

Refined BPS number on compact Calabi-Yau 3-folds from Wilson loops

‘Équations différentielles motiviques et au-delà’ in Institute
Henri Poincaré

Albrecht Klemm, Bonn University & Sheffield University

28.3.2025

Based on work with

Minxin Huang (ICT Hefei, Anhui), Sheldon Katz (Univ. Urbana, Illinois) and Xin Wang (ICT, Hefei, Anhui): arXiv 2503.16270

Today

Introduction

Wilson loop operators are gauge invariant operators

$$W(C) = \text{Tr } \mathcal{P} \exp \left(i \oint_C A_\mu dx^\mu \right)$$

whose expectation value gives a measure of quark confinement.

Introduction

Wilson loop operators are gauge invariant operators

$$W(C) = \text{Tr } \mathcal{P} \exp \left(i \oint_C A_\mu dx^\mu \right)$$

whose expectation value gives a measure of quark confinement.

Wilson already pointed out the relation to the string approach to QCD anticipating a calculation

Introduction

Wilson loop operators are gauge invariant operators

$$W(C) = \text{Tr } \mathcal{P} \exp \left(i \oint_C A_\mu dx^\mu \right)$$

whose expectation value gives a measure of quark confinement.

Wilson already pointed out the relation to the string approach to QCD anticipating a calculation

of Maldacena, who showed that this expectation value in the $\text{AdS}_4 \times S^5$ conformal gauge string theory correspondence is in leading order of the t'Hooft coupling given as the string world-sheet volume bounding the curve C in the AdS_5 boundary where the conformal $N = 4$ gauge theory lives.

Introduction

Hence Wilson loops are an important link in gauge theory gravity correspondences and in $\mathcal{N} = 2$ SYM the Wilson line expectations value has been calculated by [localisation](#) e.g. by Pestun for a circular Wilson loop on S^4 in general ϵ backgrounds.

Introduction

Hence Wilson loops are an important link in gauge theory gravity correspondences and in $\mathcal{N} = 2$ SYM the Wilson line expectations value has been calculated by [localisation](#) e.g. by Pestun for a circular Wilson loop on S^4 in general ϵ backgrounds.

Compactification of F-, M- and type II string theory on compact Calabi-Yau space X leads to [effective supergravity theories](#) in $d=6,5,4$ dimensions with [eight supercharges](#).

Introduction

Hence Wilson loops are an important link in gauge theory gravity correspondences and in $\mathcal{N} = 2$ SYM the Wilson line expectations value has been calculated by **localisation** e.g. by Pestun for a circular Wilson loop on S^4 in general ϵ backgrounds.

Compactification of F-, M- and type II string theory on compact Calabi-Yau space X leads to **effective supergravity theories** in $d=6,5,4$ dimensions with **eight supercharges**.

The **geometric engineering program** takes local limits X_* of X so that gravity decouples and one ends up with a rigid (non-gravitational) supersymmetric field theory with **eight supercharges** on X_* .

General strategy:

Today we want to reverse the direction of geometric engineering and study how the **refined Wilson loop structure** of an ~~an~~ rigid $N = 1$ 5d supersymmetric gauge restrict the way the latter can be completed to supergravity.

General strategy:

Today we want to reverse the direction of geometric engineering and study how the **refined Wilson loop structure** of an ~~an~~ rigid $N = 1$ 5d supersymmetric gauge restrict the way the latter can be completed to supergravity.

This leads to an ansatz, restricted by one form symmetries, that allows to calculate the refined BPS (Gopakumar Vafa) numbers on elliptically fibered compact Calabi Yau spaces.

General strategy:

Today we want to reverse the direction of geometric engineering and study how the **refined Wilson loop structure** of an **an** rigid $N = 1$ 5d supersymmetric gauge restrict the way the latter can be completed to supergravity.

This leads to an ansatz, restricted by one form symmetries, that allows to calculate the refined BPS (Gopakumar Vafa) numbers on elliptically fibered compact Calabi Yau spaces.

The predictions of the latter can be checked mathematically by constructing the the $SU(2)_L \times SU(2)_R$ Lefshetz decomposition of the cohomology of the moduli space \hat{M}_β of stable sheaves F with $ch_2(F) = \beta$ and $\chi(F) = n$.

Refined BPS invariants in 5d rigid super symmetric theory

M-theory on Calabi-Yau threefold leads to 5d $\mathcal{N} = 1$ supergravity. The BPS states are labelled by their Poincaré representation defined by their mass and their spin representations w.r.t. the little group

$$\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \subset \mathrm{SP}(4)$$

of the 5d Lorentz group. The mass is proportional to the K-theory charge.

Refined BPS invariants in 5d rigid super symmetric theory

M-theory on Calabi-Yau threefold leads to 5d $\mathcal{N} = 1$ supergravity. The BPS states are labelled by their Poincaré representation defined by their mass and their spin representations w.r.t. the little group

$$\mathrm{SU}(2)_L \times \mathrm{SU}(2)_R \subset \mathrm{SP}(4)$$

of the 5d Lorentz group. The mass is proportional to the K-theory charge.

Using the 4d/5d correspondence by circle compactification we label the latter by the even branes D($2K$)-branes $K = 1, \dots, 3$ of type IIA theory

$$\Gamma = (q_0, q_A, p^A, p^0)$$

The left spin gets identified with the D0 brane charge

$$q_0 = 2 \frac{j_L}{(p^0)^2} .$$

Refined BPS invariants in 5d rigid super symmetric theory

In this talk we are interested in the charges

$$(D0, D2, D4, D6) = (q_0, \beta, 0, -1)$$

Refined BPS invariants in 5d rigid super symmetric theory

In this talk we are interested in the charges

$$(D0, D2, D4, D6) = (q_0, \beta, 0, -1)$$

Indices of the corresponding states called unrefined BPS invariants n_g^β are encoded in the topological string partitions functions. The relation to the refined BPS numbers N_{j_L, j_R}^β is defined by weighted sum over the right spin

$$\sum_{g=0} n_g^\beta I_L^g = \sum_{j_R} (-1)^{2j_R} (2j_R + 1) N_{j_L, j_R}^\beta \left[\frac{j_L}{2} \right]_L .$$

$$\text{with } I_*^n = (2[0]_* + [\frac{1}{2}]_*)^{\otimes n} = \sum_{j \geq 0} \left(\binom{2n}{n-j} - \binom{2n}{n-2-j} \right) \left[\frac{j}{2} \right]_*$$

Refined BPS invariants in 5d rigid super symmetric theory

In this talk we are interested in the charges

$$(D0, D2, D4, D6) = (q_0, \beta, 0, -1)$$

Indices of the corresponding states called unrefined BPS invariants n_g^β are encoded in the topological string partitions functions. The relation to the refined BPS numbers N_{j_L, j_R}^β is defined by weighted sum over the right spin

$$\sum_{g=0} n_g^\beta I_L^g = \sum_{j_R} (-1)^{2j_R} (2j_R + 1) N_{j_L, j_R}^\beta \left[\frac{j_L}{2} \right]_L .$$

$$\text{with } I_*^n = (2[0]_* + [\frac{1}{2}]_*)^{\otimes n} = \sum_{j \geq 0} \left(\binom{2n}{n-j} - \binom{2n}{n-2-j} \right) \left[\frac{j}{2} \right]_*$$

We will see that the $N_{j_L, j_R}^\beta \in \mathbb{N}$ can be seen as dimensions of cohomology groups of \hat{M}_β w.r.t. to an $\text{su}(2)_L \times \text{su}(2)_R$ Lefshetz decomposition, while the $n_g^\beta \in \mathbb{Z}$ is an “Euler number” of \hat{M}_β .

Refined BPS invariants in 5d rigid super symmetric theory

It is well known, see examples below, that in compact Calabi-Yau X the $N_{j_L j_R}^\beta \in \mathbb{N}$ depend on the complex structure of X , while the n_g^β are truly invariants.

