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Wilson loop operators are gauge invariant operators

W(C) = TrPexp (/7{ A,de“>
C

whose expectation value gives a measure of quark confinement.

Wilson already pointed out the relation to the string approach to
QCD anticipating a calculation

of Maldacena, who showed that this expectation value in the
AdS,; x S° conformal gauge string theory correspondence is in
leading order of the t'Hooft coupling given as the string
world-sheet volume bounding the curve C in the AdSs boundary
where the conformal N = 4 gauge theory lives.
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Hence Wilson loops are an important link in gauge theory gravity
correspondences and in A/ = 2 SYM the Wilson line expectations
value has been calculated by localisation e.g. by Pestun for a

cicular Wilson loop on $* in general € backgrounds.

Compactification of F-, M- and type Il string theory on compact
Calabi-Yau space X leads to effective supergravity theories in
d=6,5,4 dimensions with eight supercharges.

The geometric engineering program takes local limits X, of X so
that gravity decouples and one ends up with a rigid
(non-gravitational) supersymmetric field theory with eight

supercharges on Xi.
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General strategy:

Today we want to reverse the direction of geometric engineering
and study how the refined Wilson loop structure of an an rigid

N =1 5d supersymmetric gauge restrict the way the latter can be
completed to supergravity.

This leads to an ansatz, restricted by one form symmetries, that
allows to calculate the refined BPS (Gopakumar Vafa) numbers on
elliptically fibered compact Calabi Yau spaces.

The predictions of the latter can be checked mathematically by
constructing the the SU(2), x SU(2)r Lefshetz decomposition of
the cohomology of the moduli space I\Aﬂg of stable sheaves F with
cha(F) = and x(F) = n.
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M-theory on Calabi-Yau threefold leads to 5d N' = 1 supergravity.
The BPS states are labelled by their Poaincaré representation
defined by their mass and their spin representations w.r.t. the little
group

SU(2), x SU(2)g C SP(4)
of the 5d Lorentz group. The mass is proportional to the K-theory
charge.

Using the 4d/5d correspondence by circle compactification we label
the latter by the even branes D(2K)-branes K =1,...,3 of type
I1A theory
[ = (q0,9a,p" p°)
The left spin gets identified with the DO brane charge
qo = 2(;TL)2 . .



Refined BPS invariants in 5d rigid super symmetric theory

In this talk be are interested in the charges

(DO, D2, D4; D6) - (q07 67 07 _l)



Refined BPS invariants in 5d rigid super symmetric theory

In this talk be are interested in the charges

(DO, D2, D4; D6) - (q07 57 07 _l)

Indices of the corresponding states called unrefined BPS invariants
ng*B are encoded in the topological string partitions functions. The
relation to the refined BPS numbers Nﬁjﬁ» is defined by weighted

sum over the right spin
_ 2r (5 g |JL
S ngif = S0(-1(2ie + UM, ||
g=0 ir L

with 17 = (2[0]. + [3],)%" = 20 ((nz—nj> B (n—22n—f>> H



Refined BPS invariants in 5d rigid super symmetric theory

In this talk be are interested in the charges

(DO7 D2, D4; D6) - (q07 ﬂa 07 _1)

Indices of the corresponding states called unrefined BPS invariants
ng*B are encoded in the topological string partitions functions. The
relation to the refined BPS numbers Nj’ij is defined by weighted

sum over the right spin
> oniE =3 (—1)R(2jr + 1)N] [JL] .
g=0 Jr 211
with L,? = (2[0]* + [%}*)Q@n = 2.j>0 ((n2_nj> - (n_22n_j>> [Jé}*

We will see that the N? .
JLJR

cohomology groups of Mg w.r.t. to an su(2); x su(2)r Lefshetz

€ N can be seen as dimensions of

decomposition, while the ng € Z is an “Euler number” of I\Aﬂﬁ.
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It is well know, see examples below, that in compact Calabi-Yau X
the IV_ﬁ,jR € N depend on the complex structure of X, while the ngB
are truly invariants.

