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What is Gibbs measure?

Ï In finite dimensional setting. Consider an ODE on R2d :{
∂txj = ∂H

∂ξj
,

∂tξj = −∂H
∂xj

,
j = 1, ...,d , (ODE)

with a Hamiltonian H(x ,ξ)=H(x1, ...,xd ,ξ1, ...,ξd).

• The Gibbs measure associated to (ODE) is given by

dµ(x ,ξ)= 1
Z

e−H(x ,ξ)dxdξ,

where Z is the normalized constant.

• µ is invariant under the flow of (ODE), i.e., for A measurable set of R2d , µ(A)=µ(Φ(t)A) for all t ∈R
because

- vector field (∂ξH ,−∂xH) is divergence-free → (Liouville’s theorem) Lebesgue measure dxdξ is
invariant under (ODE);

- conservation of Hamiltonian, i.e., H(x ,ξ) is independent of time.
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What is Gibbs measure?

Ï In infinite dimensional setting. Consider a NLS on T=R/2πZ:

i∂tu+∂2
xu+u =±|u|p−2u, p > 2. (NLS)

• (NLS) also has a Hamiltonian structure, i.e., ∂tu =−i ∂H
∂u with the Hamiltonian

H(u)= 1
2

∫
T
|∂xu|2 +|u|2 ± 1

p

∫
T
|u|p.

• It is expected that the Gibbs measure of the form

dµ(u)= 1
Z

e−H(u)du

is invariant under the flow of (NLS).
" There is no infinite dimensional Lebesgue measure.

• The construction and invariance of Gibbs measures for NLS (and other dispersive PDEs) have been
studied by many mathematicians: Lebowitz, Rose, Speer, Bourgain, Tzvetkov, Burq, Oh,
Nahmod, Killip, Visan, Deng, Tolomeo ,...

• Why do we care about invariant Gibbs measure? a sort of "conservation law" to obtain global
solutions at low regularity.
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1d NLS with trapping potential

Ï We consider 1d nonlinear Schrödinger equation

i∂tu+∂2
xu−Vu =±|u|p−2u, x ∈R (NLS)

with p > 2 and the trapping potential V :R→R+ satisfying

V (x)∼ |x |s (s > 0) as |x |→∞.

Ï Our goal is to construct the following, formally defined, Gibbs measures

dµ(u)= 1
Z
exp

(
−1

2

∫
R
|∂xu|2 +V |u|2 ∓ 1

p

∫
R
|u|p

)
du

and to prove their invariance under the flow of (NLS).
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Motivation

Ï Physics: The many-body mean-field approximation of Bose-Einstein condensates:
• the defocusing (+) measure ( Lewin, Nam, Rougerie ’15, ’18 ; Fröhlich, Knowles, Schlein,

Sohinger ’17, ’19 ).
• the focusing (-) measure ( Sohinger, Rout ’22, ’23 ).

Ï Mathematics: Most work on Gibbs measures relies on the explicit knowledge of eigenfunctions of the
linear operator −∆+V (x), e.g.

• torus (plan waves) Lebowitz, Rose, Speer ’88 ; Bourgain ’94 ; Oh, Quastel ’13 ; Oh,
Sosoe, Tolomeo ’22 ,...

• harmonic potential V (x)= |x |2 (link with Hermite polynomials) Burq, Thomann, Tzvetkov ’13 ;
Deng ’12 ; Robert, Seong, Tolomeo, Wang ’22 .

• disk/sphere (link with Bessel functions) Tzvetkov ’06, ’08 ; Bourgain, Bulut ’14 .
For V (x)∼ |x |s at infinity, such an explicit knowledge on eigenfunctions is not available.
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1d NLS on torus

One can formally think it as (NLS) with s =∞, x ∈ [0,1] and a periodic boundary condition.
Ï defocusing: McKean ’95 .
Ï focusing:

dµ(u)= 1
Z
exp

(
−1

2

∫
T
|∂xu|2 +|u|2+1

p

∫
T
|u|p

)
1{

∫
T |u|2≤m}du

Ï Lebowitz, Rose, Speer ’88 proved
- normalizability (Z <+∞) for 2< p < 6 and any m > 0;
- non-normalizability (Z =+∞)

+ for p > 6 and any m > 0;
+ for p = 6 and m > ∥Q∥2

L2(R)
, where Q is the unique (up to symmetries) optimizer of the

Gagliardo-Nirenberg-Sobolev inequality

∥u∥6
L6(R)

≤Copt∥∂xu∥2
L2(R)

∥u∥4
L2(R)

.