Refined BPS invariants in 5d rigid super symmetric theory

It is well known, see examples below, that in compact Calabi-Yau X the $N_{j_L, j_R}^\beta \in \mathbb{N}$ depend on the complex structure of X , while the n_g^β are truly invariants.

Nekrasov argued that in rigid 5d $\mathcal{N} = 1$ SQFT the $N_{j_L, j_R}^\beta \in \mathbb{N}$ are also protected invariants, by defining a 5d BPS index

$$Z_{BPS}(\epsilon_L, \epsilon_R, t) = \text{Tr}_{\mathcal{H}_{BPS}} (-1)^{2(j_L + j_R)} e^{-2\epsilon_L j_L} e^{-2\epsilon_R j_R} e^{-2\epsilon_R j_R} e^{\beta H}.$$

Refined BPS invariants in 5d rigid super symmetric theory

It is well known, see examples below, that in compact Calabi-Yau X the $N_{j_L, j_R}^\beta \in \mathbb{N}$ depend on the complex structure of X , while the n_g^β are truly invariants.

Nekrasov argued that in rigid 5d $\mathcal{N} = 1$ SQFT the $N_{j_L, j_R}^\beta \in \mathbb{N}$ are also protected invariants, by defining a 5d BPS index

$$Z_{BPS}(\epsilon_L, \epsilon_R, t) = \text{Tr}_{\mathcal{H}_{BPS}} (-1)^{2(j_L + j_R)} e^{-2\epsilon_L j_L} e^{-2\epsilon_R j_R} e^{-2\epsilon_R j_R} e^{\beta H}.$$

Here the $j_{L/R}$ denote the operators that correspond to the Cartan generators of the $SU(2)_{L/R}$ above, and j_R denotes the charge operator of an $U(1)_R$ global symmetry, present in the rigid theory.

Refined BPS invariants in 5d rigid super symmetric theory

It is well known, see examples below, that in compact Calabi-Yau X the $N_{j_L, j_R}^\beta \in \mathbb{N}$ depend on the complex structure of X , while the n_g^β are truly invariants.

Nekrasov argued that in rigid 5d $\mathcal{N} = 1$ SQFT the $N_{j_L, j_R}^\beta \in \mathbb{N}$ are also protected invariants, by defining a 5d BPS index

$$Z_{BPS}(\epsilon_L, \epsilon_R, t) = \text{Tr}_{\mathcal{H}_{BPS}} (-1)^{2(j_L + j_R)} e^{-2\epsilon_L j_L} e^{-2\epsilon_R j_R} e^{-2\epsilon_R j_R} e^{\beta H}.$$

Here the $j_{L/R}$ denote the operators that correspond to the Cartan generators of the $SU(2)_{L/R}$ above, and j_R denotes the charge operator of an $U(1)_R$ global symmetry, present in the rigid theory. The twisting of the Cartan generator of the $SU(2)_R$ by the $U(1)_R$ charge is **essential to define this index**.

Refined BPS invariants in 5d rigid super symmetric theory

It is well known, see examples below, that in compact Calabi-Yau X the $N_{j_L, j_R}^\beta \in \mathbb{N}$ depend on the complex structure of X , while the n_g^β are truly invariants.

Nekrasov argued that in rigid 5d $\mathcal{N} = 1$ SQFT the $N_{j_L, j_R}^\beta \in \mathbb{N}$ are also protected invariants, by defining a 5d BPS index

$$Z_{BPS}(\epsilon_L, \epsilon_R, t) = \text{Tr}_{\mathcal{H}_{BPS}} (-1)^{2(j_L + j_R)} e^{-2\epsilon_L j_L} e^{-2\epsilon_R j_R} e^{-2\epsilon_R j_R} e^{\beta H}.$$

Here the $j_{L/R}$ denote the operators that correspond to the Cartan generators of the $SU(2)_{L/R}$ above, and j_R denotes the charge operator of an $U(1)_R$ global symmetry, present in the rigid theory. The twisting of the Cartan generator of the $SU(2)_R$ by the $U(1)_R$ charge is **essential to define this index**. According to Dine and Seiberg supergravities **do not preserve any global symmetries**, hence one cannot define protected N_{j_L, j_R}^β in the supergravity and hence on X .

Refined BPS invariants in 5d rigid super symmetric theory

Suppose $Z_{BPS}(\epsilon_L, \epsilon_R, H)$ is known to arbitrary orders in $q_{L/R}$ and the Kähler parameter $e^{\beta \cdot t}$, using e.g. the virtual Bialinicki-Birula Birula decomposition of $\mathcal{H}^*(\hat{M}_\beta)$ Choi, Katz, & AK, '12 or the refined topological vertex Iqbal, Kozcaz, Vafa 07.

Refined BPS invariants in 5d rigid super symmetric theory

Suppose $Z_{BPS}(\epsilon_L, \epsilon_R, H)$ is known to arbitrary orders in $q_{L/R}$ and the Kähler parameter $e^{\beta \cdot t}$, using e.g. the virtual Bialinicki-Birula Birula decomposition of $\mathcal{H}^*(\hat{M}_\beta)$ Choi, Katz, & AK, '12 or the refined topological vertex Iqbal, Kozcaz, Vafa 07.

Identifying $\mathcal{F}(\epsilon_L, \epsilon_R, t) = \log(Z_{BPS}(\epsilon_L, \epsilon_R, H))$, $H = t$ and reorganizing it in the form suggested by Gopakumar and Vafa

$$\mathcal{F}(\epsilon_L, \epsilon_R, t) = \sum_{\substack{\beta \in H_2(X, \mathbb{Z}) \\ \beta \neq 0}} \sum_{\substack{k=1 \\ j_L, j_R=0}}^{\infty} (-1)^{2(j_L + j_R)} N_{j_L, j_R}^\beta \frac{\chi_{j_L}(q_L^k) \chi_{j_R}(q_R^k)}{k \mathcal{I}(k\epsilon_1, k\epsilon_2)} e^{k \beta \cdot t},$$

Refined BPS invariants in 5d rigid super symmetric theory

Suppose $Z_{BPS}(\epsilon_L, \epsilon_R, H)$ is known to arbitrary orders in $q_{L/R}$ and the Kähler parameter $e^{\beta \cdot t}$, using e.g. the virtual Bialinicki-Birula Birula decomposition of $\mathcal{H}^*(\hat{M}_\beta)$ Choi, Katz, & AK, '12 or the refined topological vertex Iqbal, Kozcaz, Vafa 07.

Identifying $\mathcal{F}(\epsilon_L, \epsilon_R, t) = \log(Z_{BPS}(\epsilon_L, \epsilon_R, H))$, $H = t$ and reorganizing it in the form suggested by Gopakumar and Vafa

$$\mathcal{F}(\epsilon_L, \epsilon_R, t) = \sum_{\substack{\beta \in H_2(X, \mathbb{Z}) \\ \beta \neq 0}} \sum_{\substack{k=1 \\ j_L, j_R=0}}^{\infty} (-1)^{2(j_L + j_R)} N_{j_L, j_R}^\beta \frac{\chi_{j_L}(q_L^k) \chi_{j_R}(q_R^k)}{k \mathcal{I}(k\epsilon_1, k\epsilon_2)} e^{k \beta \cdot t},$$

yields the N_{j_L, j_R}^β . Here $\mathcal{I}(\epsilon_1, \epsilon_2) = 2 \sinh\left(\frac{\epsilon_1}{2}\right) 2 \sinh\left(\frac{\epsilon_2}{2}\right)$ and $\chi_j(x) = \left(\sum_{m=-j}^j x^m\right)$.

