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Henri Poincaré
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Introduction

Wilson loop operators are gauge invariant operators

W (C ) = TrP exp

(
i

∮
C
Aµdx

µ

)
whose expectation value gives a measure of quark confinement.

Wilson already pointed out the relation to the string approach to

QCD anticipating a calculation

of Maldacena, who showed that this expectation value in the

AdS4 × S5 conformal gauge string theory correspondence is in

leading order of the t’Hooft coupling given as the string

world-sheet volume bounding the curve C in the AdS5 boundary

where the conformal N = 4 gauge theory lives.
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Introduction

Hence Wilson loops are an important link in gauge theory gravity

correspondences and in N = 2 SYM the Wilson line expectations

value has been calculated by localisation e.g. by Pestun for a

cicular Wilson loop on S4 in general ε backgrounds.

Compactification of F-, M- and type II string theory on compact

Calabi-Yau space X leads to effective supergravity theories in

d=6,5,4 dimensions with eight supercharges.

The geometric engineering program takes local limits X∗ of X so

that gravity decouples and one ends up with a rigid

(non-gravitational) supersymmetric field theory with eight

supercharges on X∗.
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General strategy:

Today we want to reverse the direction of geometric engineering

and study how the refined Wilson loop structure of an an rigid

N = 1 5d supersymmetric gauge restrict the way the latter can be

completed to supergravity.

This leads to an ansatz, restricted by one form symmetries, that

allows to calculate the refined BPS (Gopakumar Vafa) numbers on

elliptically fibered compact Calabi Yau spaces.

The predictions of the latter can be checked mathematically by

constructing the the SU(2)L × SU(2)R Lefshetz decomposition of

the cohomology of the moduli space M̂β of stable sheaves F with

ch2(F ) = β and χ(F ) = n.
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Refined BPS invariants in 5d rigid super symmetric theory

M-theory on Calabi-Yau threefold leads to 5d N = 1 supergravity.

The BPS states are labelled by their Poaincaré representation

defined by their mass and their spin representations w.r.t. the little

group

SU(2)L × SU(2)R ⊂ SP(4)

of the 5d Lorentz group. The mass is proportional to the K-theory

charge.

Using the 4d/5d correspondence by circle compactification we label

the latter by the even branes D(2K )-branes K = 1, . . . , 3 of type

IIA theory

Γ = (q0, qA, p
A, p0)

The left spin gets identified with the D0 brane charge

q0 = 2
jL

(p0)2
.
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Refined BPS invariants in 5d rigid super symmetric theory

In this talk be are interested in the charges

(D0,D2,D4,D6) = (q0, β, 0,−1)

Indices of the corresponding states called unrefined BPS invariants

nβg are encoded in the topological string partitions functions. The

relation to the refined BPS numbers Nβ
jL,jR

is defined by weighted

sum over the right spin∑
g=0

nβg I
g
L =

∑
jR

(−1)2jR (2jR + 1)Nβ
jL,jR

[
jL
2

]
L

.

with I n∗ =
(
2[0]∗ +

[
1
2

]
∗
)⊗n

=
∑

j≥0

((
2n
n−j

)
−
(

2n
n−2−j

)) [
j
2

]
∗

We will see that the Nβ
jL,jR
∈ N can be seen as dimensions of

cohomology groups of M̂β w.r.t. to an su(2)L × su(2)R Lefshetz

decomposition, while the nβg ∈ Z is an “Euler number” of M̂β.
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Refined BPS invariants in 5d rigid super symmetric theory

It is well know, see examples below, that in compact Calabi-Yau X

the Nβ
jL,jR
∈ N depend on the complex structure of X , while the nβg

are truly invariants.

Nekrasov argued that in rigid 5d N = 1 SQFT the Nβ
jL,jR
∈ N are

also protected invariants, by defining a 5d BPS index

ZBPS(εL, εR , t) = TrHBPS
(−1)2(jL+jR)e−2εLjLe−2εR jR e−2εR jReβH .

Here the jL/R denote the operators that correspond to the Cartan

generators of the SU(2)L/R above, and jR denotes the charge

operator of an U(1)R global symmetry, present in the rigid theory.