Ï Bourgain ’94 proved
- normalizability

+ for 2< p < 6 and any m > 0;
+ for p = 6 and m > 0 small;

- invariance for p > 2 and p ≤ 6 for the focusing nonlinearity.
Ï Oh, Sosoe, Tolomeo ’22 proved the normalizability for p = 6 and 0<m < ∥Q∥2

L2(R)
and

m = ∥Q∥2
L2(R)

. This is remarkable since NLS admits blowup solutions with the minimal mass ∥Q∥2
L2(R)

( Ogawa, Tsutsumi ’90 ). 5 / 23



1d NLS with harmonic potential V (x)= |x |2

Ï Burq, Thomann, Tzvetkov ’13 constructed the Gibbs measures for
- defocusing with p > 2;
- focusing

dµ(u)= 1
Z
exp

(
−1

2

∫
R
|∂xu|2 +|x |2|u|2+1

p

∫
R
|u|p

)
1{

∫
R:|u|2:≤m}du

only with p = 4 and any m > 0 (the renormalized mass cutoff).
They also proved the invariance for p even integer.

Ï Robert, Seong, Tolomeo, Wang ’22 considered the focusing measures and proved
- normalizability for 2< p < 6 and any m > 0;
- non-normalizability for p ≥ 6 and any m > 0.
" No critical nonlinearity.
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Main results

Theorem 1 (Construction of Gibbs measures) D., Rougerie ’23, D., Rougerie, Tolomeo, Wang ’23+
Ï Normalizability for defocusing nonlinearity with p >max

{
2, 4

s

}
;

Ï Focusing nonlinearity
• Super-harmonic (s > 2)

dµ(u)= 1
Z
exp

(
−1

2

∫
R
|∂xu|2 +V |u|2 + 1

p

∫
R
|u|p

)
1{

∫
R |u|2≤m}du

- normalizability
+ for 2< p < 6 and any m > 0;
+ for p = 6 and 0<m < ∥Q∥2

L2(R)
, where Q is the unique (up to symmetries) optimizer of the

Gagliardo-Nirenberg-Sobolev inequality.
- non-normalizability

+ for p = 6 and m > ∥Q∥2
L2(R)

;
+ for p > 6 and any m > 0.

• harmonic (s = 2)

dµ(u)= 1
Z
exp

(
−1

2

∫
R
|∂xu|2 +V |u|2 + 1

p

∫
R
|u|p

)
1{

∫
R:|u|2:≤m}du

- normalizability for 2< p < 6 and any m > 0.
- non-normalizability for p ≥ 6 and any m > 0.
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Main results

Theorem 1 (Construction of Gibbs measures, continue)
• sub-harmonic (1< s < 2)

dµ(u)= 1
Z
exp

(
−1

2

∫
R
|∂xu|2 +|x |2|u|2 + α

p

∫
R
|u|p

)
1{

∫
R:|u|2:≤m}du

- normalizability
+ for 4

s < p < 2+2s, any α> 0 and any m > 0;
+ for p = 2+2s, 0<α<α0 with some α0 > 0 and any m > 0.

- non-normalizability
+ for p = 2+2s, α>α0 and any m > 0;
+ for p > 2+2s, any α> 0 and any m > 0.

Theorem 2 (Invariance of Gibbs measures)
The above Gibbs measures are invariant under the flow of (NLS) provided
Ï super-harmonic (s > 2): 2< p < 4+s;
Ï (sub)-harmonic (1< s ≤ 2): 4

s < p < 6.
Consequently, (NLS) is globally well-posed almost surely on the support of Gibbs measures.