Nekrasov argued that in rigid 5d N’ =1 SQFT the NJ?ZJ-R € N are

also protected invariants, by defining a 5d BPS index
Zgps(€eL,€r, t) = TTHBPS(71)2(J'L+J'R)e—2ELiLe—2€RjRe—2€R.i7a ePH

Here the j /g denote the operators that correspond to the Cartan
generators of the SU(2), /g above, and jz denotes the charge
operator of an U(1)z global symmetry, present in the rigid theory.
The twisting of the Cartan generator of the SU(2)g by the U(1)z
charge is essential to define this index. According to Dine and
Seiberg supergravities do not preserve any global symmetries,
hence one cannot defined protected NﬁJR in the supergravity and
hence on X.
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Refined BPS invariants in 5d rigid super symmetric theory

Suppose Zgps(€L, €r, H) is known to arbitrary orders in g, /g and
the Kahler parameter e, using e.g. the virtual Bialinicki-Birula
Birula decomposition of ’H*(I\?l/g) Choi, Katz, & AK, '12 or the
refined topological vertex Igbal, Kozcaz, Vafa 07.

Identifying F(er, €r, t) = log(Zgps(eL, €r, H)), H=t and
reorganizing it in the form suggested by Gopakumar and Vafa

_ +ir) B XJL(qL)XJR(qR) kBt
Flew,er, t) = Z Z e JL’JR k Z(keq, kep) ° 7
BEHN(X,Z) k=1 )

B£0  JLJr=0

yields the I\/J'.in. Here Z(e1,€) = 2sinh () 2sinh (2) and

xi() = (e <)
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The refined holomorphic anomaly equations

Let us organize F(e,€R, t) as

Fler,er, t) = Z (€1 + €2)?"(e162)8 L F(™8) (1)

ngeZ

Then the F(™8)(t) can be calculated using the refined holomorphic
anomaly equations

d-F(m8) — %égk(D,-DkF<"7g—1>+Z’DjF(mvh>DkF<"—mvg—h)) ,n+g > 1.
m,h

in terms of rings of almost holomorphic generators for congruent

subgroups. e.g. of SL(2,Z), for example '1(3) for local P?

Tot(O(—3) — P?), Huang, AK '10 and Krefl and Walcher '10 and

complete boundary conditions Huang, Kashani-Poor, AK "11.



Representation theoretic aspects
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Representation theoretic aspects

Example 1: Huang, Poretschkin, AK: '13 local del Pezzo Calabi-Yau
space Tot(O(—Ks) — S) with S = dgP?.

For the BPS states NJ?ZJ-R at d = 2 one calculates:

2i\2jr [O ] 1 2 [3
0 3876
1 248
2 1

One sees that the adjoint represention 248 of Eg appears as the
BPS number N? ,, which decomposes into two Weyl orbits with
the weights wy Eii28wo, further 3876 = 1 + 3875, where the latter
decomposes in the Weyl orbits of wy + 7wg + 35wg.

10
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Example 2: Katz, Pandharipande, AK: '14 S = K3 For the BPS states
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Wilson loops in 5d N = 1 gauge theory

The half-BPS Wilson loop operator located at the origin of R* and
wound around the S! was defined by Young '11, Assel, Estes,
Yamazaki '14
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12



Wilson loops in 5d N = 1 gauge theory

The half-BPS Wilson loop operator located at the origin of R* and
wound around the S! was defined by Young '11, Assel, Estes,
Yamazaki '14

Wi = Tr, T (f # e (a0 - ¢(r>)) |

Here r is a representation for the gauge field A,
Ao(t) = Ap(X = 0, t) is the zero component of the gauge field and
d(X = 0,t) is the scalar field in the vector multiplet.

12



Wilson loops in 5d N = 1 gauge theory

The half-BPS Wilson loop operator located at the origin of R* and
wound around the S! was defined by Young '11, Assel, Estes,
Yamazaki '14

Wi = Tr, T (f # e (a0 - ¢(r>)) |

Here r is a representation for the gauge field A,
Ao(t) = Ap(X = 0, t) is the zero component of the gauge field and
d(X = 0,t) is the scalar field in the vector multiplet.

The insertion of the half-BPS Wilson loop operator can be also
realized by introducing a half-BPS static, heavy and electrically
charged particle at the origin of R*. We will refer to such a particle
as a Wilson loop particle, as explained for G = SU(2) next.

