TR and ram's	From loop to KZ equations	Non-perturbative	Future	Bonus

Elba Garcia-Failde

Sorbonne Université (Institut de Mathématiques de Jussieu - Paris Rive Gauche)

Équations différentielles motiviques et au-delà

Institut Henri Poincaré, May 3rd, 2024

TR and ram's 0000000000000	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

O The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

<u>Goal</u>: "Count surfaces $S_{g,n}$ of genus g with n boundaries (topology (g, n))."

 Terms in correspondence with the ways of cutting a pair of pants (0, 3) from S_{q,n}.

TR and ram's		From loop to KZ equations	Non-perturbative	Future	Bonus
000000000000000					
Spectral curv	e (input)				

Input: Σ Riemann surface ((global) spectral curve),

• $x:\Sigma\to\mathbb{C}$ meromorphic function with finitely many and simple critical/ramification points:

$$\operatorname{Cr}(x) = \operatorname{Ram}(x) \coloneqq \{ p \in \Sigma \mid \mathrm{d}x(p) = 0 \},\$$

- $\omega_{0,1}$ is a meromorphic 1-form on Σ , often $\omega_{0,1} = ydx$, with $y : \Sigma \to \mathbb{C}$ holomorphic on a neighborhood of every $a \in Cr(x)$ and $dy(a) \neq 0$,
- $\omega_{0,2}$ is a symmetric bifferential on $\Sigma\times\Sigma$ with only double poles along the diagonal and vanishing residues, that is locally

$$\omega_{0,2}(z_1, z_2) = \frac{\mathrm{d}z_1 \mathrm{d}z_2}{(z_1 - z_2)^2} + \overbrace{h(z_1, z_2)}^{\text{holomorphic}}.$$

• Around every $a \in \operatorname{Ram}(x)$, \exists local coordinate $\zeta_a(z)$ such that

$$x(z) - x(a) = \zeta_a(z)^2.$$

• \exists neighbourhoods U_a of every $a \in \operatorname{Ram}(x)$ and $\sigma_a \colon U_a \to U_a$, with

$$x(z) = x(\sigma_a(z)), \forall z \in U_a,$$

$$\sigma_a \neq \mathrm{id}, \sigma_a(a) = a, \ \zeta_a(\sigma_a(z)) = -\zeta_a(z).$$

Fundamental bidifferentials:

$$\mathcal{B}(\Sigma) \coloneqq \big\{ H^0(\Sigma^2, K_{\Sigma}^{\boxtimes 2}(2\Delta))^{\mathfrak{S}_2} \mid \mathrm{res}(B) = 0, \mathrm{bires}(B) = 1 \big\},$$

with $\Delta \coloneqq \{(z,z) \in \Sigma^2\}.$ It is an affine space over

$$H^0(\Sigma^2, K_{\Sigma}^{\boxtimes 2})^{\mathfrak{S}_2} = \mathcal{S}^2 H^0(\Sigma, K_{\Sigma}),$$

whose dim = $\frac{\hat{g}(\hat{g}+1)}{2}$, with $\hat{g} = \text{genus}(\Sigma)$.

<u>Normalisation</u>: Symplectic basis $(\mathcal{A}_i, \mathcal{B}_i)_{i=1}^{\hat{g}}$ of $H_1(\Sigma, \mathbb{Z})$, $\mathcal{L} \coloneqq \operatorname{Vect}(\mathcal{A}_1, \dots, \mathcal{A}_{\hat{g}})$ Lagrangian. $\omega_{0,2} = B = B^{\mathcal{L}} \in \mathcal{B}(\Sigma)$ is normalised wrt \mathcal{L} if

$$\forall i \in \llbracket 1, \hat{g} \rrbracket, \ \oint_{z_1 \in \mathcal{A}_i} B^{\mathcal{L}}(z_1, z_2) = 0, \ \forall z_2 \in \Sigma.$$

Then it is unique!