Ï Open questions:
? normalizability for m = ∥Q∥2

L2(R)
(for s > 2) and α=α0 (for 1< s < 2);

? invariance for p ≥ 4+s (for s > 2) and p ≥ 6 (for 1< s ≤ 2). 8 / 23



Sobolev spaces

Ï Denote
H =−∂2

x +V (x).

Since V is trapping, the spectral theorem yields

H = ∑
j≥1

λj |uj〉〈uj |,

where
0<λ1 ≤λ2 ≤ ... ≤λj →+∞

are eigenvalues of H and {uj }j≥1 are the corresponding normalized eigenfunctions which form an
orthonormal basis of L2(R).

Ï Let 1≤ p ≤∞ and β ∈R. Sobolev spaces associated to H are defined by

W β,p(R)=
{
u ∈S ′(R) :Hβ/2u ∈ Lp(R)

}
.

When p = 2, we write W θ,2(R)=H θ(R).

Ï Equivalence norms ( Yajima, Zhang ’01 ) :
For β> 0 and 1< p <∞,

∥Hβ/2u∥Lp(R) ∼ ∥〈D〉βu∥Lp(R)+∥〈x〉βs/2u∥Lp(R),

where 〈D〉 =
√

1−∂2
x .
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Gaussian measure

Ï By writing

dµ(u)= 1
Z
exp

(
∓1

p

∫
R
|u|p

)
exp

(
−1

2

∫
R
|∂xu|2 +V |u|2

)
du,

we aim at defining µ as an absolutely continuous probability measure with respect to the Gaussian
measure formally given by

dρ(u)= 1
C
exp

(
−1

2

∫
R
|∂xu|2 +V |u|2

)
du.

Ï Observe that ∫
R
|∂xu|2 +V |u|2 = 〈u,Hu〉L2 = ∥u∥2

H 1 .

For u ∈S ′(R), we decompose
u = ∑

j≥1
αjuj , αj = 〈uj ,u〉L2 ∈C

and write

dρ(u)= 1
C
exp

(
−1

2

∑
j≥1

λj |αj |2
)∏

j≥1
dαj .

Ï We can think of defining ρ as

dρ(u)= ∏
j≥1

λj

2π
e− 1

2λj |αj |2dαj (GM)

with
C = ∏

j≥1

2π
λj

. 10 / 23



Gaussian measure

Ï To define rigorously the Gaussian measure ρ, we will take the limit Λ→∞ of the finite dimensional
Gaussian measure

dρΛ(u)=
∏
λj≤Λ

λj

2π
e− 1

2λj |αj |2dαj

defined on
EΛ = span{uj :λj ≤Λ}.

Ï But, taking the limit on which topology?
- to view ρΛ as an induced probability measure under the randomization

uωΛ = ∑
λj≤Λ

gj(ω)√
λj

uj ,

where {gj }j≥1 are i.i.d. complex-valued standard Gaussian random variables (NC(0,1)) on a probability
space (Ω,F ,P).
- to show

EP[∥uωΘ−uωΛ∥2
H θ ]=

∑
Λ<λj≤Θ

λθ−1
j → 0 as Θ,Λ→∞

for a suitable θ. For that, we need ∑
j≥1

λθ−1
j <∞.
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Regularity of Gaussian measure

Ï Under which condition on θ, we have
∑

j≥1λ
θ−1
j <∞?

• For 1d torus, λj ∼ j2, so we need θ < 1
2 .

• For 1d harmonic potential, λj ∼ j , hence we require θ < 0.
Ï For general trapping potential, we use the Lieb–Thirring inequality ( Dolbeault, Felmer, Loss,

Paturel ’06 ): for p > 1
2 ,

Tr[H−p]≤C(p)
Ï
R×R

dxdξ
(|ξ|2 +V (x))p .

Applying this, we have∑
j≥1

λθ−1
j =Tr[Hθ−1]≤ 21−θTr[(H +λ1)

θ−1]≤C(θ)

Ï
R×R

dxdξ
(|ξ|2 +V (x)+λ1)1−θ .

