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Quantum modular forms

Quantum modular forms f of weight k associated to a multiplicative
SL2(Z)-cocycle Ω satisfy the transformation property

f
( aτ + b

cτ + d

)
= Ωγ(τ) f (τ) (cτ + d)k ,

where γ = [a, b; c , d ] ∈ SL2(Z). Usual modular forms have Ωγ(τ) = ρ(γ)
for some representation ρ of SL2(Z).

Today we will see some natural examples of quantum modular forms f
coming from three-manifolds. We will show that their cocycles Ω be equal
to the resummation of their asymptotics as τ tends to infinity.
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Asymptotics: Quantum invariants of three-manifolds
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Exponential integrals for 3–manifolds

In the 80s, Jones discovered a remarkable polynomial invariant of links.
Witten interpreted the Jones polynomial in terms of quantum field theory.
In particular, for SU(2) connections on a three manifold AM ,

ZM(ℏ) =
∫
AM/GM

exp
(CS(A)

2πiℏ

)
DA

where

CS(A) =

∫
M
Tr(dA ∧ A+

2

3
A ∧ A ∧ A) ∈ C+ (2πi)2Z .

For ℏ ∈ 1/Z Witten related this integral to the invariants of Jones
evaluated at certain roots of unity. However if defined, this invariant ZM is
given as an exponential integral over an infinite dimensional space.
Therefore, we expect asymptotics as ℏ → 0. The critical points of CS(A)
are flat connections,

Aflat
M,C/GM

∼= Hom(π1(M),SL2(C))/SL2(C) .

Campbell Wheeler Quantum modular forms 18th of October, 2024 5 / 47



Series at the trivial connection

We can consider the perturbative expansions of these path integrals
around the trivial flat connection. These expansions were understood by
Feynman diagram techniques by Axelrod-Singer. This leads to invariants
call Vassiliev invariants. Kashaev gave a definition using triangulations and
Habiro showed that these invariants have a particular form. For a knot K ,
Habiro showed that Kashaev’s invariant is given by

JK (q) =
∞∑
k=0

CK ,k(q)(q; q)k(q
−1; q−1)k

for some CK ,k(q) ∈ Z[q±] and (x ; q)n =
∏n−1

j=0 (1− xqj) (where q = eℏ).

Example: 41

Kashaev showed that C41,k(q) = 1 so that

J41(q) =
∞∑
k=0

(q; q)k(q
−1; q−1)k .

J41(e
ℏ) = 1− ℏ2 + 47

12ℏ
4 − 12361

360 ℏ6 + 10771487
20160 ℏ8 + · · · .
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Ideal tetrahedra and the geometric connection

Thurston used ideal triangulations to construct hyperbolic structures on
3–manifolds. More generally, they can be used to construct flat
connections on a three manifold. Hyperbolic ideal tetrahedra are
determined by a one dimensional moduli space given by h/(z 7→ z ′ 7→ z ′′)
where z ′ = 1/(1− z) and z ′′ = 1− 1/z . These symmetries relate to a
choice of edge and the angles at the edges of the ideal tetrahedra are
determined by the arguments of these numbers.

0

1

2

3
z

z

z ′

z ′
z ′′

z ′′
The volume of such a
tetrahedron is given by

D(z) = D(z ′) = D(z ′′) where

D = ℑ(Li2(z)) + arg(1− z) log |z |
is the Bloch–Wigner dilogarithm function.
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Gluing equations

By lifting a hyperbolic 3–manifold to the universal cover in hyperbolic
three space, one can glue together tetrahedra along face using explicit
elements of SL2(C). These elements are determined by the shapes of the
tetrahedra zi . The vanishing of the monodromy around an edge of the
triangulation then leads to algebraic equations of the form

N∏
j=1

z
Aij

j z
′′Bij

j =
N∏
j=1

z
Aij

j (1− z−1
j )Bij = (−1)νi ,

for some integral A,B, ν. These algebraic equations are called Thurston’s
gluing equations and the matrices A,B are called Neumann–Zagier data.
These matrices satisfy the symplectic properties that

ABt = BAt , and (A |B) is full rank over Q .
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A reduction to finite dimensions