The refined holomorphic anomaly equations

Let us organize $\mathcal{F}(\epsilon_L, \epsilon_R, t)$ as

$$\mathcal{F}(\epsilon_L, \epsilon_R, t) = \sum_{n,g \in \mathbb{Z}} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F^{(n,g)}(t)$$

The refined holomorphic anomaly equations

Let us organize $\mathcal{F}(\epsilon_L, \epsilon_R, t)$ as

$$\mathcal{F}(\epsilon_L, \epsilon_R, t) = \sum_{n,g \in \mathbb{Z}} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F^{(n,g)}(t)$$

Then the $F^{(n,g)}(t)$ can be calculated using the refined holomorphic anomaly equations

$$\bar{\partial}_{\bar{i}} F^{(n,g)} = \frac{1}{2} \bar{C}_{\bar{i}}^{jk} \left(D_j D_k F^{(n,g-1)} + \sum_{m,h}' D_j F^{(m,h)} D_k F^{(n-m,g-h)} \right), \quad n+g > 1.$$

in terms of rings of almost holomorphic generators for congruent subgroups. e.g. of $SL(2, \mathbb{Z})$, for example $\Gamma_1(3)$ for local \mathbb{P}^2 $Tot(\mathcal{O}(-3) \rightarrow \mathbb{P}^2)$, Huang, AK '10 and Krefl and Walcher '10 and complete boundary conditions Huang, Kashani-Poor, AK '11.

Representation theoretic aspects

Example 1: Huang, Poretschkin, AK: '13 local del Pezzo Calabi-Yau space $\text{Tot}(\mathcal{O}(-K_S) \rightarrow S)$ with $S = d_8 \mathbb{P}^2$.

For the BPS states N_{j_L, j_R}^d at $d = 2$ one calculates:

$2j_L \backslash 2j_R$	0	1	2	3
0		3876		
1			248	
2				1

Representation theoretic aspects

Example 1: Huang, Poretschkin, AK: '13 local del Pezzo Calabi-Yau space $\text{Tot}(\mathcal{O}(-K_S) \rightarrow S)$ with $S = d_8 \mathbb{P}^2$.

For the BPS states $N_{j_L j_R}^d$ at $d = 2$ one calculates:

$2j_L \backslash 2j_R$	0	1	2	3
0		3876		
1			248	
2				1

One sees that the adjoint representation **248** of E_8 appears as the BPS number $N_{\frac{1}{2}, \frac{3}{2}}^2$, which decomposes into two **Weyl** orbits with the weights $w_1 + 8w_0$, further $3876 = \mathbf{1} + \mathbf{3875}$, where the latter decomposes in the **Weyl** orbits of $w_1 + 7w_8 + 35w_0$.

Representation theoretic aspects

Example 2: Katz, Pandharipande, AK: '14 $S = K3$ For the BPS states N_{j_L, j_R}^d at $d = 3$ one gets:

$2j_L \setminus 2j_R$	0	1	2	3
0	1981		1	
1		252		
2	1		21	
3				1

Representation theoretic aspects

Example 2: Katz, Pandharipande, AK: '14 $S = K3$ For the BPS states N_{j_L, j_R}^d at $d = 3$ one gets:

$2j_L \setminus 2j_R$	0	1	2	3
0	1981		1	
1		252		
2	1		21	
3				1

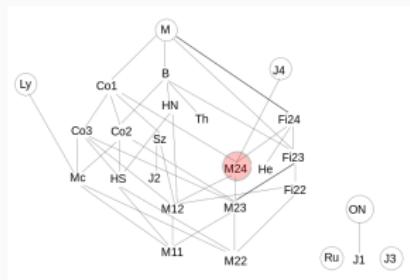
Now $1981 = 2 \cdot \mathbf{990} + \mathbf{1}$ and $\mathbf{252}$ are representations of the Mathieu group $M_{24} \in S_{24}$, which is one of sporadic finite groups

Representation theoretic aspects

Example 2: Katz, Pandharipande, AK: '14 $S = K3$ For the BPS states N_{j_L, j_R}^d at $d = 3$ one gets:

$2j_L \setminus 2j_R$	0	1	2	3
0	1981		1	
1		252		
2	1		21	
3				1

Now $1981 = 2 \cdot \mathbf{990} + \mathbf{1}$ and $\mathbf{252}$ are representations of the Mathieu group $M_{24} \in S_{24}$, which is one of sporadic finite groups



Wilson loops in 5d $\mathcal{N} = 1$ gauge theory

The half-BPS Wilson loop operator located at the origin of \mathbb{R}^4 and wound around the S^1 was defined by Young '11, Assel, Estes, Yamazaki '14

$$W_r = \text{Tr}_r \mathcal{T} \left(i \oint_{S^1} dt (A_0(t) - \phi(t)) \right),$$

Wilson loops in 5d $\mathcal{N} = 1$ gauge theory

The half-BPS Wilson loop operator located at the origin of \mathbb{R}^4 and wound around the S^1 was defined by Young '11, Assel, Estes, Yamazaki '14

$$W_r = \text{Tr}_r \mathcal{T} \left(i \oint_{S^1} dt (A_0(t) - \phi(t)) \right),$$

Here r is a representation for the gauge field A_μ ,
 $A_0(t) = A_0(\vec{x} = 0, t)$ is the zero component of the gauge field and
 $\phi(\vec{x} = 0, t)$ is the scalar field in the vector multiplet.

Wilson loops in 5d $\mathcal{N} = 1$ gauge theory

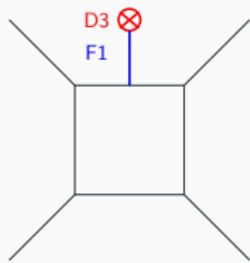
The half-BPS Wilson loop operator located at the origin of \mathbb{R}^4 and wound around the S^1 was defined by [Young '11](#), [Assel, Estes, Yamazaki '14](#)

$$W_r = \text{Tr}_r \mathcal{T} \left(i \oint_{S^1} dt (A_0(t) - \phi(t)) \right),$$

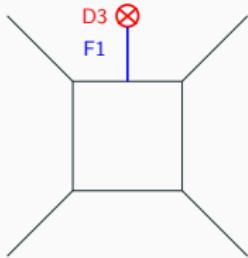
Here r is a representation for the gauge field A_μ ,
 $A_0(t) = A_0(\vec{x} = 0, t)$ is the zero component of the gauge field and
 $\phi(\vec{x} = 0, t)$ is the scalar field in the vector multiplet.

The insertion of the half-BPS Wilson loop operator can be also realized by introducing a half-BPS static, heavy and electrically charged particle at the origin of \mathbb{R}^4 . We will refer to such a particle as a [Wilson loop particle](#), as explained for $G = \text{SU}(2)$ next.

The Wilson loop particle

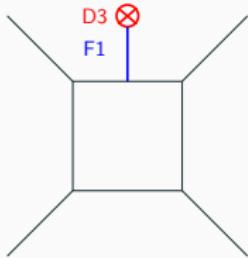


The Wilson loop particle



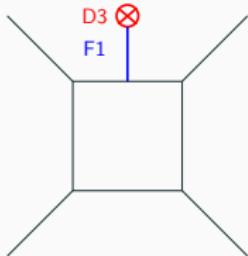
IIB description of the 5d Wilson loops in the $SU(2)$ theory. The (p, q) five-brane web diagram on the left illustrates the (p, q) five-brane configuration in the $x^{5,6}$ directions. It is the dual diagram of the corresponding toric description of the local Calabi-Yau $X = \mathcal{O}(-2, -2) \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$.

The Wilson loop particle



IIB description of the 5d Wilson loops in the $SU(2)$ theory. The (p, q) five-brane web diagram on the left illustrates the (p, q) five-brane configuration in the $x^{5,6}$ directions. It is the dual diagram of the corresponding toric description of the local Calabi-Yau $X = \mathcal{O}(-2, -2) \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$.