History: Bergman-Schiffer 50's, Korotkin-Kokotov 00's

$$\begin{array}{lll} \text{Classical Bergman kernel} & \rightsquigarrow & \frac{\partial^2}{\partial z_1 \partial \overline{z_2}} G(z_1, z_2) \mathrm{d} z_1 \mathrm{d} z_2 = \tilde{B}(z_1, z_2) \\ \text{TR Bergman kernel} & \rightsquigarrow & \frac{\partial^2}{\partial z_1 \partial z_2} G(z_1, z_2) \mathrm{d} z_1 \mathrm{d} z_2 = B(z_1, z_2) \end{array}$$

 ${\boldsymbol{G}}$ Green function

ロト・週 ト・ヨト・ヨー シマの

TR and ram's		From loop to KZ equations	Non-perturbative	Future	Bonus
0000000000000					
Multi-differer	ntials (output)				

TR output: For $n \ge 1$,

$$\begin{split} \omega_{g,n}(z_1,\ldots,z_n) &= \sum_{a \in \operatorname{Ram}(x)} \operatorname{Res}_{z=a} K_a(z_1,z) \left(\omega_{g-1,n+1}(z,\sigma_a(z),z_{[\![2,n]\!]}) + \right. \\ &+ \sum_{\substack{0 \leq h \leq g \\ I \sqcup J = [\![2,n]\!]}}^{\operatorname{no} \operatorname{disk}} \omega_{g-h,1+|I|}(z,z_I) \omega_{h,1+|J|}(\sigma_a(z),z_J) \right), \\ \\ \text{where } K_a(z_1,z) &\coloneqq \frac{\int_{\sigma_a(z)}^{z} \omega_{0,2}(z_1,\cdot)}{2(\omega_{0,1}(z) - \omega_{0,1}(\sigma_a(z)))}. \\ \\ \frac{|\chi(S_{0,r})|}{|z \geq 0 - 2 + n|} & \frac{j = 0}{2} & \frac{j = 2}{2} \\ & 1 & (0,3) & (1,1) \\ z & (0,5) & (1,2) \\ & 1 & (0,5) & (1,3) \\ & 1 & (0,5) & (1,3) \\ & 1 & (0,5) & (1,3) \\ & 1 & (1,2) \\ & 2 & (1,2) \\ & 1 & ($$

$$\bigotimes_{i=1}^{n} \pi_{i}^{*}(T^{*}\Sigma) = \bigotimes_{i=1}^{n} T^{*}\Sigma$$

$$\downarrow \\ \Sigma^{n}$$

with $\pi_i \colon \Sigma^n \to \Sigma$ the *i*th projection

TR and ram's	From loop to KZ equations	Future 000	Bonus 0000
Properties			

• $\omega_{g,n}\in H^0(\Sigma^n,K_{\Sigma}^{\boxtimes n}(\mathcal{P}))^{\mathfrak{S}_n},$ i.e. symmetric with poles at

$$\mathcal{P} = \begin{cases} \{ \text{poles of } \omega_{0,1} \}, & \text{ if } (g,n) = (0,1), \\ \Delta, & \text{ if } (g,n) = (0,2), \\ \text{Ram}(x), & \text{ if } 2g - 2 + n > 0. \end{cases}$$

• **Deformations:** Let S_t be a family of spectral curves depending on a parameter t.

$$\partial_t \omega_{0,1}(z_1) = \int_{\gamma_t} \omega_{0,2}(z, z_1) \text{ (defines a suitable } \gamma_t \text{)},$$

 $\partial_t \omega_{0,2}(z_1, z_2) = \int_{\gamma_t} \omega_{0,3}(z, z_1, z_2),$
 $\Rightarrow \partial_t \omega_{g,n}(z_1, \dots, z_n) = \int_{\gamma_t} \omega_{g,n+1}(z, z_1, \dots, z_n).$

• Dilaton equation:

$$\sum_{a \in \operatorname{Ram}(x)} \operatorname{Res}_{z=a} \Phi(z) \omega_{g,n+1}(z_1, \dots, z_n, z) = (2g - 2 + n) \omega_{g,n}(z_1, \dots, z_m),$$

where $d\Phi = \omega_{0,1}$.

• $\omega_{g,n}$ satisfy certain symplectic invariance, loop equations, have modularity properties, are connected to integrable systems...