From work of Kashaev in the mid 90s, we expect that Witten’s integral
should be able to be reduced. In particular, using a triangulation one
should be able to express this kind of invariant as a finite dimensional
integral where the integrand gets some kind of quantum dilogarithm
associated to each tetrahedron. Faddeev’s quantum dilogarithm is given
for q = e(b2), q̃ = e(−b−2) with ℑ(

Φb(x) =
(−q

1
2 e2πbx ; q)∞

(−q̃
1
2 e2πb−1x ; q̃)∞

,

This has a meromorphic extension to τ = b2 ∈ C\R≤0. We note that its
asymptotics are determined by

(zexℏ
1/2

; eℏ)−1
∞ ∼ Ψ̂ℏ(x ; z) = exp

(
−
∑

k,ℓ∈Z≥0

Bk x
ℓ ℏk+

ℓ
2
−1

ℓ! k!
Li2−k−ℓ(z)

)
.

These integrals were further explored by Hikami and then formalised by
Andersen–Kashaev.

Campbell Wheeler Quantum modular forms 18th of October, 2024 9 / 47



The state integrals

The state integrals are integrals of a Gaussian measure times a product of
Faddeev quantum dilogarithms. Explicitly,∫

· · ·
∫

exp
(1
2
x tB−1Ax/2 + µxb + νxb−1

) N∏
j=1

Φb(xj)dx

where to be an invariant we need to choose an ordered triangulation and
use Andersen–Kashaev’s choice of contour.
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Saddle points

These state integrals are finite dimensional and therefore their asymptotics
can be studied via stationary phase. This was studied by Hikami,
Dimofte–Gukov–Lenells–Zagier and then formalised by
Dimofte–Garoufalidis. This leads to a definition of an asymptotic series for
each hyperbolic manifold from the Neumann–Zagier data. In particular,
from M = [A,B, ν, f , f ′′, z ] where Af + Bf ′′ = ν, det(B) ̸= 0 and z
satisfies the gluing equations for the geometric connection,
Dimofte–Garoufalidis defined

Φ̂M(ℏ) =

〈
exp

(
ℏ1/2

2
x t(1− B−1ν) +

ℏ
8
f tB−1Af

)
N∏
j=1

Ψ̂ℏ(xj ; zj)

〉

where ⟨ ⟩ represents Gaussian integration with respect to the variables x .

Theorem:[Garoufalidis–Storzer–W.,2023]

Φ̂M(ℏ) is a topological invariant of M.
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Example: figure eight knot

The NZ datum for 41 is given by

A =

(
2 2
1 1

)
, B =

(
1 1
1 0

)
, ν =

(
2
1

)
, f =

(
0
1

)
, f ′′ =

(
0
0

)
,

and z1 = z2 = e(1/6) and using a Fourier transform identity of the
Faddeev quantum dilogarithm we find that

Φ41(ℏ) =
〈
exp

(x
2
ℏ

1
2

)
Ψℏ(x , e(1/6))

2
〉
x ,
√
−3

this can then be computed to show

Φ41
(ℏ) = 1 −

11

216

√
−3 ℏ −

697

31104
ℏ2 +

724351

100776960

√
−3 ℏ3 +

278392949

29023764480
ℏ4 −

244284791741

43883931893760

√
−3 ℏ5

−
1140363907117019

94789292890521600
ℏ6 +

212114205337147471

20474487264352665600

√
−3 ℏ7 +

367362844229968131557

11793304664267135385600
ℏ8

−
44921192873529779078383921

1260940134703442115428352000

√
−3 ℏ9 −

3174342130562495575602143407

23109593741473993679123251200
ℏ10 + O(ℏ11) .
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Neumann–Zagier with no manifold

The asymptotic series just needs det(B) ̸= 0 and the critical point around
which we expand to be non–degenerate. Therefore, we can define these
series more generally for (A,B, ν, f , f ′′, z) and they will remain invariant
under the various moves between these Neumann–Zagier data such as the
2-3 move.

If the quadratic form is degenerate at the critical point, which happens
when the critical point is in a component of dimension greater than 0,
then more work is needed to define the asymptotic series.

Remark:

Some experiments were done related to examples whose critical points
come with positive dimensional components in work with Garoufalidis
(Periods, the mero... arXiv:2209.02843). There numerically, asymptotic
series were found with coefficients given by periods of the positive
dimensional components, in that case the zero locus of the A–polynomial
of a knot.
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Quantum modular forms: Experimental discoveries to proofs
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Original approach to quantum modular forms

The original approach to quantum modular forms is much less precise than
the final approach we will take. Here we will describe some of these
historical aspects.