The twisting of the Cartan generator of the SU(2)R by the U(1)R

charge is essential to define this index. According to Dine and

Seiberg supergravities do not preserve any global symmetries,

hence one cannot defined protected Nβ
jL,jR

in the supergravity and

hence on X .
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Refined BPS invariants in 5d rigid super symmetric theory

Suppose ZBPS(εL, εR ,H) is known to arbitrary orders in qL/R and

the Kähler parameter eβ·t , using e.g. the virtual Bialinicki-Birula

Birula decomposition of H∗(M̂β) Choi, Katz, & AK, ’12 or the

refined topological vertex Iqbal, Kozcaz, Vafa 07.

Identifying F(εL, εR , t) = log(ZBPS(εL, εR ,H)), H = t and

reorganizing it in the form suggested by Gopakumar and Vafa

F(εL, εR , t) =
∑

β∈H2(X ,Z)
β 6=0

∞∑
k=1

jL,jR=0

(−1)2(jL+jR)Nβ
jL,jR

χjL(qkL)χjR (qkR)

k I(kε1, kε2)
ek β·t ,

yields the Nβ
jL,jR

. Here I(ε1, ε2) = 2 sinh
(
ε1
2

)
2 sinh

(
ε2
2

)
and

χj(x) =
(∑j

m=−j x
m
)
.
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The refined holomorphic anomaly equations

Let us organize F(εL, εR , t) as

F(εL, εR , t) =
∑
n,g∈Z

(ε1 + ε2)2n(ε1ε2)g−1F (n,g)(t)

Then the F (n,g)(t) can be calculated using the refined holomorphic

anomaly equations

∂̄īF
(n,g) =

1

2
C̄ jk

ī

(
DjDkF

(n,g−1)+
∑
m,h

′
DjF

(m,h)DkF
(n−m,g−h)

)
, n+g > 1 .

in terms of rings of almost holomorphic generators for congruent

subgroups. e.g. of SL(2,Z), for example Γ1(3) for local P2

Tot(O(−3)→ P2), Huang, AK ’10 and Krefl and Walcher ’10 and

complete boundary conditions Huang, Kashani-Poor, AK ’11.
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Representation theoretic aspects

Example 1: Huang, Poretschkin, AK: ’13 local del Pezzo Calabi-Yau

space Tot(O(−KS)→ S) with S = d8P2.

For the BPS states Nd
jL,jR

at d = 2 one calculates:

2jL\2jR 0 1 2 3

0 3876

1 248

2 1

One sees that the adjoint represention 248 of E8 appears as the

BPS number N2
1
2
, 3

2

, which decomposes into two Weyl orbits with

the weights w1 + 8w0, further 3876 = 1 + 3875, where the latter

decomposes in the Weyl orbits of w1 + 7w8 + 35w0.
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Representation theoretic aspects

Example 2: Katz, Pandharipande, AK: ’14 S = K3 For the BPS states

Nd
jL,jR

at d = 3 one gets:

2jL\2jR 0 1 2 3

0 1981 1

1 252

2 1 21

3 1

Now 1981 = 2 · 990 + 1 and 252 are representations of the

Mathieu group M24 ∈ S24, which is one of sporadic finite groups

of order |M24| = 244823040.
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Wilson loops in 5d N = 1 gauge theory

The half-BPS Wilson loop operator located at the origin of R4 and

wound around the S1 was defined by Young ’11, Assel, Estes,

Yamazaki ’14

Wr = TrrT
(
i

∮
S1

dt (A0(t)− φ(t))

)
,

Here r is a representation for the gauge field Aµ,

A0(t) = A0(~x = 0, t) is the zero component of the gauge field and

φ(~x = 0, t) is the scalar field in the vector multiplet.