TR and ram's		From loop to KZ equations	Non-perturbative	Future	Bonus
000000000000000					
Motivations t	o study TR				

- Allows to calculate
- Gives structure
- Provides universality
- Gaining context
- Nowadays new instances of TR also enrich TR

'R and ram's		From loop to KZ equations		Future 000	Bonus
Examples					
 For th 	e Lambert curve $x = y$	e^{-y} , TR provides simple	Hurwitz numbers		

- (Eynard–Mulase–Safnuk, '09, arXiv:0907.5224). Hurwitz theory (Bonzom–Chapuy–Charbonnier–G-F, '22, arXiv:2206.14768)
- For $y = \frac{-\sin(2\pi\sqrt{x})}{2\pi}$, TR gives Mirzakhani's recursion for Weil-Petersson volumes (of the moduli space of bordered hyperbolic surfaces), (Eynard-Orantin, '07, arXiv:0705.3600).
- TR on mirror curve of a toric CY3 computes its open Gromov-Witten theory (Bouchard-Klemm-Mariño-Pasquetti, '07, arXiv:0709.1453), (Fang-Liu-Zong, '16, arXiv:1604.07123).
- Statistical physics models on random maps: 1-hermitian matrix model, Ising model, Potts model, O(n)-loop model (Borot-Eynard, '09, arXiv:0910.5896), (Borot-Eynard-Orantin, '13, arXiv:1303.5808)...
- Semi-simple cohomological field theories and topological recursion (Dunin-Barkowski–Orantin–Shadrin–Spitz, '14, arXiv:1211.4021).
- Reconstruction of formal WKB expansions, integrability, isomonodromic systems (Borot-Eynard, '11, arXiv:1110.4936), (Eynard, '17, arXiv:1706.04938), (Eynard-G-F-Marchal-Orantin, '21, arXiv:2106.04339)...
- Conjecturally, for the A-polynomial of a knot as a spectral curve, TR computes the colored Jones polynomial of the knot (Borot-Eynard, '12, arXiv:1205.2261)).
- Equivalence with W-constraints (Kontsevich–Soibelman '17, ABCD of Andersen–Borot–Chekhov–Orantin '17, Borot–Bouchard–Chidambaram–Creutzig–Noshchenko '18 arXiv:1812.08738)

TR and ram's	From loop to KZ equations	Non-perturbative	Future	Bonus
000000000000000000000000000000000000000				
Outline				

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR applied to the Airy curve $(x,y)=\left(\frac{z^2}{2},z\right)$ produces

$$\omega_{g,n}(z_1,\ldots,z_n) = 2^{2-2g-n} \sum_{\sum_i d_i = 3g-3+n} \left(\int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1} \cdots \psi_n^{d_n} \right) \prod_{i=1}^n \frac{(2d_i+1)!!dz_i}{z_i^{2d_i+2}}.$$

TR and ram's

The quantisation problem

From loop to KZ equations

Non-perturbative

uture Boni 00 000

Airy differential equation

• Airy function Ai(λ) $\rightsquigarrow \left(\frac{d^2}{d\lambda^2} - \lambda\right)$ Ai(λ) = 0. Asymptotic expansion as $\lambda \to \infty$ (g.s. of intersection numbers): $\log Ai(\lambda) - S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} S_m(\lambda)$, where $S_0(\lambda) := -\frac{2}{3}\lambda^{\frac{3}{2}}$, $S_1(\lambda) := -\frac{1}{4}\log\lambda - \log(2\sqrt{\pi})$ and $\forall m \ge 2$

$$S_m(\lambda) \coloneqq \frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \ge 0, n > 0\\ 2h-2+n=m-1}} \frac{(-1)^n}{n!} \sum_{\mathbf{d} \in \mathbb{N}^n} \left\langle \tau_{d_1} \dots \tau_{d_n} \right\rangle_{h,n} \prod_{i=1}^n (2d_i - 1)!! \, .$$

TR and ram's

The quantisation problem

Airy differential equation

• Airy function Ai(λ) $\rightsquigarrow \left(\frac{d^2}{d\lambda^2} - \lambda\right)$ Ai(λ) = 0. Asymptotic expansion as $\lambda \to \infty$ (g.s. of intersection numbers): $\log Ai(\lambda) - S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} S_m(\lambda)$, where $S_0(\lambda) := -\frac{2}{3}\lambda^{\frac{3}{2}}$, $S_1(\lambda) := -\frac{1}{4}\log\lambda - \log(2\sqrt{\pi})$ and $\forall m \ge 2$

$$S_m(\lambda) \coloneqq \frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \ge 0, n > 0\\ 2h-2+n=m-1}} \frac{(-1)^n}{n!} \sum_{\mathbf{d} \in \mathbb{N}^n} \left\langle \tau_{d_1} \dots \tau_{d_n} \right\rangle_{h,n} \prod_{i=1}^n (2d_i - 1)!! \,.$$