A function f : Q → C is a quantum modular form of weight k iff for
γ = [a, b; c , d ] ∈ SL2(Z)

f (γ · τ)− (cτ + d)k f (τ)

is “better” than f (τ).

Notice that SL2(Z)\Q = ∗ so straight modularity would be trivial.
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Example: Figure 8 knot

The 41 or figure 8 knot is one of the simplest hyperbolic knots and has

J(q) = J41(q) =
∞∑
n=0

(−1)nq−n(n+1)/2(q; q)2n.

which was our example for something living in the Habiro ring. This was
the first really interesting example of quantum modularity (where we take
q = e(τ) := exp(2πiτ)).

Let VC = iV = iVol(41) = i2.0298 . . . (this can be calculated as an exact
number using dilogarithms 2D(e(1/6)) for D the Bloch-Wigner
dilogarithm). For τ ∈ Q tending to ∞ (with bounded denominator) Zagier
numerically observed

log(J(−1/τ)) ∼ log(f (τ))+V τ/2π+
3

2
log(τ)− 1

4
log(3)+log(Φ41(2πi/τ))

for some f : Q/Z → C.
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Example: Figure 8 knot

The first few values of the function f were given by

f (0) = 1 , f (1/2) = 5 , f (±1/3) = 13 , f (±1/4) = 27 .

These exactly agree with the values J(1), J(−1), J(e(±1/3), J(±i). This
is not a coincidence and is true for all τ .

Theorem:[Bettin-Drappeau,Garoufalidis-Zagier]

For τ ∈ Q tending to ∞ (with bounded denominator)

log(J(−1/τ))− log(J(τ))

∼ V τ/2π +
3

2
log(τ)− 1

4
log(3) + log(Φ41(2πi/τ))

The right-hand side is given as an asymptotic series but has some analytic
properties as opposed to the original as seen in the following diagram
taken from [Quantum modular forms, D. Zagier].
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log(J(τ))
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log(J(−1/τ))− log(J(τ))
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Can we do more?

Bettin-Drappeau proved this version of the conjecture for the all hyperbolic
knots up to seven crossings (besides one case). Their strategy works for
any q-hypergeometric sum however one needs to check that usual
asymptotic methods can be applied. The main obstacle is proving that the
boundary contributions are negligible and the integral is dominated by the
stationary phase approximation around the critical point.

One issue here is that while the failure of modularity is “better” it is far
from even being continuous as it is discontinuous at each rational number.
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Refining quantum modularity

Since Zagier’s original article, Garoufalidis–Zagier have refined the original
version of quantum modularity taking into account exponentially small
corrections. These can be most easily understood using Borel
resummation, which we will discuss later, however they use a smoothed
version of optimal truncation related to work of Dingle and Berry.

Let Φ̂ = 3−1/4τ3/2 exp(V τ/2π)Φ41(2πi/τ). Then the quantum modularity
is given by

J(−1/x) ∼ Φ̂(2πi/x)J(x) .

Replacing Φ̂ with smooth optimal truncation Garoufalidis-Zagier found
that

J(−1/x)− Φ̂smop(2πi/x)J(x) ∼ Φ̂new(2πi/x)Jnew(x) .

This indicated that J should be part of a vector not a single number.
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A matrix of invariants

In fact, the function J comes as part of a matrix of similar functions. The
rows of the matrix are indexed by a Gröbner basis of an associated
q–difference equations while the columns are indexed by objects related to
the solutions to the gluing equations (just the points of a 0-dimensional
variety).

The matrix J then satisfies an expression of the form

J(−1/x) = Ω(2πi/x) J(x) j(x) .

where Ω is a matrix of extended asymptotic series similar to Φ̂M and j(x)
is an automorphy factor. However, more is expected and we call J a
(matrix valued) quantum modular form when Ω is the restriction of an
analytic function on C− R≤0.