The Wilson loop particle

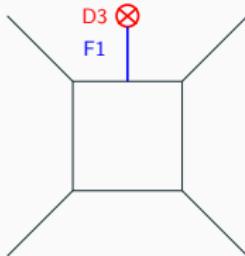


	0	1	2	3	4	5	6	7	8	9
D5	•	•	•	•	•	•				
NS5	•	•	•	•	•		•			
$5_{(p,q)}$	•	•	•	•	•	θ				
F1	•						•			
D3	•							•	•	•

IIB description of the 5d Wilson loops in the $SU(2)$ theory. The (p, q) five-brane web diagram on the left illustrates the (p, q) five-brane configuration in the $x^{5,6}$ directions. It is the dual diagram of the corresponding toric description of the local Calabi-Yau $X = \mathcal{O}(-2, -2) \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$.

In the description on the right, the brane configurations are detailed, with $\tan \theta = \frac{p}{q}$ for a five-brane with charge (p, q) .

The Wilson loop particle



	0	1	2	3	4	5	6	7	8	9
D5	•	•	•	•	•	•				
NS5	•	•	•	•	•		•			
$5_{(p,q)}$	•	•	•	•	•	θ				
F1	•						•			
D3	•						•	•	•	•

IIB description of the 5d Wilson loops in the $SU(2)$ theory. The (p, q) five-brane web diagram on the left illustrates the (p, q) five-brane configuration in the $x^{5,6}$ directions. It is the dual diagram of the corresponding toric description of the local Calabi-Yau $X = \mathcal{O}(-2, -2) \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$.

In the description on the right, the brane configurations are detailed, with $\tan \theta = \frac{p}{q}$ for a five-brane with charge (p, q) .

The half-BPS Wilson loop in the fundamental representation of $SU(2)$ is realized by the fundamental string F1 stretched between a D5 brane and the D3 brane.

Wilson loops in 5d $\mathcal{N} = 1$ gauge theory

The gauge group G is broken to its Abelian subgroup $U(1)^r$ with $r = \text{rank } G$ the rank of G . The representation \mathbf{r} becomes the non-negative electric charge \hat{q}_i , the gauge charges of the Wilson loop particle under the i -th Abelian gauge subgroup $U(1)$, and is denoted by $\mathbf{r} = [\hat{q}_1, \dots, \hat{q}_r]$.

Wilson loops in 5d $\mathcal{N} = 1$ gauge theory

The gauge group G is broken to its Abelian subgroup $U(1)^r$ with $r = \text{rank } G$ the rank of G . The representation \mathbf{r} becomes the non-negative electric charge \hat{q}_i , the gauge charges of the Wilson loop particle under the i -th Abelian gauge subgroup $U(1)$, and is denoted by $\mathbf{r} = [\hat{q}_1, \dots, \hat{q}_r]$.

The refined BPS partition functions of 5d theories in the presence of half-BPS Wilson loop operators can be computed as a sum of the k -instanton supersymmetric index of the ADHM quantum mechanics which can be read off from the IIB brane realization
Nekrasov '15, Tong and Wong '14, Tong '14

The Wilson loop in 5d $\mathcal{N} = 1$ BPS partition function

Let now X_* a non-compact Calabi Yau space that geometrical engineers a 5d $\mathcal{N} = 1$ theory ($\text{Tot}(\mathcal{O}(-3) \rightarrow \mathbb{P}^2)$ works as a further limit) and let $r = b_4^c(X_*)$ be the compact divisors of X_*

The Wilson loop in 5d $\mathcal{N} = 1$ BPS partition function

Let now X_* a non-compact Calabi Yau space that geometrical engineers a 5d $\mathcal{N} = 1$ theory ($\text{Tot}(\mathcal{O}(-3) \rightarrow \mathbb{P}^2)$ works as a further limit) and let $r = b_4^c(X_*)$ be the compact divisors of X_*

It was proposed in [Huang, Lee and Wang '22](#) that the insertion of a Wilson loop particle with charge $\mathbf{r} = [\hat{q}_1, \dots, \hat{q}_r]$ can be realized by inserting a wrapped non-dynamic M2-brane over a non-compact curve \hat{C} , ending on boundary $D3$ branes.

The Wilson loop in 5d $\mathcal{N} = 1$ BPS partition function

Let now X_* a non-compact Calabi Yau space that geometrical engineers a 5d $\mathcal{N} = 1$ theory ($\text{Tot}(\mathcal{O}(-3) \rightarrow \mathbb{P}^2)$ works as a further limit) and let $r = b_4^c(X_*)$ be the compact divisors of X_*

It was proposed in [Huang, Lee and Wang '22](#) that the insertion of a Wilson loop particle with charge $\mathbf{r} = [\hat{q}_1, \dots, \hat{q}_r]$ can be realized by inserting a wrapped non-dynamic M2-brane over a non-compact curve \hat{C} , ending on boundary $D3$ branes.

The electric charges of the Wilson loop particles are computed as the intersection numbers of the compact divisors $D_i, i = 1, \dots, r$, and the non-compact curve $\hat{C} = \hat{q}_1 \hat{C}_1 + \dots + \hat{q}_r \hat{C}_r$, where

$$D_i \cdot \hat{C}_j = \delta_{i,j}, \quad i, j = 1, \dots, r,$$

hence $\hat{q}_i = D_i \cdot \hat{C}, \quad i = 1, \dots, r$.

The Wilson loop in 5d $\mathcal{N} = 1$ BPS partition function

One can arrange the Wilson expectation values in a generating function

$$\begin{aligned} Z_{\text{gen}} &= \exp \left(\sum_{\hat{q}_i \geq 0} \frac{1}{\prod_{i=1}^r \hat{q}_i!} \mathcal{F}_{W, \hat{q}}(\epsilon_1, \epsilon_2, t, \hat{t}) \right) \\ &= e^{\mathcal{F}(\epsilon_1, \epsilon_2, t)} \left(1 + \sum_{|\hat{q}| > 0} \frac{1}{\prod_{i=1}^r \hat{q}_i!} \langle W_{\hat{q}} \rangle e^{\hat{q} \cdot \hat{m}} \right), \end{aligned}$$

The Wilson loop in 5d $\mathcal{N} = 1$ BPS partition function

One can arrange the Wilson expectation values in a generating function

$$\begin{aligned} Z_{\text{gen}} &= \exp \left(\sum_{\hat{q}_i \geq 0} \frac{1}{\prod_{i=1}^r \hat{q}_i!} \mathcal{F}_{W, \hat{q}}(\epsilon_1, \epsilon_2, t, \hat{t}) \right) \\ &= e^{\mathcal{F}(\epsilon_1, \epsilon_2, t)} \left(1 + \sum_{|\hat{q}| > 0} \frac{1}{\prod_{i=1}^r \hat{q}_i!} \langle W_{\hat{q}} \rangle e^{\hat{q} \cdot \hat{m}} \right), \end{aligned}$$

with

$$\mathcal{F}_{W, \hat{q}}(\epsilon_1, \epsilon_2, t, \hat{t}) = \mathcal{I}^{|\hat{q}|-1} \sum_{\beta \in H_2(X; \mathbb{Z})} \sum_{j_L, j_R} (-1)^{2j_L + 2j_R} \tilde{N}_{j_L j_R}^{\beta} \chi_{j_L}(q_L) \chi_{j_R}(q_R) e^{\beta \cdot t + \hat{q} \cdot \hat{m}}$$

where the $\tilde{N}_{j_R j_L}^{\beta}$ are the refined BPS numbers in the presence of the Wilson line.