• Formal parameter \hbar to keep track of the Euler characteristics of the surfaces enumerated $\rightsquigarrow \psi^{\text{Kont}}(\lambda, \hbar) := \operatorname{Ai}(\hbar^{-\frac{2}{3}}\lambda)$ satisfies

$$\left(\hbar^2 \frac{d^2}{d\lambda^2} - \lambda\right) \psi^{\mathsf{Kont}}(\lambda, \hbar) = 0$$

and admits an asymptotic expansion

$$\log \psi^{\mathsf{Kont}}(\lambda,\hbar) - \hbar^{-1}S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} \hbar^{m-1}S_m(\lambda).$$

TR and ram's

The quantisation problem

Airy differential equation

• Airy function Ai(λ) $\rightsquigarrow \left(\frac{d^2}{d\lambda^2} - \lambda\right)$ Ai(λ) = 0. Asymptotic expansion as $\lambda \to \infty$ (g.s. of intersection numbers): $\log Ai(\lambda) - S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} S_m(\lambda)$, where $S_0(\lambda) := -\frac{2}{3}\lambda^{\frac{3}{2}}$, $S_1(\lambda) := -\frac{1}{4}\log\lambda - \log(2\sqrt{\pi})$ and $\forall m \ge 2$

$$S_m(\lambda) \coloneqq \frac{\lambda^{-\frac{3}{2}(m-1)}}{2^{m-1}} \sum_{\substack{h \ge 0, n > 0\\ 2h-2+n=m-1}} \frac{(-1)^n}{n!} \sum_{\mathbf{d} \in \mathbb{N}^n} \left\langle \tau_{d_1} \dots \tau_{d_n} \right\rangle_{h,n} \prod_{i=1}^n (2d_i - 1)!! \,.$$

• Formal parameter \hbar to keep track of the Euler characteristics of the surfaces enumerated $\rightsquigarrow \psi^{\text{Kont}}(\lambda, \hbar) \coloneqq \operatorname{Ai}(\hbar^{-\frac{2}{3}}\lambda)$ satisfies

$$\left(\hbar^2 \frac{d^2}{d\lambda^2} - \lambda\right) \psi^{\mathsf{Kont}}(\lambda, \hbar) = 0$$

and admits an asymptotic expansion

$$\log \psi^{\mathsf{Kont}}(\lambda,\hbar) - \hbar^{-1}S_0(\lambda) - S_1(\lambda) = \sum_{m=2}^{\infty} \hbar^{m-1}S_m(\lambda).$$

• TR on the Airy spectral curve $y^2 - x = 0$ computes $Z^{\text{Kont}}(\hbar, \mathbf{t})$ and $\psi^{\text{Kont}}(\lambda, \hbar)$, and allows to construct the *quantum curve* $\left(\hbar^2 \frac{d^2}{d\lambda^2} - \lambda\right)\psi^{\text{Kont}}(\lambda, \hbar) = 0$. General phenomenon?

コンスロンス ほとく ほう しゅう

TR and ram's	The quantisation problem	From loop to KZ equations	Future 000	Bonus 0000
Outline				

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's	The quantisation problem	From loop to KZ equations	Future	Bonus
Outline				

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

O The quantisation problem

Quantum curve problem

- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

 $P \in \mathbb{C}[x,y]$ and $\Sigma = \{(x,y) \in \mathbb{C}^2 \mid P(x,y) = 0\}$ plane curve of genus \hat{g} .

A quantization of Σ is a differential operator \widehat{P} of the form

$$\widehat{P}(\widehat{x},\widehat{y};\hbar) = P_0(\widehat{x},\widehat{y}) + O(\hbar),$$

where $\widehat{x} = x \cdot$, $\widehat{y} = \hbar \frac{d}{dx}$, such that $P_0(x, y) = P(x, y)$.

- The operators \hat{x} and \hat{y} satisfy $[\hat{y}, \hat{x}] = \hbar$.
- $\widehat{P}(\widehat{x}, \widehat{y})\psi(x, \hbar) = 0$. Schrödinger equation: $\left(\hbar^2 \frac{d^2}{dx^2} \widehat{R}(\widehat{x}, \hbar)\right)\psi(x, \hbar) = 0$. WKB asymptotic expansion $\rightsquigarrow \log \psi(x, \hbar) = \sum_{k \ge -1} \hbar^k S_k(x) \in \hbar^{-1}\mathbb{C}[[\hbar]].$

 $P \in \mathbb{C}[x,y]$ and $\Sigma = \{(x,y) \in \mathbb{C}^2 \mid P(x,y) = 0\}$ plane curve of genus \hat{g} .