The insertion of the half-BPS Wilson loop operator can be also

realized by introducing a half-BPS static, heavy and electrically

charged particle at the origin of R4. We will refer to such a particle

as a Wilson loop particle, as explained for G = SU(2) next.
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The Wilson loop particle

D3

F1

0 1 2 3 4 5 6 7 8 9

D5 • • • • • •
NS5 • • • • • •

5(p,q) • • • • • θ

F1 • •
D3 • • • •

IIB description of the 5d Wilson loops in the SU(2) theory. The

(p, q) five-brane web diagram on the left illustrates the (p, q)

five-brane configuration in the x5,6 directions. It is the dual

diagram of the corresponding toric description of the local

Calabi-Yau X = O(−2,−2)→ P1 × P1.

In the description on the right, the brane configurations are

detailed, with tan θ = p
q for a five-brane with charge (p, q).

The half-BPS Wilson loop in the fundamental representation of

SU(2) is realized by the fundamental string F1 stretched between a

D5 brane and the D3 brane.
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Wilson loops in 5d N = 1 gauge theory

The gauge group G is broken to its Abelian subgroup U(1)r with

r = rankG the rank of G . The representation r becomes the

non-negative electric charge q̂i , the gauge charges of the Wilson

loop particle under the i-th Abelian gauge subgroup U(1), and is

denoted by r = [q̂1, · · · , q̂r ].

The refined BPS partition functions of 5d theories in the presence

of half-BPS Wilson loop operators can be computed as a sum of

the k-instanton supersymmetric index of the ADHM quantum

mechanics which can be read off from the IIB brane realization

Nekrasov ’15, Tong and Wong ’14, Tong ’14
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The Wilson loop in 5d N = 1 BPS partition function

Let now X∗ a non-compact Calabi Yau space that geometrical

engineers a 5d N = 1 theory (Tot(O(−3)→ P2) works as a

further limit) and let r = bc4(X∗) be the compact divisors of X∗

It was proposed in Huang, Lee and Wang ’22 that the insertion of

a Wilson loop particle with charge r = [q̂1, · · · , q̂r ] can be realized

by inserting a wrapped non-dynamic M2-brane over a non-compact

curve Ĉ , ending on boundary D3 branes.

The electric charges of the Wilson loop particles are computed as

the intersection numbers of the compact divisors Di , i = 1, · · · , r ,
and the non-compact curve Ĉ = q̂1Ĉ1 + · · ·+ q̂r Ĉr , where

Di · Ĉj = δi ,j , i , j = 1, · · · , r ,

hence q̂i = Di · Ĉ , i = 1, · · · , r .
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The Wilson loop in 5d N = 1 BPS partition function

One can arrange the Wilson expectation values in a generating

function

Zgen = exp
(∑

q̂i≥0
1∏r

i=1 q̂i !
FW,q̂(ε1, ε2, t, t̂ )

)
= eF(ε1,ε2,t)

(
1 +

∑
|q̂|>0

1∏r
i=1 q̂i !

〈Wq̂〉e q̂·m̂
)
,

with

FW,q̂(ε1, ε2, t, t̂)=I |q̂|−1
∑

β∈H2(X ;Z)

∑
jL,jR

(−1)2jL+2jR Ñβ
jL,jR

χjL(qL)χjR (qR)eβ·t+q̂·t̂ ,

where the Ñβ
jR ,jL

are the refined BPS numbers in the presence of

the Wilson line.
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HAE for the 5d N = 1 Wilson line BPS partition function

One can arrange the Wilson partition function as

FW,q̂ =
∞∑

n,g=0

(ε1 + ε2)2n(ε1ε2)g+|q̂|−1F (n,g)
q̂ .

The F (n,g)
q̂ fullfill a refined holomorphic anomaly equation

∂̄īF
(n,g)
q̂ =

1

2
C̄ jk
i

DjDkF
(n,g−1)
q̂ +

∑
n′,g ′,q̂′

′ r∏
i=1

(
q̂i
q̂′i

)
DjF

(n′,g ′)
q̂′ DkF

(n−n′,g−g ′)
q̂−q̂′

 .
Huang, Lee and Wang ’22, Wang ’23. The latter can be evaluated

using a few calculable boundary conditions. This makes the

calculation of the 〈Wq̂〉 and the Ñβ
jLjR

highly efficient.
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Connection to the refined topological partition function on the

compact CY X

Consider a 5d N = 1 supergravity theory obtained from M-theory

compactified on X . Denote a curve in X as Ĉ . In the large volume

limit of Ĉ , the volume of X becomes infinite and gravity is

decoupled.