One can prove this analytic property using state integrals.
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Definition of a quantum modular form

Definition: Analytic cocycles

We call Ω : SL2(Z) → GLNO′ an analytic cocycle if Ωγ(τ) is holomorphic
for τ ∈ C\c−1R≤−d and satisfies the cocycle condition

Ωγ1γ2(τ) = Ωγ1(γ2τ) Ωγ2(τ) .

Definition: Quantum modular forms

We call f : Q(or h) → CN a quantum modular form of weight k with
analytic cocycle Ω if it satisfies the transformation property

f
( aτ + b

cτ + d

)
= Ωγ(τ) f (τ) (cτ + d)k ,

where γ = [a, b; c , d ] ∈ SL2(Z).

Usual modular forms have Ωγ(τ) = ρ(γ) for some representation ρ
of SL2(Z).

Campbell Wheeler Quantum modular forms 18th of October, 2024 23 / 47



Example: the figure eight knot

Consider the family of functions of τ = N/M ∈ Q

Jm(q) =
∞∑
k=0

(−1)kq−k(k+1)/2+mk(q; q)2k

and for Xj =
1
2 + (−1)j

√
−3
2

Ji ,m(q) =
∑

k∈Z/MZ

(−1)kqk(k+1)/2+mkX
k/M
i X

1/2M+m
i∏N−1

j=0 (1− q1+k+jX
1/M
i )2(1+j+k)/M−1

.

These functions give the matrix

Jm(q) =

 1 0 0
Jm(q) Jm,1(q) Jm,2(q)
Jm+1(q) Jm+1,1(q) Jm+1,2(q)


We will prove that this is a quantum modular form.
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Factorisation of state integrals

The main tool when proving a function is a quantum modular form is
factorisation of state integrals. State integrals can often be factorised into
products bilinear combinations of functions in q = e(τ) and q̃ = e(−1/τ)
where e(x) = exp(2πix) and b2 = τ . This was known in the physics
literature (for example the work of Beem–Dimofte–Pasquetti) and was
explicitly proved for a family of examples by Garoufalidis–Kashaev.

There are two different places one can factorise a state integral. Either
when τ ∈ C− R or when τ ∈ Q.
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Factorisation at rationals

Factorising at rationals is done using the following lemma of
Garoufalidis–Kashaev.

Lemma:[Garoufalidis–Kashaev]

If U ⊆ C is open, U + a = U and f : U → C is an analytic function such
that for

g(z) =
f (z + a)

f (z)
we have g(z + a) = g(z) ,

then if γ is a contour such that g(z) ̸= 1 on γ then∫
γ
f (z) dz =

(∫
γ
−
∫
γ+a

) f (z)

1− g(z)
dz .

This has a higher dimensional analogue. We use these formulas and
evaluate the state integrals using the residue theorem. A beautiful
consequence of this lemma is that for the state integrals the equation
g(z) = 1 is the the same as the gluing equations (or critical point
equations).
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Example: figure eight knot

For the state integral of [Garoufalidis–Gu–Mariño–W.],∫
R+ϵ

Φb(x)
2 e(−x2/2)

1 + q1/2e(−ibx)
dx

we can factorise when τ = N/M ∈ Q>0 using the fundamental lemma to
find an elementary function times

τ3/2J(q) + e(V1/NM(2πi)2)J1(q)LJ2(q̃) + e(V2/NM(2πi)2)J2(q)LJ1(q̃)

where

J(q) =
∞∑
k=0

(−1)kq−k(k+1)/2(q; q)2k

is the Kashaev invariant of 41 and for Xj =
1
2 + (−1)j

√
−3
2

LJi (q) =
∑

k∈Z/MZ

(−1)kqk(k+1)/2X
k/M
i X

1/2M
i

(1− X
1/M
i qk)

∏N−1
j=0 (1− q1+k+jX

1/M
i )2(1+j+k)/M−1
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Proof that J(q) is a quantum modular form

The proof that J(q) is a quantum modular form is now essentially done.
The state integral ∫

R+ϵ
Φb(x)

2 e(−x2/2)

1 + q1/2e(−ibx)
dx

is analytic for τ = b2 ∈ C\R≤0 which follows from the same property of
Faddeev’s quantum dilogarithm. Then the factorisation of the state
integral into a sum of bilinear combinations of functions in q, q̃ can be
written as an entry of a quotient of matrices