12
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FIT

[IB description of the 5d Wilson loops in the SU(2) theory. The
(p, q) five-brane web diagram on the left illustrates the (p, q)
five-brane configuration in the x> directions. It is the dual

diagram of the corresponding toric description of the local
Calabi-Yau X = O(—2,-2) — P! x PL,
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The Wilson loop particle
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FIT

D5
NS5
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[IB description of the 5d Wilson loops in the SU(2) theory. The
(p, q) five-brane web diagram on the left illustrates the (p, q)
five-brane configuration in the x> directions. It is the dual
diagram of the corresponding toric description of the local
Calabi-Yau X = O(—2,-2) — P! x PL,

In the description on the right, the brane configurations are
detailed, with tan = g for a five-brane with charge (p, q).
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[IB description of the 5d Wilson loops in the SU(2) theory. The
(p, q) five-brane web diagram on the left illustrates the (p, q)
five-brane configuration in the x> directions. It is the dual
diagram of the corresponding toric description of the local
Calabi-Yau X = O(—2,-2) — P! x PL,

In the description on the right, the brane configurations are
detailed, with tan = g for a five-brane with charge (p, q).

The half-BPS Wilson loop in the fundamental representation of

SU(2) is realized by the fundamental string F1 stretched between a
D5 brane and the D3 brane.

13



Wilson loops in 5d N = 1 gauge theory

The gauge group G is broken to its Abelian subgroup U(1)" with
r = rank G the rank of G. The representation r becomes the
non-negative electric charge §;, the gauge charges of the Wilson

loop particle under the i-th Abelian gauge subgroup U(1), and is
denoted by r = [§1,-- - , §/].
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Wilson loops in 5d N = 1 gauge theory

The gauge group G is broken to its Abelian subgroup U(1)" with
r = rank G the rank of G. The representation r becomes the
non-negative electric charge §;, the gauge charges of the Wilson
loop particle under the i-th Abelian gauge subgroup U(1), and is
denoted by r = [§1,-- - , §/].

The refined BPS partition functions of 5d theories in the presence
of half-BPS Wilson loop operators can be computed as a sum of
the k-instanton supersymmetric index of the ADHM quantum
mechanics which can be read off from the IIB brane realization
Nekrasov '15, Tong and Wong '14, Tong '14

14



The Wilson loop in 5d A/ = 1 BPS partition function

Let now X, a non-compact Calabi Yau space that geometrical
engineers a 5d ' = 1 theory (Tot(O(—3) — P?) works as a
further limit) and let r = b§(X.) be the compact divisors of X,

ii5)



The Wilson loop in 5d A/ =1 BPS partition function

Let now X, a non-compact Calabi Yau space that geometrical
engineers a 5d ' = 1 theory (Tot(O(—3) — P?) works as a
further limit) and let r = b§(X.) be the compact divisors of X,

It was proposed in Huang, Lee and Wang '22 that the insertion of
a Wilson loop particle with charge r = [§1, - - , §,] can be realized
by inserting a wrapped non-dynamic M2-brane over a non-compact
curve C, ending on boundary D3 branes.

ii5)



The Wilson loop in 5d A/ =1 BPS partition function

Let now X, a non-compact Calabi Yau space that geometrical
engineers a 5d ' = 1 theory (Tot(O(—3) — P?) works as a
further limit) and let r = b§(X.) be the compact divisors of X,

It was proposed in Huang, Lee and Wang '22 that the insertion of
a Wilson loop particle with charge r = [§1, - - , §,] can be realized
by inserting a wrapped non-dynamic M2-brane over a non-compact
curve C, ending on boundary D3 branes.

The electric charges of the Wilson loop particles are computed as
the intersection numbers of the compact divisors D;,i =1,--- ,r,
and the non-compact curve C = §1 G + -+ - + G,C,, where

Di'é:j:(sl'Lh ia.j:17"'7r7

hence §;=D;-C, i=1,---r.

ii5)



The Wilson loop in 5d A/ = 1 BPS partition function

One can arrange the Wilson expectation values in a generating
function

den = exp (qu>0 3" J_"W q(fla €, t, t)>

— o7 (e1,€2,1) (1 4 Z|@\>0 m<wa>eé-rﬁ) ’

16



The Wilson loop in 5d A/ =1 BPS partition function

One can arrange the Wilson expectation values in a generating
function

den = exp (qu>0 3" JT"W q(fla €, t, t)>
08 (14 g g W)

with

1 2 2j t+§-t
Fwgler, e, t, ) =T " N (—1)2F2= N x; (q0)xe(qr)e” Tt
BeH(X;Z)LJr

where the /\N/J'.;JL are the refined BPS numbers in the presence of
the Wilson line.