HAE for the 5d $\mathcal{N} = 1$ Wilson line BPS partition function

One can arrange the Wilson partition function as

$$\mathcal{F}_{W,\hat{q}} = \sum_{n,g=0}^{\infty} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g+|\hat{q}|-1} \mathcal{F}_{\hat{q}}^{(n,g)}.$$

HAE for the 5d $\mathcal{N} = 1$ Wilson line BPS partition function

One can arrange the Wilson partition function as

$$\mathcal{F}_{W,\hat{q}} = \sum_{n,g=0}^{\infty} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g+|\hat{q}|-1} \mathcal{F}_{\hat{q}}^{(n,g)}.$$

The $\mathcal{F}_{\hat{q}}^{(n,g)}$ fullfill a refined holomorphic anomaly equation

$$\bar{\partial}_{\bar{i}} \mathcal{F}_{\hat{q}}^{(n,g)} = \frac{1}{2} \bar{C}_i^{jk} \left[D_j D_k \mathcal{F}_{\hat{q}}^{(n,g-1)} + \sum_{n',g',\hat{q}'}' \prod_{i=1}^r \binom{\hat{q}_i}{\hat{q}'_i} D_j \mathcal{F}_{\hat{q}'}^{(n',g')} D_k \mathcal{F}_{\hat{q}-\hat{q}'}^{(n-n',g-g')} \right]$$

Huang, Lee and Wang '22, Wang '23. The latter can be evaluated using a few calculable boundary conditions. This makes the calculation of the $\langle W_{\hat{q}} \rangle$ and the \tilde{N}_{jLjR}^{β} highly efficient.

Connection to the refined topological partition function on the compact CY X

Consider a 5d $\mathcal{N} = 1$ supergravity theory obtained from M-theory compactified on X . Denote a curve in X as \widehat{C} . In the large volume limit of \widehat{C} , the volume of X becomes **infinite and gravity is decoupled**.

Connection to the refined topological partition function on the compact CY X

Consider a 5d $\mathcal{N} = 1$ supergravity theory obtained from M-theory compactified on X . Denote a curve in X as \widehat{C} . In the large volume limit of \widehat{C} , the volume of X becomes **infinite and gravity is decoupled**.

Under this limit, the half-BPS particles arising from M2 branes wrapping \widehat{C} become heavy and their dynamic degrees of freedom are frozen and we can treat these particles as **Wilson loop particles in the local theory**.

Connection to the refined topological partition function on the compact CY X

More precisely, let $C, \hat{C} \in H_2(X; \mathbb{Z})$ denote curves in the compact Calabi-Yau 3-fold X , with Kähler parameters t, \hat{t} . In a local limit by taking \hat{t} to $-\infty$, we obtain a **non-compact CY3** X_* with Kähler parameters t . Let $D_i \in H^4(X_*; \mathbb{Z})$ represent the compact divisors in X_* and let ϕ_i denote the dual Kähler parameters associated with D_i .

Connection to the refined topological partition function on the compact CY X

More precisely, let $C, \hat{C} \in H_2(X; \mathbb{Z})$ denote curves in the compact Calabi-Yau 3-fold X , with Kähler parameters t, \hat{t} . In a local limit by taking \hat{t} to $-\infty$, we obtain a **non-compact CY3** X_* with Kähler parameters t . Let $D_i \in H^4(X_*; \mathbb{Z})$ represent the compact divisors in X_* and let ϕ_i denote the dual Kähler parameters associated with D_i .

The gauge charge neutral combination

$$\hat{m} = \hat{t} - \sum_i \hat{q}_i \phi_i, \quad \hat{q}_i = D_i \cdot \hat{C},$$

defines the masses for the Wilson loop particles, where the parameters ϕ_i are Coulomb parameters in the effective 5d local theory.

Connection to the refined topological partition function on the compact CY X

In the most general case, we can find a curve class $\widehat{C} \in H_2(X; \mathbb{Z})$ in the compact Calabi-Yau 3-fold X whose large volume limit consists of neighborhoods X_i of mutually disjoint connected compact divisors $D^{(1)}, D^{(2)}, \dots, D^{(n)}$, each defining a local theory \mathcal{T}_{X_i} .

Connection to the refined topological partition function on the compact CY X

In the most general case, we can find a curve class $\widehat{C} \in H_2(X; \mathbb{Z})$ in the compact Calabi-Yau 3-fold X whose large volume limit consists of neighborhoods X_i of mutually disjoint connected compact divisors $D^{(1)}, D^{(2)}, \dots, D^{(n)}$, each defining a local theory \mathcal{T}_{X_i} .

Decomposing $D^{(i)}$ into its components $D_j^{(i)}$, we have the Wilson loop charges

$$q_j^{(i)} := D_j^{(i)} \cdot \widehat{C} \geq 0, \quad D_j^{(i)} \in H^4(X_i; \mathbb{Z}).$$

The partition function for each local theory

$Z_{X_i}(t^{(i)}) = Z_{X_i}(\epsilon_1, \epsilon_2; t^{(i)})$ depends on the Kähler parameters $t_j^{(i)}, j = 1, \dots, b_2(X_i)$, which can be reformulated in the 5d gauge theory in terms of Coulomb parameters $\phi_j^{(i)}, j = 1, \dots, r_i$ and mass parameters $m_l^{(i)}, l = 1, \dots, f_i$ given on the next slide.

Connection to the refined topological partition function on the compact CY X

$$t_j^{(i)} = \sum_{l=1}^{r_i} \phi_l^{(i)} Q_{G,lj}^{(i)} + \sum_{l=1}^{f_i} m_l^{(i)} Q_{F,lj}^{(i)},$$

where $r_i = b_4(X_i)$ is the rank of the gauge group and $f_i = b_2(X_i) - b_4(X_i)$ is the rank of the flavor group.

Connection to the refined topological partition function on the compact CY X

$$t_j^{(i)} = \sum_{l=1}^{r_i} \phi_l^{(i)} Q_{G,lj}^{(i)} + \sum_{l=1}^{f_i} m_l^{(i)} Q_{F,lj}^{(i)},$$

where $r_i = b_4(X_i)$ is the rank of the gauge group and $f_i = b_2(X_i) - b_4(X_i)$ is the rank of the flavor group.

Connection to the refined topological partition function on the compact CY X

$$t_j^{(i)} = \sum_{l=1}^{r_i} \phi_l^{(i)} Q_{G,lj}^{(i)} + \sum_{l=1}^{f_i} m_l^{(i)} Q_{F,lj}^{(i)},$$

where $r_i = b_4(X_i)$ is the rank of the gauge group and $f_i = b_2(X_i) - b_4(X_i)$ is the rank of the flavor group.

$Q_F^{(i)}$ is the intersection matrix of selected non-compact divisors and the compact curves $C_j^{(i)}$. These matrices respectively compute the gauge charges and flavor charges of the BPS particles arising from wrapping an M2-brane on $C_j^{(i)}$.

Connection to the refined topological partition function on the compact CY X

$$t_j^{(i)} = \sum_{l=1}^{r_i} \phi_l^{(i)} Q_{G,lj}^{(i)} + \sum_{l=1}^{f_i} m_l^{(i)} Q_{F,lj}^{(i)},$$

where $r_i = b_4(X_i)$ is the rank of the gauge group and $f_i = b_2(X_i) - b_4(X_i)$ is the rank of the flavor group.

$Q_F^{(i)}$ is the intersection matrix of selected non-compact divisors and the compact curves $C_j^{(i)}$. These matrices respectively compute the gauge charges and flavor charges of the BPS particles arising from wrapping an M2-brane on $C_j^{(i)}$.

We claim that the partition function of the compact CY3 can be written as a linear combination of Wilson loop partition functions in the local theory \mathcal{T}_{X_i} in *all* representations.

Ansatz: Refined partition function on X from Wilson loops on X_* .

The interpretation of the half BPS Wilson line particles as coming from M2-branes on the \widehat{C} direction that become heavy, carry electric charges $\hat{q}^{(i)}$, and become the sources of the half-BPS Wilson loops along the time direction S^1 in each local theory \mathcal{T}_{X_i} suggest the following **ansatz** for the refined partition function on X

Ansatz: Refined partition function on X from Wilson loops on X_* .