J(−1/x) j(x)−1J(x)−1 ,

which can be proved by q-holonomic methods. This is exactly the
statement of being a quantum modular form. The cocycle condition
trivially follows as we have written it as the boundary in a larger class of
functions.
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What about q-series

With our success at proving quantum modularity for functions from Q it is
natural to wonder about the case when τ is in the upper half plane h.
Garoufalidis-Zagier by chance discovered q-series that were related to the
figure eight knot (with a little help from grep). This remarkable discovery
helped lead to many insights into the structure of quantum modular forms.
With hindsight, we can now just focus on the state integral and rediscover
their q-series by factorisation in the upper half plane.
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Factorisation in the upper half plane

One way to factorise a state integral when τ is in the upper half plane is to
use the pole structure of the Faddeev quantum dilogarithm. Then one
deforms the contour of integration to infinity in a good direction, which
reduces the integral to a sum of the residues captured on the way. This
sum then decouples i.e. can be made into a bilinear combination of q and
q̃ series.

The poles and zeros of the Faddeev quantum dilogarithm are located on

cones as can easily be seen from the product formula (−q
1
2 e2πbx ;q)∞

(−q̃
1
2 e2πb−1x ;q̃)∞

.

This is depicted below.
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Example: figure eight knot

The state integrals∫
R+ϵ

Φb(x)
2e(−x2/2)dx , and

∫
R+ϵ

Φb(x)
2 e(−x2/2)

1 + q1/2e(−ibx)
dx

factorises as elementary functions times

G (1)(q)G (0)(q̃) − τ
−1G (0)(q)G (1)(q̃) , and G (2)(q) + τ

−1G (1)(q)L(0)(q̃) − τ
−2G (0)(q)L(1)(q̃)

where G (0)(q) =
∑
n≥0

(−1)n
qn(n+1)/2

(q; q)2n
= 1 − q − 2q2 − 2q3 − 2q4 + . . .

2G (1)(q) = 2
∑
n≥0

(
n + 1/2 − 2E

(n)
1 (q)

)
(−1)n

qn(n+1)/2

(q; q)2n
= 1 − 7q − 14q2 − 8q3 − 2q4 + . . .

12G (2)(q) = 12
∑
n≥0

(
1

2

(
n + 1/2 − 2E

(n)
1 (q)

)2
− E

(n)
2 (q) −

1

24
E2(q)

)
(−1)n

qn(n+1)/2

(q; q)2n

= 1 − 25q − 38q2 + 58q3 + 178q4 + . . .

with additional series
L(0)(q) = 2E

(1)
0 (q) +

∞∑
n=1

(−1)n
qn(n+1)/2

(q; q)2n

qn

1 − qn

L(1)(q) =
1

8
− 2E

(0)
1 (q)2 − E

(0)
2 (q) +

∞∑
n=0

(−1)n
qn(n+1)/2

(q)2n

qn

1 − qn

(
n + 1/2 − 2E

(n)
1 (q) +

1

1 − qn

)
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Example: the figure eight knot

The series G (0(q) was the one discovered by Garoufalidis–Zagier. We can
put these q-series into a matrix as well

Jm(q) =

 1 0 0

G
(2)
m (q) G

(0)
m (q) G

(1)
m (q)

G
(2)
m+1(q) G

(0)
m+1(q) G

(1)
m+1(q)


Combining all of these results we have the following theorem.

Theorem:[Garoufalidis, Gu, Kashaev, Mariño, W., Zagier]

The matrix Jm of the figure eight knot is a quantum modular form.

Proof: Use the factorisation of the state integrals and a duality of the
associated q–difference equations “quadratic relations” to write the entries
of Ω as state integrals. Then use the analytic properties of the Faddeev
quantum dilogarithm to prove the state integral has similar properties.
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Resurgence: Re-summation and cocycles
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What happened to the asymptotic series?

Quantum modularity is now easily proved in examples. The question is
then how these matrices of analytic functions relate to the asymptotic
series. A conjectural answer was given in work of Garoufalidis–Gu–Mariño.

Conjecture:[Garoufalidis–Gu–Mariño]

Combinations of the state integrals associated to a q–hypergeometric sum
are equal to the Borel resummation of their asymptotics.