16



HAE for the 5d N = 1 Wilson line BPS partition function

One can arrange the Wilson partition function as

oo

Fw.g = Z (€1 + 62)2"(6162)““7'71?5"’@.
n,g:O
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HAE for the 5d N = 1 Wilson line BPS partition function

One can arrange the Wilson partition function as

oo

Fw.g = Z (€1 + 62)2"(6162)g+“7|71fé"’g).
n,g:O

The ]-"é"’g) fullfill a refined holomorphic anomaly equation

8F ) = {'JkDDf e 1)+Z H< >D]—" & F e E)
n',g’.g" i=1

Huang, Lee and Wang 22, Wang '23. The latter can be evaluated
using a few calculable boundary conditions. This makes the
calculation of the (Wj) and the NJBLIR highly efficient.

17



Connection to the refined topological partition function on the

compact CY X

Consider a 5d A/ = 1 supergravity theory obtained from M-theory
compactified on X. Denote a curve in X as C. In the large volume
limit of C, the volume of X becomes infinite and gravity is

decoupled.
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Connection to the refined topological partition function on the

compact CY X

Consider a 5d A/ = 1 supergravity theory obtained from M-theory
compactified on X. Denote a curve in X as C. In the large volume
limit of C, the volume of X becomes infinite and gravity is

decoupled.

Under this limit, the half-BPS particles arising from M2 branes
wrapping C become heavy and their dynamic degrees of freedom
are frozen and we can treat these particles as Wilson loop particles

in the local theory.

18



Connection to the refined topological partition function on the

compact CY X

More precisely, let C, Ce H»(X; Z) denote curves in the compact
Calabi-Yau 3-fold X, with Kahler parameters t, f. In a local limit
by taking f to —oo, we obtain a non-compact CY3 X, with Kahler
parameters t. Let D; € H*(X,;Z) represent the compact divisors
in X, and let ¢; denote the dual Kahler parameters associated with
D;.
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Connection to the refined topological partition function on the

compact CY X

More precisely, let C, Ce H»(X; Z) denote curves in the compact
Calabi-Yau 3-fold X, with Kahler parameters t, f. In a local limit
by taking f to —oo, we obtain a non-compact CY3 X, with Kahler
parameters t. Let D; € H*(X,;Z) represent the compact divisors
in X, and let ¢; denote the dual Kahler parameters associated with
D;.

The gauge charge neutral combination

m=£t-Y ¢, &G=D;-C,
i

defines the masses for the Wilson loop particles, where the
parameters ¢; are Coulomb parameters in the effective 5d local
theory.
19



Connection to the refined topological partition function on the

compact CY X

In the most general case, we can find a curve class C € Hy(X;2Z) in
the compact Calabi-Yau 3-fold X whose large volume limit consists
of neighborhoods X; of mutually disjoint connected compact
divisors DU, D) D each defining a local theory Tx,.
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Connection to the refined topological partition function on the

compact CY X

In the most general case, we can find a curve class C € Hy(X;2Z) in
the compact Calabi-Yau 3-fold X whose large volume limit consists
of neighborhoods X; of mutually disjoint connected compact
divisors DU, D) D each defining a local theory Tx,.

Decomposing D) into its components DJ.(i), we have the Wilson

loop charges

¢ :=D".C>0, DY e H(X;2).

The partition function for each local theory

ZX,.(t(i)) = Zx (€1, €2; t()) depends on the Kahler parameters
t}i),j =1, -+, by(Xj), which can be reformulated in the 5d gauge
theory in terms of Coulomb parameters qSJ(.i),j =1,---,r and mass

parameters mf'), [ =1,---,f; given on the next slide. 20



Connection to the refined topological partition function on the

compact CY X

r ] ] fi ) )
=SS oal + Snflel
=1 =1

where rj = by(X;) is the rank of the gauge group and
fi = ba(X;i) — ba(X;) is the rank of the flavor group.
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where rj = by(X;) is the rank of the gauge group and
fi = ba(X;i) — ba(X;) is the rank of the flavor group.
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Connection to the refined topological partition function on the

compact CY X

I ] ] fi ) )
=SS oal + Snflel
=1 =1

where rj = by(X;) is the rank of the gauge group and
fi = ba(X;i) — ba(X;) is the rank of the flavor group.