The interpretation of the half BPS Wilson line particles as coming from M2-branes on the \widehat{C} direction that become heavy, carry electric charges $\hat{q}^{(i)}$, and become the sources of the half-BPS Wilson loops along the time direction S^1 in each local theory \mathcal{T}_{X_i} suggest the following **ansatz** for the refined partition function on X

$$Z_X(t) = \prod_{i=1}^n Z_{X_i}(t^{(i)}) \cdot \left[1 + \sum_{k=1}^{\infty} e^{k\hat{m}} Z_k \right],$$

Ansatz: Refined partition function on X from Wilson loops on X_* .

The interpretation of the half BPS Wilson line particles as coming from M2-branes on the \widehat{C} direction that become heavy, carry electric charges $\hat{q}^{(i)}$, and become the sources of the half-BPS Wilson loops along the time direction S^1 in each local theory \mathcal{T}_{X_i} suggest the following **ansatz** for the refined partition function on X

$$Z_X(t) = \prod_{i=1}^n Z_{X_i}(t^{(i)}) \cdot \left[1 + \sum_{k=1}^{\infty} e^{k\hat{m}} Z_k \right],$$

where $\hat{m} = t_{\widehat{C}} - \sum_{i=1}^n \sum_{j=1}^{b_4(X_i)} q_j^{(i)} \phi_j^{(i)}$ is the effective mass for the Wilson loop particle, $\phi_j^{(i)}$ are Kähler parameters with respect to bases in $H_2(X_i; \mathbb{Q})$ that are dual to $D_j^{(i)}$ which are also the Coulomb parameters in each local theory \mathcal{T}_{X_i} and Z_k is a product of linear combinations of Wilson loops.

Ansatz: Refined partition function on X from Wilson loops on X_* .

The latter satisfy the **ansatz**

$$Z_k(t) = \prod_{i=1}^n \sum_{h_1^{(i)}, \dots, h_{r_i}^{(i)} \geq 0} \sum_{\beta_m^{(i)} \in \mathbb{Z}} P_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}], k; \beta_m^{(i)}}^{(i)} \left\langle W_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}]}^{(i)} \right\rangle e^{\beta_m^{(i)} \cdot m^{(i)}}.$$

Ansatz: Refined partition function on X from Wilson loops on X_* .

The latter satisfy the **ansatz**

$$Z_k(t) = \prod_{i=1}^n \sum_{h_1^{(i)}, \dots, h_{r_i}^{(i)} \geq 0} \sum_{\beta_m^{(i)} \in \mathbb{Z}} P_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}], k; \beta_m^{(i)}}^{(i)} \left\langle W_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}]}^{(i)} \right\rangle e^{\beta_m^{(i)} \cdot m^{(i)}}.$$

Here we have coefficients which only depend on $e^{\epsilon_1}, e^{\epsilon_2}$ and can be written as

$$\prod_{i=1}^n P_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}], k; \beta_m^{(i)}}^{(i)}(\epsilon_1, \epsilon_2) = \frac{\mathcal{P}[e^{\epsilon_1}, e^{\epsilon_2}]}{\prod_{l=1}^k 4 \sinh(l\epsilon_1/2) \sinh(l\epsilon_2/2)},$$

Ansatz: Refined partition function on X from Wilson loops on X_* .

The latter satisfy the **ansatz**

$$Z_k(t) = \prod_{i=1}^n \sum_{h_1^{(i)}, \dots, h_{r_i}^{(i)} \geq 0} \sum_{\beta_m^{(i)} \in \mathbb{Z}} P_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}], k; \beta_m^{(i)}}^{(i)} \left\langle W_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}]}^{(i)} \right\rangle e^{\beta_m^{(i)} \cdot m^{(i)}}.$$

Here we have coefficients which only depend on $e^{\epsilon_1}, e^{\epsilon_2}$ and can be written as

$$\prod_{i=1}^n P_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}], k; \beta_m^{(i)}}^{(i)}(\epsilon_1, \epsilon_2) = \frac{\mathcal{P}[e^{\epsilon_1}, e^{\epsilon_2}]}{\prod_{l=1}^k 4 \sinh(l\epsilon_1/2) \sinh(l\epsilon_2/2)},$$

The Laurent polynomials $\mathcal{P}[e^{\epsilon_1}, e^{\epsilon_2}]$ are bounded in degree and polynomial order and the the one-form symmetry. They are in general not completely fixed by this constraints. But they can be determined to certain degree with input of a few refined BPS numbers, which yields many more concrete predictions.

Constraints from the one form symmetries:

Denote the one-form symmetry of the 5d local theory \mathcal{T}_{X_i} by $\Gamma_i^{(1)} = \prod_j Z_{p_j^{(i)}}$. As pointed out in [Morrison et al '20](#) $\Gamma_i^{(1)}$ can be calculated from the Smith normal form of the charge matrix

$$\text{SNF}(Q_G^{(i)}) = U^{(i)} \cdot Q_G^{(i)} \cdot V^{(i)} = \begin{pmatrix} p_1^{(i)} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & p_2^{(i)} & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & & p_{r_i}^{(i)} & \cdots & 0 \end{pmatrix},$$

where the main diagonal entries are positive integers satisfying $p_1^{(i)} \leq \cdots \leq p_{r_i}^{(i)}$. $U^{(i)}$ and $V^{(i)}$ are invertible unimodular matrices satisfying $\det U^{(i)} = \det V^{(i)} = 1$, and both their entries and those of their inverse matrices are integers.

Constraints from the one form symmetries:

Let $c_{j,1}^{(i)}, \dots, c_{j,r_i}^{(i)}$ be the integral one-form symmetry charges for the Wilson loops under $Z_{p_j^{(i)}}$. Then the charge of $\left\langle W_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}]}^{(i)} \right\rangle$ under $\mathbb{Z}_{p_j^{(i)}}$ is $c_{j,1}^{(i)} h_1^{(i)} + \dots + c_{j,r_i}^{(i)} h_{r_i}^{(i)} \pmod{p_j^{(i)}}$.

Constraints from the one form symmetries:

Let $c_{j,1}^{(i)}, \dots, c_{j,r_i}^{(i)}$ be the integral one-form symmetry charges for the Wilson loops under $Z_{p_j^{(i)}}$. Then the charge of $\left\langle W_{[h_1^{(i)}, \dots, h_{r_i}^{(i)}]}^{(i)} \right\rangle$ under $\mathbb{Z}_{p_j^{(i)}}$ is $c_{j,1}^{(i)}h_1^{(i)} + \dots + c_{j,r_i}^{(i)}h_{r_i}^{(i)} \pmod{p_j^{(i)}}$.

The first constraint on the ansatz is that the Wilson loops must have the same charge under the one-form symmetry $\Gamma^{(i)}$

$$c_{j,1}^{(i)}h_1^{(i)} + \dots + c_{j,r_i}^{(i)}h_{r_i}^{(i)} = k(c_{j,1}^{(i)}q_1^{(i)} + \dots + c_{j,r_i}^{(i)}q_{r_i}^{(i)}) \pmod{p_j^{(i)}}, \quad i = 1, \dots, n.$$

Predictions:

Example: From $\text{Tot}(\mathcal{O}(-3) \rightarrow \mathbb{P}^2)$ to the elliptic fibration over \mathbb{P}^2 called $X_{18}(1, 1, 1, 6, 9)$

$2j_L \setminus 2j_R$	0	1	2	3
0		546		
1		1		1

$$d_B = 1$$

$2j_L \setminus 2j_R$	0	1	2	3	4	5	6
0				546			
1			1		1		1

$$d_B = 2$$

Table 1: The refined BPS numbers for $d_E = 1$

$2j_L \setminus 2j_R$	0	1	2	3	4	5	6	7	8	9	10
0						546	1	546	1		1
1				1		2		2	546	1	
2						1			1		1

$$d_B = 3$$

$2j_L \setminus 2j_R$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0					546	1	546	3	1092	5	546	4	546	2	
1			1		2		4	546	5	1092	6	1092	4		2
2						1		3		5	546	5	546	3	
3									1		2		2	546	1
4											1				1

$$d_B = 4$$

Table 2: The refined BPS numbers for $d_E = 1$

Dependence on the complex structure of X

An elaborate example for the complex structure dependence of the N_{j_R, j_L}^β is provided in Section 5.3.2 of the paper. It is based on the simple geometry of smooth ruled surfaces $S \in X$. The projection map $\rho : S \rightarrow C$ with \mathbb{P}^1 fibres maps to a curve C_g of genus g .