Under this limit, the half-BPS particles arising from M2 branes

wrapping Ĉ become heavy and their dynamic degrees of freedom

are frozen and we can treat these particles as Wilson loop particles

in the local theory.
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Connection to the refined topological partition function on the

compact CY X

More precisely, let C , Ĉ ∈ H2(X ; Z) denote curves in the compact

Calabi-Yau 3-fold X , with Kähler parameters t, t̂. In a local limit

by taking t̂ to −∞, we obtain a non-compact CY3 X∗ with Kähler

parameters t. Let Di ∈ H4(X∗; Z) represent the compact divisors

in X∗ and let φi denote the dual Kähler parameters associated with

Di .

The gauge charge neutral combination

m̂ = t̂ −
∑
i

q̂iφi , q̂i = Di · Ĉ ,

defines the masses for the Wilson loop particles, where the

parameters φi are Coulomb parameters in the effective 5d local

theory.
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Connection to the refined topological partition function on the

compact CY X

In the most general case, we can find a curve class Ĉ ∈ H2(X ; Z) in

the compact Calabi-Yau 3-fold X whose large volume limit consists

of neighborhoods Xi of mutually disjoint connected compact

divisors D(1),D(2), . . . ,D(n), each defining a local theory TXi
.

Decomposing D(i) into its components D
(i)
j , we have the Wilson

loop charges

q
(i)
j := D

(i)
j · Ĉ ≥ 0, D

(i)
j ∈ H4(Xi ; Z).

The partition function for each local theory

ZXi
(t(i)) = ZXi

(ε1, ε2; t(i)) depends on the Kähler parameters

t
(i)
j , j = 1, · · · , b2(Xi ), which can be reformulated in the 5d gauge

theory in terms of Coulomb parameters φ
(i)
j , j = 1, · · · , ri and mass

parameters m
(i)
l , l = 1, · · · , fi given on the next slide.
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Connection to the refined topological partition function on the

compact CY X

t
(i)
j =

ri∑
l=1

φ
(i)
l Q

(i)
G ,lj +

fi∑
l=1

m
(i)
l Q

(i)
F ,lj ,

where ri = b4(Xi ) is the rank of the gauge group and

fi = b2(Xi )− b4(Xi ) is the rank of the flavor group.

Q
(i)
F is the intersection matrix of selected non-compact divisors and

the compact curves C
(i)
j . These matrices respectively compute the

gauge charges and flavor charges of the BPS particles arising from

wrapping an M2-brane on C
(i)
j .

We claim that the partition function of the compact CY3 can be

written as a linear combination of Wilson loop partition functions

in the local theory TXi
in all representations.
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Ansatz: Refined partition function on X from Wilson loops on

X∗.

The interpretation of the half BPS Wilson line particles as coming

from M2-branes on the Ĉ direction that become heavy, carry

electric charges q̂(i), and become the sources of the half-BPS

Wilson loops along the time direction S1 in each local theory TXi

suggest the following ansatz for the refined partition function on X

ZX (t) =
n∏

i=1

ZXi
(t(i)) ·

[
1 +

∞∑
k=1

e km̂Zk

]
,

where m̂ = t
Ĉ
−
∑n

i=1

∑b4(Xi )
j=1 q

(i)
j φ

(i)
j is the effective mass for the

Wilson loop particle, φ
(i)
j are Kähler parameters with respect to

bases in H2(Xi ; Q) that are dual to D
(i)
j which are also the

Coulomb parameters in each local theory TXi
and Zk is a product

of linear combinations of Wilson loops.
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Ansatz: Refined partition function on X from Wilson loops on

X∗.

The latter satisfy the ansatz

Zk(t) =
n∏

i=1

∑
h

(i)
1 ,··· ,h(i)

ri
≥0

∑
β

(i)
m ∈Z

P
(i)

[h
(i)
1 ,··· ,h(i)

ri
],k;β

(i)
m

〈
W

(i)

[h
(i)
1 ,··· ,h(i)

ri
]

〉
eβ

(i)
m ·m(i)

.