If V (x)≥C|x |s, then
∑

j≥1λ
θ−1
j <∞ provided θ < 1

2 − 1
s .

Lemma 1 (Regularity of ρ)

ρ is supported on H θ(R) for any θ < 1
2 − 1

s .
→ When s ≤ 2, a mass renormalization is needed, i.e.,∫

R
: |u|2 :=

∫
R
(|u|2 −Eρ[|u|2])=

∫
R
|u|2 −Eρ

[∫
R
|u|2

]
.
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Integrability of Gaussian measure

Ï For β> 0 and 1< p <∞, we can use Khintchine’s inequality

EP

[∣∣∣∣∣∑j
ajgj(ω)

∣∣∣∣∣
p]

≤C(p)∥aj∥p
ℓ2

to estimate Eρ[∥u∥p
W β,p ]. Indeed,

Eρ[∥u∥p
W β,p ]=

∫
R
Eρ[|Hβ/2u(x)|p]dx

=
∫
R
EP

[∣∣∣∣∣Hβ/2

(∑
j

gj(ω)√
λj

uj(x)

)∣∣∣∣∣
p]

dx

=
∫
R
EP

[∣∣∣∣∣∑j
λ

β−1
2

j uj(x)gj(ω)

∣∣∣∣∣
p]

dx

≤C(p)
∫
R

(∑
j
λ
β−1
j |uj(x)|2︸ ︷︷ ︸

=Hβ−1(x ,x)

)p/2
dx ,

where Hβ−1(x ,y)=∑
j≥1λ

β−1
j uj(x)uj(y) is the integral kernel of Hβ−1.

⇒ ρ is supported in W β,p(R) as long as

Hβ−1(., .) ∈ Lp/2(R).
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Integrability of Gaussian measure

For which values of β and q, we have Hβ−1(., .) ∈ Lq?
Ï For 1d torus, |uj(x)|2 = 1, so for q ≥ 1,

∥Hβ−1(., .)∥Lq(T) ≤
∑
j≥1

λ
β−1
j <∞

provided β< 1
2 . So Hβ−1(., .) ∈ Lq(T) for all 0≤β< 1

2 and any 1≤ q ≤∞.
Ï For 1d harmonic potential, we have ( Koch, Tataru ’05 )

∥uj∥Lp(R) ≲

λ
− 1

6+ 1
3p

j if 2≤ p < 4,

λ
− 1

12
j if p ≥ 4.

Thus

∥Hβ−1(., .)∥Lq(R) ≤
∑
j≥1

λ
β−1
j ∥uj∥2

L2q(R)
≲


∑

j≥1λ
β−1− 1

3+ 1
3q

j if 1≤ q < 2,∑
j≥1λ

β−1− 1
6

j if q ≥ 2.

Since λj ∼ j , we have Hβ−1(., .) ∈ Lq(R) for{
0≤β< 1

3 − 1
3q if 1≤ q < 2,

0≤β< 1
6 if q ≥ 2.
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Integrability of Gaussian measure

Lemma 2 (Integrability of diagonal integral kernel)

Let 0≤β< 1
2 . Then Hβ−1(., .) ∈ Lq(R) for any

max

{
1,

2
s(1−2β)

}
< q ≤∞.

Proof:
Ï q =∞: H ≥C(1−∂2

x) → Hβ−1 ≤C(β)(1−∂2
x)
β−1 (operator monotonicity)

→ Hβ−1(x ,x)≤C(θ)G(x ,x), where

G(x ,y)= 1
2π

∫
R

ei(x−y)ξ

(1+|ξ|2)1−βdξ

is the Green function of (1−∂2
x)

1−β. Note that G(x ,x)<∞ as long as β< 1
2 .