Q,(:') is the intersection matrix of selected non-compact divisors and
the compact curves Cj('). These matrices respectively compute the

gauge charges and flavor charges of the BPS particles arising from
wrapping an M2-brane on CJ.(').
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Connection to the refined topological partition function on the

compact CY X

i ] ] fi ) )
=30y om0l
=1 I=1
where rj = by(X;) is the rank of the gauge group and
fi = ba(X;i) — ba(X;) is the rank of the flavor group.

Q,(:') is the intersection matrix of selected non-compact divisors and
the compact curves Cj('). These matrices respectively compute the
gauge charges and flavor charges of the BPS particles arising from

wrapping an M2-brane on Cj(i).

We claim that the partition function of the compact CY3 can be
written as a linear combination of Wilson loop partition functions

in the local theory Tx; in all representations.
21



Ansatz: Refined partition function on X from Wilson loops on

X

The interpretation of the half BPS Wilson line particles as coming
from M2-branes on the C direction that become heavy, carry
electric charges §(), and become the sources of the half-BPS
Wilson loops along the time direction St in each local theory Tx:
suggest the following ansatz for the refined partition function on X
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14 Z ek”A’Zk
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Zx(t) = HZXf(f(i)) :
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Ansatz: Refined partition function on X from Wilson loops on

X

The interpretation of the half BPS Wilson line particles as coming
from M2-branes on the C direction that become heavy, carry
electric charges §(), and become the sources of the half-BPS
Wilson loops along the time direction St in each local theory Tx:
suggest the following ansatz for the refined partition function on X

o0

14 Z ek”A’Zk

k=1

Zx(t) = [ [ 2 (t7) -
i=1
2 ba(X;) (i) (i
where M =tz — >0, ji(l )qf’)<f>](-')
Wilson loop particle, <Z>J(-') are Kahler parameters with respect to
bases in H>(Xj; Q) that are dual to DJ(i) which are also the
Coulomb parameters in each local theory Tx. and Zj is a product

is the effective mass for the

of linear combinations of Wilson loops.
22



Ansatz: Refined partition function on X from Wilson loops on

X

The latter satisfy the ansatz

i B4 (i
H Z Z WY N <W[(h(1)’>.---.hf,[)]> e,

=1 gD w50 gPez
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Ansatz: Refined partition function on X from Wilson loops on

X

The latter satisfy the ansatz

n
_ () () B4 m(0)
Zi(t) = H Z Z P[h(l”.---.hSQ].k;&,ﬁ? W[h(l’).---.hff)] © '
=1 gD w50 gPez
Here we have coefficients which only depend on e, e® and can

be written as
n

(i) Ple, e?]
H P[h(,.) e ) kﬂ(,-)(517€2) = Tk : - ’
iog e LK Bm [1/_1 4sinh(/e1/2)sinh(/e2/2)
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Ansatz: Refined partition function on X from Wilson loops on

X

The latter satisfy the ansatz
j (), (i
-11 Z D2 Pt s Wi o) €T
- he]ok; f [hy’ hr’]
i=1 pli >0 glez

Here we have coefﬁcients which only depend on e, e and can

be written as

o (e, ) =

f[ pli) Ple, e?]
[AD, - i ki) [T, 4sinh(le; /2) sinh(lez/2)’

i=1
The Laurent polynomials P[e!, e?] are bounded in degree and pol
order and the the one-form symmetry. They are in general not
completely fixed by this constraints. But they can be determined
to certain degree with input of a few for refined BPS numbers,

which yields many more concrete predictions. 23



Constraints from the one form symmetries:

Denote the one-form symmetry of the 5d local theory Tx, by
I‘gl) = Hj Zp(,-) . As pointed out in Morrison et al 20 r,(.” can be
i

calculated from the Smith normal form of the charge matrix

Pgi) 0 .- 0 --- 0
(i)
. 0 .0 -0
SNF(QW) = U . W . v = | ~ P 7 |,
0o ... pﬁi") ... 0

where the main diagonal entries are positive integers satisfying
pgi) <. ... < pg"). U and V() are invertible unimodular matrices
satisfying det U() = det V() =1, and both their entries and those
of their inverse matrices are integers.
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Constraints from the one form symmetries:

Let Cj(,ll)v e CJ(,

the Wilson loops under Z ¢y. Then the charge of <W(i(),) 0 >
p; [hs”, bl
()

under ij(,-) is cj(fl)h1 qpoooqe cﬂ,h” mod p}i).

i) :
. be the integral one-form symmetry charges for
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Constraints from the one form symmetries:

Let cj(l), o ’ng,ir),- be the integral one-form symmetry charges for

the Wilson loops under Z ¢y. Then the charge of <W(i(),) 0 >
p; [hs”, bl

under Z ) is c( )h( i) -+ cﬂ,h” mod p( )

The flrst constraint on the ansatz is that the Wilson loops must
have the same charge under the one-form symmetry ()

('fh()+ +c()h$,)—/<(cj(,i1)q()+ +c()q5,)) modP}i), i=1---,n.

25



Example: From Tot(O(—3) — P?) to the elliptic fibration over P?
called Xi5(1,1,1,6,9)

2jt\2jr | O 1 2 3
0 546
1 1 1
dg =1
2i\2jg |0 1 2 3 4 5 6
0 546
1 1 1 1

Table 1: The refined BPS numbers for dg = 1
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2i\2ijg | 0 1 2 3 4 5 6 7 8 9 10
0 546 1 546 1 1
1 1 2 2 546 1
2 1 1 1
dg =3
21 \2jr 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 546 1 546 8 1092 5 546 4 546 2
1 1 2 4 546 5 1092 6 1092 4 2
2 1 3 5 546 5) 546 3]
3 1 2 2 546 1
4 1 1
dg =4

Table 2: The refined BPS numbers for dg =1
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Dependence on the complex structure of X

An elaborate example for the complex structure dependence of the
Nji 0 is provided in Section 5.3.2 of the paper. It is based on the
simple geometry of smooth ruled surfaces S € X. The projection

map p: S — C with P! fibres maps to a curve C, of genus g.
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They occur for example in hypersurfaces p = 0 in toric varieties
P constructed by Batyrev using the 4d reflexive lattice polytope
A which together with A form a dual pair (A,A).
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Dependence on the complex structure of X

An elaborate example for the complex structure dependence of the
Nji 0 is provided in Section 5.3.2 of the paper. It is based on the
simple geometry of smooth ruled surfaces S € X. The projection

map p: S — C with P! fibres maps to a curve C, of genus g.

They occur for example in hypersurfaces p = 0 in toric varieties
P constructed by Batyrev using the 4d reflexive lattice polytope
A which together with A form a dual pair (A,A).

If a codimension two face 6, with inner points /(63) is dual to a
codimension three edge 03 in A with inner points /(€A3) then some
monomial deformations of p that in general represent complex
structure deformation of X cannot occur, instead there exist

K = 1(62) - I(f3) additional independent Beltrami differentials s,
k=1,...Kin Hl(l\Aﬂ7 Ty) which correspond to non-polynomial
complex structure deformations. 28



Dependence on the complex structure of X

The latter are frozen to particular values in the toric embedding of
X. If g = I(#2) # 0 and /(A3) = 1 then for these frozen values of
the moduli a rule surface S C X over a genus g curve G, is

realized.

29



Dependence on the complex structure of X

The latter are frozen to particular values in the toric embedding of
X. If g = I(#2) # 0 and /(A3) = 1 then for these frozen values of
the moduli a rule surface S C X over a genus g curve G, is
realized.

Let us consider a genus zero curve in the class 3 represented by a
fibre P1. The moduli space of each P? I\%g is identified with Cg
and the SU(2); x SUR(2) Lefshetz decompositions yields

Ry =2g[0,0] + [1,1].
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Dependence on the complex structure of X

The latter are frozen to particular values in the toric embedding of
X. If g = I(#2) # 0 and /(A3) = 1 then for these frozen values of
the moduli a rule surface S C X over a genus g curve G, is
realized.