Here we have coefficients which only depend on eε1 , eε2 and can

be written as
n∏

i=1

P
(i)

[h
(i)
1 ,··· ,h(i)

ri
],k;β

(i)
m

(ε1, ε2) =
P[eε1 , eε2 ]∏k

l=1 4 sinh(lε1/2) sinh(lε2/2)
,

The Laurent polynomials P[eε1 , eε2 ] are bounded in degree and pol

order and the the one-form symmetry. They are in general not

completely fixed by this constraints. But they can be determined

to certain degree with input of a few for refined BPS numbers,

which yields many more concrete predictions.
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Constraints from the one form symmetries:

Denote the one-form symmetry of the 5d local theory TXi
by

Γ
(1)
i =

∏
j Zp

(i)
j

. As pointed out in Morrison et al ’20 Γ
(1)
i can be

calculated from the Smith normal form of the charge matrix

SNF(Q
(i)
G ) = U(i) · Q(i)

G · V
(i) =


p

(i)
1 0 · · · 0 · · · 0

0 p
(i)
2 · · · 0 · · · 0

...
. . .

...
...

0 · · · p
(i)
ri · · · 0

 ,

where the main diagonal entries are positive integers satisfying

p
(i)
1 ≤ · · · ≤ p

(i)
ri . U(i) and V (i) are invertible unimodular matrices

satisfying detU(i) = detV (i) = 1, and both their entries and those

of their inverse matrices are integers.
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Constraints from the one form symmetries:

Let c
(i)
j ,1 , · · · , c

(i)
j ,ri

be the integral one-form symmetry charges for

the Wilson loops under Z
p

(i)
j

. Then the charge of

〈
W

(i)

[h
(i)
1 ,··· ,h(i)

ri
]

〉
under Z

p
(i)
j

is c
(i)
j ,1h

(i)
1 + · · ·+ c

(i)
j ,ri

h
(i)
ri mod p

(i)
j .

The first constraint on the ansatz is that the Wilson loops must

have the same charge under the one-form symmetry Γ(i)

c
(i)
j ,1h

(i)
1 +· · ·+c

(i)
j ,ri

h
(i)
ri =k(c

(i)
j ,1q

(i)
1 +· · ·+c

(i)
j ,ri

q
(i)
ri ) modp

(i)
j , i = 1, · · · , n.
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Predictions:

Example: From Tot(O(−3)→ P2) to the elliptic fibration over P2

called X18(1, 1, 1, 6, 9)

2jL\2jR 0 1 2 3

0 546

1 1 1

dB = 1

2jL\2jR 0 1 2 3 4 5 6

0 546

1 1 1 1

dB = 2

Table 1: The refined BPS numbers for dE = 1
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2jL\2jR 0 1 2 3 4 5 6 7 8 9 10

0 546 1 546 1 1

1 1 2 2 546 1

2 1 1 1

dB = 3

2jL\2jR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 546 1 546 3 1092 5 546 4 546 2

1 1 2 4 546 5 1092 6 1092 4 2

2 1 3 5 546 5 546 3 1

3 1 2 2 546 1

4 1 1 1

dB = 4

Table 2: The refined BPS numbers for dE = 1

27



Dependence on the complex structure of X

An elaborate example for the complex structure dependence of the

Nβ
jR ,jL

is provided in Section 5.3.2 of the paper. It is based on the

simple geometry of smooth ruled surfaces S ∈ X . The projection

map ρ : S → C with P1 fibres maps to a curve Cg of genus g .

They occur for example in hypersurfaces p = 0 in toric varieties

P∆ constructed by Batyrev using the 4d reflexive lattice polytope

∆ which together with ∆̂ form a dual pair (∆, ∆̂).