Ï For 1< q <∞, we want to show

sup
χ∈Lq′ (R)
χ≥0

∫
R

Hβ−1(x ,x)χ(x)dx ≤C∥χ∥Lq′ (R).
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Integrability of Gaussian measure

We write ∫
R

Hβ−1(x ,x)χ(x)dx =Tr[χ1/2Hβ−1χ1/2]= ∥H(β−1)/2χ1/2∥2
S2 ,

where
Sp =

{
A : ∥A∥Sp =

(
Tr[(A∗A)p/2]

)1/p <∞
}

is the p-th Schatten space. For α> 0, we write

H(β−1)/2χ1/2 =Hα+(β−1)/2︸ ︷︷ ︸
S2q

H−α(1−∂2
x)
α︸ ︷︷ ︸

S∞

(1−∂2
x)

−αχ1/2︸ ︷︷ ︸
S2q′

.

Ï Hα+(β−1)/2 ∈S2q →
(

1−β
2 −α

)
2q > 1

2 + 1
s .

Ï H ≥C(1−∂2
x)→H−2α ≤C−2α(1−∂2

x)
−2α→ (1−∂2

x)
αH−2α(1−∂2

x)
α ≤C−2α, hence

H−α(1−∂2
x)
α ∈S∞.

Ï (1−∂2
x)

−αχ1/2 ∈S2q′
. We use the Kato–Seiler–Simon inequality: for 1≤ p <∞,

∥f (−i∇)g(x)∥Sp ≤ ∥f∥Lp(R)∥g∥Lp(R).

It requires 4αq′ > 1 or α> 1
4 − 1

4q .
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Normalizability

Lemma 3 (Integrability of Gaussian measure)

ρ is supported on W β,p(R) for any 0≤β< 1
2 and

max

{
2,

4
s(1−2β)

}
< p ≤∞.

Ï Defocusing : We want to show

Z = Eρ
[
exp

(
−1

p

∫
R
|u|p

)]
∈ (0,∞).

Jensen’s inequality gives

Z ≥ exp

(
−1

p
Eρ

[∫
R
|u|p

])
> 0

provided p >max
{
2, 4

s

}
.
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Normalizability

Ï Focusing : The idea is to use the Boué-Dupuis variational formula as follows. Denote a centered
Gaussian process Y (t) by

Y (t)=∑
j

Bj(t)√
λj

ej ,

where {Bj }j≥1 is a sequence of independent complex-valued Brownian motions, i.e., Bj(t)∼NC(0, t).

Lemma 4 (Boué-Dupuis variational formula)

Fix Λ> 0 and denote PΛ the projection on EΛ, i.e., PΛu =∑
λj≤Λαjuj . Let F :C∞(R)→R be measurable

such that
EP[|F (PΛY (1))|p]+EP[|exp(−F (PΛY (1)))|q]<∞

for some 1< p,q <∞ with 1
p + 1

q = 1. Then

− logEP[exp(−F (PΛY (1)))]= inf
θ∈Ha

EP

[
F (PΛY (1)+PΛI(θ)(1))+ 1

2

∫ 1

0
∥θ(t)∥2

L2(R)
dt

]
,

where Ha is the space of drifts (progressively measurable processes belonging to L2([0,1],L2(R))) and

I(θ)(t)=
∫ t

0
H− 1

2 θ(τ)dτ.
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Normalizability

It suffices to prove that

sup
Λ
Eρ

[
exp

(
1
p

∫
R
|PΛu|p ·1{|∫R |PΛu|2|≤m}

)]
<∞.

By monotone convergence theorem, it is enough to prove for L> 0,

sup
Λ
Eρ

[
exp

(
min

{
1
p

∫
R
|PΛu|p,L

}
·1{|∫R |PΛu|2|≤m}

)]
≤C

for some constant C > 0 independent of L. Since Law(Y (1))= ρ, it is equivalent to show

sup
Λ
EP

[
exp

(
min

{
1
p

∫
R
|PΛY (1)|p,L

}
·1{|∫R |PΛY (1)|2|≤m}

)]
≤C

for some constant C > 0 independent of L. Applying the Boué-Dupuis variational formula to

F (PΛY (1))=−min

{
1
p

∫
R
|PΛY (1)|p,L

}
·1{|∫R |PΛY (1)|2|≤m},

it suffices to bound from below

EP

[
−min

{
1
p

∫
R
|PΛY (1)+PΛI(θ)(1)|p,L

}
·1{|∫R |PΛY (1)+PΛI(θ)(1)|2|≤m} +

1
2

∫ 1

0
∥θ(t)∥2

L2(R)
dt

]
independent of θ ∈Ha and independent of Λ,L.
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Normalizability