Let us consider a genus zero curve in the class 3 represented by a

fibre P1. The moduli space of each P? I\%g is identified with Cg

and the SU(2); x SUR(2) Lefshetz decompositions yields

Ry =2g[0,0] + [1,1].

If the geometry is deformed w.r.t. to ux deformations, the
holomorphically embedded curve C; disappears and the P! are

fixed to 2g — 2 points, which corresponds to the representation

Rﬂ (2g — 2)[0,0]. Clearly the weighted trace over jr yields the

same nb while the NB ., Change before and after the complex
structure deformat|on. 29
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More general geometric considerations and checks

In the above example the moduli space Mj was smooth and the
two Lefshetz action easily identifiable.
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More general geometric considerations and checks

In the above example the moduli space Mj was smooth and the
two Lefshetz action easily identifiable.

More general mathematical checks are made in the paper and

summarised in Sheldon Katz's talk at the Simons Center:
,so |

will be brief.
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More general geometric considerations and checks

I\?IB is the moduli space of stable one dimensional sheaves F on X

cha(F) = B = (dH in local P? example)
X(F)=n
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More general geometric considerations and checks

I\?IB is the moduli space of stable one dimensional sheaves F on X
cha(F) = B = (dH in local P? example)
X(F)=n

Example X =TotO(-3) — P2, x(F) =1
Stability forces F to be supported on the zero section P?

M, smooth D, :dim(Md) = d? 4+ 1 Le Portier.
There is a Hilbert Chow morphism

T3 ! /\?’5 — ChOWﬁ

/\7/5 supports a d-critical locus , described here by a
superpotenial W
®g = C[Dg] is a perverse sheaf of vanishing cycles for W = 0.

31



More general geometric considerations and checks

Then define
unrefined BPS invariants by
o . 1 1
ZiX(R e, 0g)y’ = g ngly® +y72)%
Note ® 5 can depend on the orientation, which is a choice of the

square root of the canonical bundle of KI‘\/;;’ defined line bundle wit
2
fiber

) .
(k) = g{o) (det Exti(F, F))*C"
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More general geometric considerations and checks

Then define

unrefined BPS invariants by
5 0 1 1
S X(PRImg®g)y = Yo, ng(y? +y72)%
Note ® 5 can depend on the orientation, which is a choice of the
square root of the canonical bundle of KI‘\/;;’ defined line bundle wit
5
fiber

) .
(k) = g{o) (det Exti(F, F))*C"

A canonical orientation always exits
The orientation must be Calabi-Yau orientation, which means
that it hat to be trivial on the fibres of 7.

It is conjectured that Calabi-Yau orientations exist
32



More general geometric considerations and checks

Given the Calabi-Yau orientation the ng can be defined. anly
choice. make predictions based that seems in contraction
with physical and latter mathematical results.
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More general geometric considerations and checks

Given the Calabi-Yau orientation the ng can be defined. anly
choice. make predictions based that seems in contraction
with physical and latter mathematical results.

Refined invariants: define the refined BPS numbers as
> " dimH (Chowg,” Rims.®s)qiqk = > N7 [itla,lirlas
ij JLJR

This make only sense if ®5 underlies a pure Hodge Module, e.g. if
l\?lﬁ is smooth.

In this case it agrees with other definitions of NJ’BRJL mentioned
above.
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Conclusions

The approach predicts the refined invariants of compact
elliptically fibred Calabi-Yau 3 folds X from the local gauge
theory limits X, and passes many mathematical checks.
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compatible and fit with the data from the refined E-string and
other local limits Tot(O(—Ks) — S)
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Conclusions

The approach predicts the refined invariants of compact
elliptically fibred Calabi-Yau 3 folds X from the local gauge
theory limits X, and passes many mathematical checks.

It there are multiple local limits X, of X the predictions are
compatible and fit with the data from the refined E-string and
other local limits Tot(O(—Ks) — S)

If boundary conditions for the ansatz change due to known
complex structure dependence of X the additionally predicted
BPS numbers pass also consistency checks. This gives better
understanding how the refined BPS numbers depend on the
complex structure.
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Conclusions

The ansatz meets the requirement by the Completeness
Hypothesis of Polchinski '04, which states that for any gauge
theory coupled to gravity, there must exist charged matter in
every representation of the gauge group, and suggests the
breaking of one-form symmetry in the supergravity theory.
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