If a codimension two face θ2 with inner points l(θ2) is dual to a

codimension three edge θ̂3 in ∆̂ with inner points l(θ̂3) then some

monomial deformations of p that in general represent complex

structure deformation of X cannot occur, instead there exist

K = l(θ2) · l(θ̂3) additional independent Beltrami differentials µk ,

k = 1, . . .K in H1(M̂,TM̂) which correspond to non-polynomial

complex structure deformations.
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Dependence on the complex structure of X

The latter are frozen to particular values in the toric embedding of

X . If g = l(θ2) 6= 0 and l(θ̂3) = 1 then for these frozen values of

the moduli a rule surface S ⊂ X over a genus g curve Cg is

realized.

Let us consider a genus zero curve in the class β represented by a

fibre P1. The moduli space of each P1 M̂β is identified with Cg

and the SU(2)L × SUR(2) Lefshetz decompositions yields

RβB = 2g [0, 0] +
[

1
2 ,

1
2

]
.

If the geometry is deformed w.r.t. to µk deformations, the

holomorphically embedded curve Cg disappears and the P1 are

fixed to 2g − 2 points, which corresponds to the representation

RβA = (2g − 2)[0, 0]. Clearly the weighted trace over jR yields the

same nβb while the Nβ
jL,jR

change before and after the complex

structure deformation.
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More general geometric considerations and checks

In the above example the moduli space M̂β was smooth and the

two Lefshetz action easily identifiable.

More general mathematical checks are made in the paper and
summarised in Sheldon Katz’s talk at the Simons Center:
https://scgp.stonybrook.edu/video_portal/video.php?id=6922, so I

will be brief.
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More general geometric considerations and checks

M̂β is the moduli space of stable one dimensional sheaves F on X

ch2(F ) = β = (dH in local P2 example)

χ(F ) = n

Example X =TotO(−3)→ P2, χ(F ) = 1

Stability forces F to be supported on the zero section P2

M̂d smooth Dd =dim(M̂d) = d2 + 1 Le Portier.

There is a Hilbert Chow morphism

πβ : M̂β → Chowβ

M̂β supports a d-critical locus Joyce ’15, described here by a

superpotenial W

Φβ = C[Dβ] is a perverse sheaf of vanishing cycles for W ≡ 0.
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More general geometric considerations and checks

Then Maulik and Toda, Inv Math ’18 define

unrefined BPS invariants by∑
i χ(pR iπβ∗Φβ)y i =

∑
g n

β
g (y

1
2 + y−

1
2 )2g

Note Φβ can depend on the orientation, which is a choice of the

square root of the canonical bundle of K vir
M̂β

defined line bundle wit

fiber (
Kvir
M̂β

)
F

=
3⊗

i=0

(
detExti (F ,F )

)⊗(−1)i
.

A canonical orientation always exits Joyce and Upmaier ’21

The orientation must be Calabi-Yau orientation, which means

that it hat to be trivial on the fibres of πβ.

It is conjectured that Calabi-Yau orientations exist MT ’18
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More general geometric considerations and checks

Given the Calabi-Yau orientation the nβg can be defined. anly

choice. MT ’18 make predictions based that seems in contraction

with physical and latter mathematical results.

Refined invariants: Kiem-Li ’12 define the refined BPS numbers as∑
ij

dimHj(Chowβ,
p R iπβ∗Φβ)qiLq

j
R =

∑
jL,jR

Nβ
jL,jR

[jL]qL [jR ]qR

This make only sense if Φβ underlies a pure Hodge Module, e.g. if

M̂β is smooth.

In this case it agrees with other definitions of Nβ
JR ,jL

mentioned

above.
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Conclusions

The approach predicts the refined invariants of compact

elliptically fibred Calabi-Yau 3 folds X from the local gauge

theory limits X∗ and passes many mathematical checks.

It there are multiple local limits X∗ of X the predictions are

compatible and fit with the data from the refined E -string and

other local limits Tot(O(−KS)→ S)

If boundary conditions for the ansatz change due to known

complex structure dependence of X the additionally predicted

BPS numbers pass also consistency checks. This gives better

understanding how the refined BPS numbers depend on the

complex structure.
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Conclusions

The ansatz meets the requirement by the Completeness

Hypothesis of Polchinski ’04, which states that for any gauge

theory coupled to gravity, there must exist charged matter in

every representation of the gauge group, and suggests the

breaking of one-form symmetry in the supergravity theory.
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