A quantization of Σ is a differential operator \widehat{P} of the form

$$\widehat{P}(\widehat{x},\widehat{y};\hbar) = P_0(\widehat{x},\widehat{y}) + O(\hbar),$$

where $\widehat{x} = x \cdot$, $\widehat{y} = \hbar \frac{d}{dx}$, such that $P_0(x, y) = P(x, y)$.

• The operators \widehat{x} and \widehat{y} satisfy $[\widehat{y}, \widehat{x}] = \hbar$.

• $\widehat{P}(\widehat{x}, \widehat{y})\psi(x, \hbar) = 0$. Schrödinger equation: $\left(\hbar^2 \frac{d^2}{dx^2} - \widehat{R}(\widehat{x}, \hbar)\right)\psi(x, \hbar) = 0$. WKB asymptotic expansion $\rightsquigarrow \log \psi(x, \hbar) = \sum_{k \ge -1} \hbar^k S_k(x) \in \hbar^{-1}\mathbb{C}[[\hbar]].$

Question: Can we construct the operator \widehat{P} and the solution ψ from P?

 $P \in \mathbb{C}[x,y]$ and $\Sigma = \{(x,y) \in \mathbb{C}^2 \mid P(x,y) = 0\}$ plane curve of genus \hat{g} .

A quantization of Σ is a differential operator \widehat{P} of the form

$$\widehat{P}(\widehat{x},\widehat{y};\hbar) = P_0(\widehat{x},\widehat{y}) + O(\hbar),$$

where $\widehat{x} = x \cdot$, $\widehat{y} = \hbar \frac{d}{dx}$, such that $P_0(x, y) = P(x, y)$.

- The operators \hat{x} and \hat{y} satisfy $[\hat{y}, \hat{x}] = \hbar$.
- $\widehat{P}(\widehat{x}, \widehat{y})\psi(x, \hbar) = 0$. Schrödinger equation: $\left(\hbar^2 \frac{d^2}{dx^2} \widehat{R}(\widehat{x}, \hbar)\right)\psi(x, \hbar) = 0$. WKB asymptotic expansion $\rightsquigarrow \log \psi(x, \hbar) = \sum_{k \ge -1} \hbar^k S_k(x) \in \hbar^{-1}\mathbb{C}[[\hbar]].$

Question: Can we construct the operator \widehat{P} and the solution ψ from P?

Conjecture

Both \widehat{P} and ψ can be constructed from Σ using topological recursion.

 $P \in \mathbb{C}[x,y]$ and $\Sigma = \{(x,y) \in \mathbb{C}^2 \mid P(x,y) = 0\}$ plane curve of genus \hat{g} .

A quantization of Σ is a differential operator \widehat{P} of the form

$$\widehat{P}(\widehat{x},\widehat{y};\hbar) = P_0(\widehat{x},\widehat{y}) + O(\hbar),$$

where $\widehat{x} = x \cdot$, $\widehat{y} = \hbar \frac{d}{dx}$, such that $P_0(x, y) = P(x, y)$.

- The operators \hat{x} and \hat{y} satisfy $[\hat{y}, \hat{x}] = \hbar$.
- $\widehat{P}(\widehat{x}, \widehat{y})\psi(x, \hbar) = 0$. Schrödinger equation: $\left(\hbar^2 \frac{d^2}{dx^2} \widehat{R}(\widehat{x}, \hbar)\right)\psi(x, \hbar) = 0$. WKB asymptotic expansion $\rightsquigarrow \log \psi(x, \hbar) = \sum_{k \ge -1} \hbar^k S_k(x) \in \hbar^{-1}\mathbb{C}[[\hbar]].$

Question: Can we construct the operator \widehat{P} and the solution ψ from P?

Conjecture

Both \widehat{P} and ψ can be constructed from Σ using topological recursion.

Subtlety: We want \hat{P} to have a controlled pole structure, more precisely, to have the same pole structure as P.

TR and ram's	The quantisation problem	From loop to KZ equations		Future	Bonus
000000000000000000000000000000000000000	000000000	00000000	0000000000000	000	0000
Outline					

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

Quantum curve problem

Origins, context and examples

(Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	0000000				
History and I	iterature				

- Proved for many particular cases \rightsquigarrow genus $\hat{g} = 0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_I := \#\{\text{interior points}\} = 0$ (Fact: $\hat{g} \leq N_I$).

TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	00000000				
History and I	iterature				

- Proved for many particular cases \leadsto genus $\hat{g}=0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_I := #\{\text{interior points}\} = 0 \text{ (Fact: } \hat{g} \leq N_I).$
- Mariño-Eynard '08 → Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot–Eynard '12 \rightsquigarrow Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g} > 0$).
- Eynard '17 \rightsquigarrow General idea to construct integrable systems and their τ -functions from the geometry of the spectral curve.

TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	0000000				
History and I	iterature				

- Proved for many particular cases \rightsquigarrow genus $\hat{g} = 0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_I := #\{\text{interior points}\} = 0 \text{ (Fact: } \hat{g} \leq N_I).$
- Mariño-Eynard '08 → Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot–Eynard '12 \rightsquigarrow Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g} > 0$).
- Eynard '17 \rightsquigarrow General idea to construct integrable systems and their τ -functions from the geometry of the spectral curve.
- Chidambaram–Bouchard–Dauphinee '18 → ĝ = 1, but bad properties (infinitely many ħ corrections with poles at ramification points, not even functions of x)!
- Iwaki-Marchal-Saenz '18, Marchal-Orantin '19 (reversed approach) → Lax pairs associated with ħ-dependent Painlevé equations and any ħ∂_xΨ(x,ħ) = L(x,ħ)Ψ(x,ħ), with L(x,ħ) ∈ sl₂(C), satisfy the topological type property from Bergère-Borot-Eynard '15 (ĝ = 0).
- Iwaki–Saenz '16, Iwaki '19 \rightsquigarrow Painlevé I and elliptic curves ($\hat{g} = 1$).

TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	0000000				
History and I	iterature				

- Proved for many particular cases \leadsto genus $\hat{g}=0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_I := #\{\text{interior points}\} = 0 \text{ (Fact: } \hat{g} \leq N_I).$
- Mariño-Eynard '08 → Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot–Eynard '12 \rightsquigarrow Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g} > 0$).
- Eynard '17 \rightsquigarrow General idea to construct integrable systems and their τ -functions from the geometry of the spectral curve.
- Chidambaram–Bouchard–Dauphinee '18 → ĝ = 1, but bad properties (infinitely many ħ corrections with poles at ramification points, not even functions of x)!
- Iwaki-Marchal-Saenz '18, Marchal-Orantin '19 (reversed approach) → Lax pairs associated with ħ-dependent Painlevé equations and any ħ∂_xΨ(x,ħ) = L(x,ħ)Ψ(x,ħ), with L(x,ħ) ∈ sl₂(ℂ), satisfy the topological type property from Bergère-Borot-Eynard '15 (ĝ = 0).
- Iwaki–Saenz '16, Iwaki '19 \rightsquigarrow Painlevé I and elliptic curves ($\hat{g} = 1$).
- Marchal–Orantin '19, Eynard–GF '19 \rightsquigarrow Hyperelliptic (any \hat{g}).

TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	0000000				
History and I	iterature				

- Proved for many particular cases \rightsquigarrow genus $\hat{g} = 0$ spectral curves.
- Bouchard-Eynard '17 \rightsquigarrow spectral curves whose Newton polygon has $N_I := #\{\text{interior points}\} = 0 \text{ (Fact: } \hat{g} \leq N_I).$
- Mariño-Eynard '08 → Holomorphic, modular and background independent, non-perturbative partition functions.
- Borot–Eynard '12 \rightsquigarrow Only non-perturbative wave functions can obey "good" quantum curves (for $\hat{g} > 0$).
- Eynard '17 \rightsquigarrow General idea to construct integrable systems and their τ -functions from the geometry of the spectral curve.
- Chidambaram–Bouchard–Dauphinee '18 → ĝ = 1, but bad properties (infinitely many ħ corrections with poles at ramification points, not even functions of x)!
- Iwaki-Marchal-Saenz '18, Marchal-Orantin '19 (reversed approach) → Lax pairs associated with ħ-dependent Painlevé equations and any ħ∂_xΨ(x,ħ) = L(x,ħ)Ψ(x,ħ), with L(x,ħ) ∈ sl₂(ℂ), satisfy the topological type property from Bergère-Borot-Eynard '15 (ĝ = 0).
- Iwaki–Saenz '16, Iwaki '19 \rightsquigarrow Painlevé I and elliptic curves ($\hat{g} = 1$).
- Marchal–Orantin '19, Eynard–GF '19 \rightsquigarrow Hyperelliptic (any \hat{g}).
- Eynard–GF–Marchal–Orantin '21 \rightsquigarrow any algebraic curve with simple ramifications.