Dependence on the complex structure of X

An elaborate example for the complex structure dependence of the N_{j_R, j_L}^β is provided in Section 5.3.2 of the paper. It is based on the simple geometry of smooth ruled surfaces $S \in X$. The projection map $\rho : S \rightarrow C$ with \mathbb{P}^1 fibres maps to a curve C_g of genus g .

They occur for example in hypersurfaces $p = 0$ in toric varieties \mathbb{P}_Δ constructed by Batyrev using the 4d reflexive lattice polytope Δ which together with $\hat{\Delta}$ form a dual pair $(\Delta, \hat{\Delta})$.

Dependence on the complex structure of X

An elaborate example for the complex structure dependence of the N_{j_R, j_L}^β is provided in Section 5.3.2 of the paper. It is based on the simple geometry of smooth ruled surfaces $S \in X$. The projection map $\rho : S \rightarrow C$ with \mathbb{P}^1 fibres maps to a curve C_g of genus g .

They occur for example in hypersurfaces $p = 0$ in toric varieties \mathbb{P}_Δ constructed by Batyrev using the 4d reflexive lattice polytope Δ which together with $\hat{\Delta}$ form a dual pair $(\Delta, \hat{\Delta})$.

If a codimension two face θ_2 with inner points $I(\theta_2)$ is dual to a codimension three edge $\hat{\theta}_3$ in $\hat{\Delta}$ with inner points $I(\hat{\theta}_3)$ then some monomial deformations of ρ that in general represent complex structure deformation of X cannot occur, instead there exist $K = I(\theta_2) \cdot I(\hat{\theta}_3)$ additional independent Beltrami differentials μ_k , $k = 1, \dots, K$ in $H^1(\hat{M}, T_{\hat{M}})$ which correspond to *non-polynomial* complex structure deformations.

Dependence on the complex structure of X

The latter are frozen to particular values in the toric embedding of X . If $g = I(\theta_2) \neq 0$ and $I(\hat{\theta}_3) = 1$ then for these frozen values of the moduli a rule surface $S \subset X$ over a genus g curve C_g is realized.

Dependence on the complex structure of X

The latter are frozen to particular values in the toric embedding of X . If $g = I(\theta_2) \neq 0$ and $I(\hat{\theta}_3) = 1$ then for these frozen values of the moduli a rule surface $S \subset X$ over a genus g curve C_g is realized.

Let us consider a genus zero curve in the class β represented by a fibre \mathbb{P}^1 . The moduli space of each \mathbb{P}^1 \hat{M}_β is identified with C_g and the $SU(2)_L \times SU_R(2)$ Lefshetz decompositions yields

$$R_B^\beta = 2g [0, 0] + \left[\frac{1}{2}, \frac{1}{2}\right].$$

Dependence on the complex structure of X

The latter are frozen to particular values in the toric embedding of X . If $g = I(\theta_2) \neq 0$ and $I(\hat{\theta}_3) = 1$ then for these frozen values of the moduli a rule surface $S \subset X$ over a genus g curve C_g is realized.

Let us consider a genus zero curve in the class β represented by a fibre \mathbb{P}^1 . The moduli space of each \mathbb{P}^1 \hat{M}_β is identified with C_g and the $SU(2)_L \times SU_R(2)$ Lefshetz decompositions yields

$$R_B^\beta = 2g [0, 0] + \left[\frac{1}{2}, \frac{1}{2}\right].$$

If the geometry is deformed w.r.t. to μ_k deformations, the holomorphically embedded curve C_g disappears and the \mathbb{P}^1 are fixed to $2g - 2$ points, which corresponds to the representation $R_A^\beta = (2g - 2)[0, 0]$. Clearly the weighted trace over j_R yields the same n_b^β while the $N_{j_L j_R}^\beta$ change before and after the complex structure deformation.

More general geometric considerations and checks

In the above example the moduli space \hat{M}_β was smooth and the two Lefshetz action easily identifiable.

More general geometric considerations and checks

In the above example the moduli space \hat{M}_β was smooth and the two Lefshetz action easily identifiable.

More general mathematical checks are made in the paper and summarised in Sheldon Katz's talk at the Simons Center:

https://scgp.stonybrook.edu/video_portal/video.php?id=6922, so I will be brief.

More general geometric considerations and checks

\hat{M}_β is the moduli space of stable one dimensional sheaves F on X

$$\text{ch}_2(F) = \beta = (\text{d}H \text{ in local } \mathbb{P}^2 \text{ example})$$

$$\chi(F) = n$$

More general geometric considerations and checks

\hat{M}_β is the moduli space of stable one dimensional sheaves F on X

$$\text{ch}_2(F) = \beta = (\text{d}H \text{ in local } \mathbb{P}^2 \text{ example})$$

$$\chi(F) = n$$

Example $X = \text{Tot } \mathcal{O}(-3) \rightarrow \mathbb{P}^2$, $\chi(F) = 1$

Stability forces F to be supported on the zero section \mathbb{P}^2

More general geometric considerations and checks

\hat{M}_β is the moduli space of stable one dimensional sheaves F on X

$$\text{ch}_2(F) = \beta = (dH \text{ in local } \mathbb{P}^2 \text{ example})$$

$$\chi(F) = n$$

Example $X = \text{Tot } \mathcal{O}(-3) \rightarrow \mathbb{P}^2$, $\chi(F) = 1$

Stability forces F to be supported on the zero section \mathbb{P}^2

\hat{M}_d smooth $D_d = \dim(\hat{M}_d) = d^2 + 1$ **Le Portier**.

More general geometric considerations and checks

\hat{M}_β is the moduli space of stable one dimensional sheaves F on X

$$\text{ch}_2(F) = \beta = (\text{d}H \text{ in local } \mathbb{P}^2 \text{ example})$$

$$\chi(F) = n$$

Example $X = \text{Tot } \mathcal{O}(-3) \rightarrow \mathbb{P}^2$, $\chi(F) = 1$

Stability forces F to be supported on the zero section \mathbb{P}^2

\hat{M}_d smooth $D_d = \dim(\hat{M}_d) = d^2 + 1$ **Le Portier**.

There is a Hilbert Chow morphism

$$\pi_\beta : \hat{M}_\beta \rightarrow \text{Chow}_\beta$$

More general geometric considerations and checks

\hat{M}_β is the moduli space of stable one dimensional sheaves F on X

$$\text{ch}_2(F) = \beta = (\text{d}H \text{ in local } \mathbb{P}^2 \text{ example})$$

$$\chi(F) = n$$

Example $X = \text{Tot } \mathcal{O}(-3) \rightarrow \mathbb{P}^2$, $\chi(F) = 1$

Stability forces F to be supported on the zero section \mathbb{P}^2

\hat{M}_d smooth $D_d = \dim(\hat{M}_d) = d^2 + 1$ **Le Portier**.