Well firstly one needs that these asymptotic series are Borel resummable
which was conjectured by Garoufalidis about ten years prior.
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The Borel plane

The structure of the Borel plane for these examples is conjectured to be
related to the values of the Chern–Simons invariants Vρ (of the three
manifold or the elements of the Bloch group i.e. solutions to gluing
equations). It is conjectured that there are logarithmic branch cuts in
Borel plane are at the difference between these values. Given
(Vρ − Vρ′)/(2πi) is only defined up to 2πi these branch cuts arrange
themselves into peacock patterns.

Campbell Wheeler Quantum modular forms 18th of October, 2024 35 / 47



Stokes phenomenon

Going further, Garoufalidis–Gu–Mariño gave conjectures on the behaviour
of the Stokes phenomenon. They conjectured that for each Vρ there is an
collection of asymptotic series with the associated exponential singularity.

[Conjecture: Garoufalidis–Gu–Mariño]

If Φ̂ρ is an asymptotic series with exponential singularity e(Vρ/(2πi)
2/τ)

then if

arg(τ) = arg
(Vρ′ − Vρ + (2πi)2k

2πi

)
we have

s+(Φ̂ρ)(2πi/τ)− s−(Φ̂ρ)(2πi/τ) =
∑

ρ′:arg(τ)=arg(Vρ′/2πi)

Sρ,ρ′,kq
kΦ̂ρ′ ,

for some Sρ,ρ′,k ∈ Z.
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Applications

These conjectures while applied originally to asymptotic series associated
to knots in work of Garoufalidis–Gu–Mariño and
Garoufalidis–Gu–Mariño–W. can be applied more generally to asymptotic
series coming from proper q–hypergeometric functions.

Besides the example of the figure eight knot we can discuss a case where
one can carry out computations to get conjectures for generating series of
Stokes constants of the q–hypergeometric function

∞∑
k=0

q2k
2+mk

(q; q)k
.

This will also help illustrate the behaviour of quantum modular forms
arising as q-series.
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Example: generating series of Stokes constants

The function
∑∞

k=0
q2k

2

(q;q)k
has an asymptotic series

Φ̂(ℏ) = exp(V /ℏ)
1√
δ

∞∑
k=0

Akℏk

where for X 4 + X − 1 = 0 and

V = Li2(X )− π2

6
+ 2(2πi)2 log(X )2 − (2πi)2(4k +m(X )) log(X )

δ = 4− 3X ,

with m(X ) ∈ Z and

A0 = 1 ,

A1 =
−64 + 100 X + 18 X 2 − 54 X 3

24 δ3
,

A2 =
−104876 + 113812 X + 29836 X 2 + 17388 X 3

1152 δ6
,

A3 =
−79093616 − 1648464240X + 2928617760 X 2 − 694542712 X 3

414720 δ9
.

We have four series (one for each embedding of the field into C).
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Example: generating series of Stokes constants

We can consider the evaluation of the sum

fm(q) =
∞∑
k=0

q2k
2+km

(q; q)k
,

at q̃ = e(−1/τ) where τ = 1000 e(0.0001) and we find that

f0(q̃) = (1.4799 · · ·+ 1.8058 · · · i)× 1067 .
we find that the quotient is given by

f0(q̃)

s(Φ̂(3))(2πi/τ)
= 1.0000 · · · − 2.7438 · · · × 10−8

.

Then we see that( f0(q̃)

s(Φ̂(3))(2πi/τ)
− 1

)
q−3 = (1.0197 − 2.4883 × 10−5 · i) ,

and similarly,
( f0(q̃)

s(Φ̂(3))(2πi/τ)
− 1 − q3 − q4 − q5 − q6 − q7 − q8 − q9

)
q−10 = (2.0397 · · · − 5.0718 · · · i × 10−5) .

Indeed, continuing we can identify this q–series as

f1(q) = 1 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + 2q10 + 2q11 + 3q12 + 3q13 + · · · ,
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Example: generating series of Stokes constants

Then we find that

f0(q̃)− s(Φ̂(3))(2πi/τ)f1(q) = 0.20122 · · ·+ 0.68776 · · · i .
Then we can continue this kind of computation to find that numerically

f0(q̃)− s(Φ̂(1))(2πi/τ)f2(q)− s(Φ̂(2))(2πi/τ)f0(q)− s(Φ̂(3))(2πi/τ)f1(q)

− s(Φ̂(3))(2πi/τ)qf3(q) = (5.5399 · · · − 3.7010 · · · i)× 10−138 .