00000000000000000000000000000000000000						
Beyond Airy:	some meaningful	generalisations				
• $y^2 = x \rightsquigarrow W$ '91, Airy, KW $\int_{\overline{M}} (\hbar^2 \frac{d^2}{dx})$	itten (conj) '90, Kontse / KdV tau function $\psi_1^{d_1} \cdots \psi_n^{d_n}$ $\frac{2}{2} - x \psi(z, \hbar) = 0$	vich • y ² : Chi Bes	$c = 1 \rightsquigarrow \text{Not}$ idambaram, ssel, BGW F $\int_{\overline{\mathcal{M}}_{g,n}} \left(\hbar^2 \frac{d}{dx} x - \frac{d}{dx} \right)^2$	brbury (conj) Giacchetto, KdV tau func $\Theta_{g,n}\psi_1^{d_1}\cdots$ $\frac{d}{dx}-1\Big)\psi(z,z)$	'17, G-F, '22, tion $\psi_n^{d_n}$ $\hbar) = 0$	
• $y^r = x \rightsquigarrow W$ Faber–Shadri $\int_{\overline{\mathcal{M}}_{g,n}} W^r_{g,n}$ $\left(\hbar^r \frac{d^r}{dx}\right)$	itten '93, n–Zvonkine, '10, <i>r</i> Airy, $\psi(a_1, \dots, a_n)\psi_1^{d_1}\cdots\psi_n^{d_n}$ $\frac{r}{r} - x \psi(z, \hbar) = 0$	$r K d V \qquad \qquad$	$= x^{3} + tx - \frac{1}{\sqrt{2}}$ ve $(\hat{g} = 1)$ $\overline{A}_{g,n+m}$ $\frac{d^{2}}{dx^{2}} - (x^{3})$	$+ V \rightsquigarrow \mathbf{Painle}_{+1} \cdots \psi_{n+m}^2 \psi_{+1} + tx + V + tx + U + U + U + U + U + U + U + U + U + $	evé I, elli $\psi_1^{d_1} \cdots \psi_n^d$ $\frac{\partial}{\partial t}\Big) \psi =$	ptic <i>n</i> = 0

(ロト 4 聞 ト 4 臣 ト 4 臣 ト 一臣 - ののの

TR and ram's 0000000000000	The quantisation problem	From loop to KZ equations	Future 000	Bonus 0000
Outline				

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	000000000				
Spectral curv	es				

N distinct points $\Lambda_1, \ldots, \Lambda_N \in \mathbb{P}^1 \setminus \{\infty\}$. Let $\mathcal{H}_d(\Lambda_1, \ldots, \Lambda_N, \infty)$ be the Hurwitz space of degree d ramified coverings $x \colon \Sigma \to \mathbb{P}^1$, where Σ is the Riemann surface:

$$\Sigma \coloneqq \overline{\left\{ (\lambda, y) \mid P(\lambda, y) = 0 \right\}}$$

of genus \hat{g} , where $x(\lambda, y) := \lambda$ and

$$P(\lambda, y) = \sum_{l=0}^{d} (-1)^{l} y^{d-l} P_{l}(\lambda), \quad P_{0}(\lambda) = 1,$$

 P_l being a rational function with possible poles at $\lambda \in \mathcal{P} \coloneqq \{\Lambda_i\}_{i=1}^N \bigcup \{\infty\}$.

Classical spectral curve: $\rightsquigarrow (\Sigma, x)$.

TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	000000000				
Spectral curv	es				

N distinct points $\Lambda_1, \ldots, \Lambda_N \in \mathbb{P}^1 \setminus \{\infty\}$. Let $\mathcal{H}_d(\Lambda_1, \ldots, \Lambda_N, \infty)$ be the Hurwitz space of degree d ramified coverings $x \colon \Sigma \to \mathbb{P}^1$, where Σ is the Riemann surface:

$$\Sigma \coloneqq \overline{\left\{ (\lambda, y) \mid P(\lambda, y) = 0 \right\}}$$

of genus \hat{g} , where $x(\lambda, y) := \lambda$ and

$$P(\lambda, y) = \sum_{l=0}^{d} (-1)^{l} y^{d-l} P_{l}(\lambda), \quad P_{0}(\lambda) = 1,$$

 P_l being a rational function with possible poles at $\lambda \in \mathcal{P} := \{\Lambda_i\}_{i=1}^N \bigcup \{\infty\}$.