There is a Hilbert Chow morphism

$$\pi_\beta : \hat{M}_\beta \rightarrow \text{Chow}_\beta$$

\hat{M}_β supports a d -critical locus **Joyce '15**, described here by a superpotentiel W

More general geometric considerations and checks

\hat{M}_β is the moduli space of stable one dimensional sheaves F on X

$$\mathrm{ch}_2(F) = \beta = (\mathrm{d}H \text{ in local } \mathbb{P}^2 \text{ example})$$

$$\chi(F) = n$$

Example $X = \mathrm{Tot}\mathcal{O}(-3) \rightarrow \mathbb{P}^2$, $\chi(F) = 1$

Stability forces F to be supported on the zero section \mathbb{P}^2

\hat{M}_d smooth $D_d = \dim(\hat{M}_d) = d^2 + 1$ **Le Portier**.

There is a Hilbert Chow morphism

$$\pi_\beta : \hat{M}_\beta \rightarrow \mathrm{Chow}_\beta$$

\hat{M}_β supports a d -critical locus **Joyce '15**, described here by a superpotentiel W

$\Phi_\beta = \mathbb{C}[D_\beta]$ is a perverse sheaf of vanishing cycles for $W \equiv 0$.

More general geometric considerations and checks

Then Maulik and Toda, Inv Math '18 define

unrefined BPS invariants by

$$\sum_i \chi({}^p R^i \pi_{\beta*} \Phi_{\beta}) y^i = \sum_g n_g^{\beta} (y^{\frac{1}{2}} + y^{-\frac{1}{2}})^{2g}$$

Note Φ_{β} can depend on the orientation, which is a choice of the square root of the canonical bundle of $K_{\widehat{M}_{\beta}}^{\text{vir}}$ defined line bundle with fiber

$$\left(K_{\widehat{M}_{\beta}}^{\text{vir}} \right)_F = \bigotimes_{i=0}^3 \left(\det \text{Ext}^i(F, F) \right)^{\otimes (-1)^i}.$$

More general geometric considerations and checks

Then Maulik and Toda, Inv Math '18 define

unrefined BPS invariants by

$$\sum_i \chi({}^p R^i \pi_{\beta*} \Phi_{\beta}) y^i = \sum_g n_g^{\beta} (y^{\frac{1}{2}} + y^{-\frac{1}{2}})^{2g}$$

Note Φ_{β} can depend on the orientation, which is a choice of the square root of the canonical bundle of $K_{\widehat{M}_{\beta}}^{\text{vir}}$ defined line bundle with fiber

$$\left(K_{\widehat{M}_{\beta}}^{\text{vir}}\right)_F = \bigotimes_{i=0}^3 (\det \text{Ext}^i(F, F))^{\otimes (-1)^i}.$$

A canonical orientation always exists Joyce and Upmaier '21

More general geometric considerations and checks

Then Maulik and Toda, Inv Math '18 define

unrefined BPS invariants by

$$\sum_i \chi({}^p R^i \pi_{\beta*} \Phi_{\beta}) y^i = \sum_g n_g^{\beta} (y^{\frac{1}{2}} + y^{-\frac{1}{2}})^{2g}$$

Note Φ_{β} can depend on the orientation, which is a choice of the square root of the canonical bundle of $K_{\widehat{M}_{\beta}}^{\text{vir}}$ defined line bundle with fiber

$$\left(K_{\widehat{M}_{\beta}}^{\text{vir}}\right)_F = \bigotimes_{i=0}^3 (\det \text{Ext}^i(F, F))^{\otimes (-1)^i}.$$

A canonical orientation always exists Joyce and Upmaier '21

The orientation must be **Calabi-Yau orientation**, which means that it has to be trivial on the fibres of π_{β} .

More general geometric considerations and checks

Then Maulik and Toda, Inv Math '18 define

unrefined BPS invariants by

$$\sum_i \chi({}^p R^i \pi_{\beta*} \Phi_{\beta}) y^i = \sum_g n_g^{\beta} (y^{\frac{1}{2}} + y^{-\frac{1}{2}})^{2g}$$

Note Φ_{β} can depend on the orientation, which is a choice of the square root of the canonical bundle of $K_{\widehat{M}_{\beta}}^{\text{vir}}$ defined line bundle with fiber

$$\left(K_{\widehat{M}_{\beta}}^{\text{vir}}\right)_F = \bigotimes_{i=0}^3 (\det \text{Ext}^i(F, F))^{\otimes (-1)^i}.$$

A canonical orientation always exists Joyce and Upmaier '21

The orientation must be **Calabi-Yau orientation**, which means that it has to be trivial on the fibres of π_{β} .

It is conjectured that Calabi-Yau orientations exist MT '18

More general geometric considerations and checks

Given the Calabi-Yau orientation the n_g^β can be defined. only choice. MT '18 make predictions based that seems in contraction with physical and latter mathematical results.

More general geometric considerations and checks

Given the Calabi-Yau orientation the n_g^β can be defined. only choice. MT '18 make predictions based that seems in contraction with physical and latter mathematical results.

Refined invariants: Kiem-Li '12 define the refined BPS numbers as

$$\sum_{ij} \dim \mathbb{H}^j(\text{Chow}_\beta, {}^p R^i \pi_{\beta*} \Phi_\beta) q_L^i q_R^j = \sum_{j_L, j_R} N_{j_L, j_R}^\beta [j_L]_{q_L} [j_R]_{q_R}$$

More general geometric considerations and checks

Given the Calabi-Yau orientation the n_g^β can be defined. only choice. MT '18 make predictions based that seems in contraction with physical and latter mathematical results.

Refined invariants: Kiem-Li '12 define the refined BPS numbers as

$$\sum_{ij} \dim \mathbb{H}^j(\text{Chow}_\beta, {}^p R^i \pi_{\beta*} \Phi_\beta) q_L^i q_R^j = \sum_{j_L, j_R} N_{j_L, j_R}^\beta [j_L]_{q_L} [j_R]_{q_R}$$

This make only sense if Φ_β underlies a pure Hodge Module, e.g. if \hat{M}_β is smooth.

More general geometric considerations and checks

Given the Calabi-Yau orientation the n_g^β can be defined. only choice. MT '18 make predictions based that seems in contraction with physical and latter mathematical results.

Refined invariants: Kiem-Li '12 define the refined BPS numbers as

$$\sum_{ij} \dim \mathbb{H}^j(\text{Chow}_\beta, {}^p R^i \pi_{\beta*} \Phi_\beta) q_L^i q_R^j = \sum_{j_L, j_R} N_{j_L, j_R}^\beta [j_L]_{q_L} [j_R]_{q_R}$$

This make only sense if Φ_β underlies a pure Hodge Module, e.g. if \hat{M}_β is smooth.

In this case it agrees with other definitions of N_{j_R, j_L}^β mentioned above.

Conclusions

The approach predicts the refined invariants of compact elliptically fibred Calabi-Yau 3 folds X from the local gauge theory limits X_* and passes many mathematical checks.

Conclusions

The approach predicts the refined invariants of compact elliptically fibred Calabi-Yau 3 folds X from the local gauge theory limits X_* and passes many mathematical checks.

If there are multiple local limits X_* of X the predictions are compatible and fit with the data from the refined E -string and other local limits $\text{Tot}(\mathcal{O}(-K_S) \rightarrow S)$

Conclusions

The approach predicts the refined invariants of compact elliptically fibred Calabi-Yau 3 folds X from the local gauge theory limits X_* and passes many mathematical checks.

If there are multiple local limits X_* of X the predictions are compatible and fit with the data from the refined E -string and other local limits $\text{Tot}(\mathcal{O}(-K_S) \rightarrow S)$

If boundary conditions for the ansatz change due to known complex structure dependence of X the additionally predicted BPS numbers pass also consistency checks. This gives better understanding how the refined BPS numbers depend on the complex structure.

Conclusions

The ansatz meets the requirement by the *Completeness Hypothesis* of Polchinski '04, which states that for any gauge theory coupled to gravity, there must exist charged matter in every representation of the gauge group, and suggests the breaking of one-form symmetry in the supergravity theory.