Main ingredients :
Ï Gagliardo-Nirenberg-Sobolev inequality;
Ï regularity and integrability of Gaussian measure;
Ï the pathwise regularity bound

∥I(θ)(1)∥2
H 1(R)

≤
∫ 1

0
∥θ(t)∥2

L2(R)
dt .
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Invariance of Gibbs measures

The invariance of Gibbs measures follows from Bourgain’s argument ’94, ’96:

Ï Step 1. Local theory :

• When s > 2: deterministic LWP in the support of Gibbs measure, i.e., for u0 ∈H θ(R)⊃ supp(µ),
there exists δ∼ ∥u0∥−σH θ with σ> 0 such that solution to (NLS) exists on [−δ,δ].
Tool: Strichartz estimates with a loss of derivatives due to Yajima, Zhang ’04 .

• When s ≤ 2: probabilistic LWP in the support of the Gibbs measure, i.e., there exists
Σ⊂H θ(R)⊃ supp(µ) with µ(Σ)= 1 such that for u0 ∈Σ, there exists δ> 0 so that solution to (NLS)
exists on [−δ,δ].
Idea: to use the integrability of Gaussian measure: For 0≤β< 1

2 and max
{
2, 4

s(1−2β)

}
< p ≤∞, there

exist C,c > 0 such that
Eρ

[
exp

(
c∥e−itH f∥2

W β,p

)]
≤C, ∀t ∈R

to derive probabilistic Strichartz estimates: for all T > 0, q ≥ 1 and all λ> 0,

ρ(∥e−itH f∥Lq([−T ,T ],W β,p) >λ)≤Ce−c λ2

T2/q .
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Invariance of Gibbs measures

Ï Step 2. Approximate NLS : Consider

i∂tuΛ−HuΛ =±QΛ(|QΛuΛ|2QΛuΛ),

where QΛ =χ(H/Λ) for a suitable cutoff χ. Decomposition

uΛ = ulow
Λ +uhigh

Λ , ulow
Λ =PΛuΛ, uhigh

Λ =P⊥
ΛuΛ.

→ uΛ exists globally in time.
The approximate measure

dµΛ(u)= dµΛ(u)⊗dρ⊥
Λ(u)

where
dµΛ(u)= 1

ZΛ
exp

(
∓1

2

∫
R
|QΛu|4

)
dρΛ(u)

is invariant under the flow of the approximate NLS.
→ to use it as a substitution for the conservation law to derive a uniform (in Λ) estimate for the
approximate solutions.
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Invariance of Gibbs measures

Ï Step 3. Estimation of the difference : to use a PDE approximation argument to estimate the
difference between the approximate and the exact solutions.
→ the same uniform estimate holds for the exact solution. Moreover, for T and ε> 0, there exists ΣT ,ε

such that

• µ(Σc
T ,ε)< ε;

• solution to (NLS) exists on [−T ,T ] for u0 ∈ΣT ,ε.

Ï Step 4. Almost sure GWP and measure invariance :

• Fix ε> 0 and let Tn = 2n and εn = 2−nε. We have the set Σn =ΣTn,εn as above.

• Let Σε =∩∞
n=1Σn. Then solution to (NLS) exists globally in time for data in Σε and

µ(Σc
ε)=µ

( ∞⋃
n=1

Σc
n

)
≤

∞∑
n=1

µ(Σc
n)<

∞∑
n=1

2−nε= ε.

• Let Σ=∪ε>0Σε. Then solution to (NLS) exists globally in time for data in Σ and

µ(Σc)=µ
(⋂
ε>0
Σc
ε

)
≤ inf
ε>0

µ(Σc
ε)= 0.

From almost sure GWP → measure invariance.
23 / 23



THANK YOU!


	What is Gibbs measure?
	1d NLS with trapping potential
	Motivation
	Related known results
	Main results
	Elements of Proof
	