This error is exactly the order of numerical error of the Borel resummation.
This leads to the conjecture when τ is just above the positive reals

f0(q̃) = s(Φ̂(1))(2πi/τ)f2(q) + s(Φ̂(2))(2πi/τ)f0(q)

+ s(Φ̂(3))(2πi/τ)f1(q) + s(Φ̂(3))(2πi/τ)qf3(q) .

Performing similar numerical checks for τ just above the negative reals, we
find a similar statement

f0(q̃) = s(Φ̂(1))(2πi/τ)f2(q) + s(Φ̂(2))(2πi/τ)f0(q)

+ s(Φ̂(3))(2πi/τ)qf3(q) + s(Φ̂(3))(2πi/τ)f1(q) .
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Example: generating series of Stokes constants

Therefore, we find a q–series when we take the quotient of the two
matrices of the Borel resummations that from the conjectures gives
generating series for the Stokes constants. In particular, completing fm to
a matrix F (q) (that appears in the factorisation of the state integral)

sI (Φ̂)(τ)−1sII (Φ̂)(τ)

=


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 q

 F (q)


1 0 0 0
0 τ 0 0

0 0 τ2 0

0 0 0 τ4

 F (q̃)−1F (q̃)


1 0 0 0
0 −τ 0 0

0 0 τ2 0

0 0 0 τ4


−1

F (q)−1


0 0 1 0
1 0 0 0
0 0 0 q
0 1 0 0


−1

=


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 q

 F (q)


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 F (q)−1


0 0 1 0
1 0 0 0
0 0 0 q
0 1 0 0


−1

= Id +


−q − 2q2+ 1 + q + q2+ 1 − q2+ −1 − q+

q2+ −q − q2+ −q+ q + q2+

−q − q2+ 1 − q2+ −q − 2q2+ 2q2+

q+ −1 + q + q2+ 2q + q2+ −q − 2q2

 + O(q3) .
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What is the combination of state integrals?

One of the main issues of Garoufalidis–Gu–Mariño’s conjecture is they do
not tell us generally what combination of state integrals gives the Borel
resummation. In work with Fantini we addressed this issue for the class of
formal series coming from the state integrals for A,B ∈ Z>0 and A ̸= B∫

exp
(1
2
Ax2/2 + µxb + νxb−1

)
Φb(x)

Bdx .

To these integrals we can consider the formal Gaussian integration around
a critical point of this state integral associated to the each critical point of
(2πi)−2BLi2(e(x)) + Ax(x + 1)/2 i.e. the solutions to the equation

(−z)A = (1− z)B .

Theorem: [Fantini–W.]

There is an explicit algorithm that computes a combination of these state
integrals giving the Borel resummation of the associated asymptotic series.

Campbell Wheeler Quantum modular forms 18th of October, 2024 42 / 47



Steepest descent contours

To prove such a statement we attempt to find a deformation of state
integral contours where we can apply steepest descent. This would allow
us to compute the asymptotics of the state integral along this contour. A
steepest descent contour for (A,B) = (1, 2) corresponding to the figure
eight knot 41 is depicted as follows.

Issue!

The asymptotics of Faddeev’s dilogarithm manifests branch cuts in x .
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Idea of the algorithm

This means we must break the integrals into further pieces. This requires
an inductive procedure introducing more and more paths of steepest
descent. One must then prove that this process eventually terminates. A
schematic example of this is depicted as follows.

(−2, 0)

(2, 4)

(1, 2)

(1, 1)

(−3, 0)

(0, 1)
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The main theorem

Theorem:[Fantini-W.]

The conjectures of Garoufalidis–Gu–Mariño hold for 41 and 52 knots. In
particular, the asymptotic series associated to these knots by perturbative
complex Chern–Simons are Borel re-summable and equal to a combination
of state integrals.

Proof: Indeed 41 corresponds to (A,B) = (1, 2) and 52 corresponds to
(A,B) = (2, 3).
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Consequences for quantum modularity

Combining this with our previous results on quantum modularity we can
prove the following.

Corollary:

The analytic cocycle Ω associated to the matrix Jm(q) is the Borel
re-summation of its asymptotics.
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Thanks!
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