and let $T_{n}=2^{n}$ and $\varepsilon_{n}=2^{-n} \varepsilon$. We have the set $\Sigma_{n}=\Sigma_{T_{n}, \varepsilon_{n}}$ as above.
- Let $\Sigma_{\varepsilon}=\cap_{n=1}^{\infty} \Sigma_{n}$. Then solution to (NLS) exists globally in time for data in $\Sigma_{\varepsilon}$ and

$$
\mu\left(\Sigma_{\varepsilon}^{c}\right)=\mu\left(\bigcup_{n=1}^{\infty} \Sigma_{n}^{c}\right) \leq \sum_{n=1}^{\infty} \mu\left(\Sigma_{n}^{c}\right)<\sum_{n=1}^{\infty} 2^{-n} \varepsilon=\varepsilon .
$$

- Let $\Sigma=\cup_{\varepsilon>0} \Sigma_{\varepsilon}$. Then solution to (NLS) exists globally in time for data in $\Sigma$ and

$$
\mu\left(\Sigma^{c}\right)=\mu\left(\bigcap_{\varepsilon>0} \Sigma_{\varepsilon}^{c}\right) \leq \inf _{\varepsilon>0} \mu\left(\Sigma_{\varepsilon}^{c}\right)=0
$$

From almost sure GWP $\rightarrow$ measure invariance.

Thank You!