Classical spectral curve: $\rightsquigarrow (\Sigma, x)$.

Definition (Admissible classical spectral curves)

A classical spectral curve (Σ, x) is *admissible* if:

- $P(\lambda, y) = 0$ is an irreducible algebraic curve;
- $a \in \operatorname{Ram}(x)$ are simple, i.e. dx has only a simple zero at $a \in \mathcal{R}$;

•
$$\forall a \in \mathcal{R}, dy(a) \neq 0;$$
TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	00000000				
Torelli markin	g and filling fraction	ons			

Fix a symplectic basis $(\mathcal{A}_i, \mathcal{B}_i)_{i=1}^{\hat{g}}$ of $H_1(\Sigma, \mathbb{Z})$ and a Lagrangian \mathcal{L} associated to the \mathcal{A} -cycles.

Remark

Choice of Torelli marking can be thought of as a choice of polarisation.

TR and ram's	The quantisation problem	From loop to KZ equations	Non-perturbative	Future	Bonus
	0000000				
Torelli markin	g and filling fraction	ons			

Fix a symplectic basis $(\mathcal{A}_i, \mathcal{B}_i)_{i=1}^{\hat{g}}$ of $H_1(\Sigma, \mathbb{Z})$ and a Lagrangian \mathcal{L} associated to the \mathcal{A} -cycles.

Remark

Choice of Torelli marking can be thought of as a choice of polarisation.

Let $((\Sigma, x), (\mathcal{A}_i, \mathcal{B}_i)_{i=1}^{\hat{g}})$ be some admissible initial data. We define the tuple $(\epsilon_i)_{i=1}^{\hat{g}}$ of *filling fractions* by

$$\forall i \in \llbracket 1, \hat{g} \rrbracket, \quad \epsilon_i \coloneqq \frac{1}{2\pi i} \oint_{\mathcal{A}_i} y dx.$$

 $\omega_{0,1}(z)=y(z)dx(z)\text{, }\omega_{0,2}(z_1,z_2)=B^{\mathcal{L}}(z_1,z_2)\Rightarrow$

$$\frac{\partial}{\partial \epsilon_i} \omega_{h,n}(z_1, \dots, z_n) = \oint_{z \in \mathcal{B}_i} \omega_{h,n+1}(z, z_1, \dots, z_n), \forall i \in [\![1, \hat{g}]\!].$$

ロト (個) (注) (注) (注) つんの

TR and ram's 0000000000000	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's		From loop to KZ equations	Non-perturbative	Future	Bonus
		00000000			
Loop equatio	ns				

 $Q_{h,n+1}^{(l)}(\lambda;{\bf z})$ symmetric algebraic combinations of the $\omega_{g,n}{\bf s}$ taken at all preimages $x^{-1}(\lambda).$

TR and ram's		From loop to KZ equations	Non-perturbative	Future	Bonus
		00000000			
Loop equatio	ns				

 $Q_{h,n+1}^{(l)}(\lambda;{\bf z})$ symmetric algebraic combinations of the $\omega_{g,n}{\bf s}$ taken at all preimages $x^{-1}(\lambda).$

TR and ram's 0000000000000		From loop to KZ equations	Future 000	Bonus 0000
Loop equatio	ns			

 $Q_{h,n+1}^{(l)}(\lambda;{\bf z})$ symmetric algebraic combinations of the $\omega_{g,n}{\bf s}$ taken at all preimages $x^{-1}(\lambda).$

Theorem (Loop equations)

The function
$$\lambda \mapsto \frac{Q_{h,n+1}^{(l)}(\lambda;\mathbf{z})}{(d\lambda)^l}$$
 has no poles at $\lambda \in x(\mathcal{R})$, $\forall \mathbf{z} \in (\Sigma \setminus \mathcal{R})^n$.

Linear:

•
$$Q_{h,n+1}^{(1)}(\lambda; \mathbf{z}) = \sum_{z \in x^{-1}(\lambda)} \omega_{h,n+1}(z, \mathbf{z}) = \delta_{n,0} \delta_{h,0} P_1(\lambda) d\lambda + \delta_{n,1} \delta_{h,0} \frac{d\lambda \, dx(z_1)}{(\lambda - x(z_1))^2}$$

TR and ram's 0000000000000	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

$D = \sum_{i=1}^{s} \alpha_i[p_i] \text{ a generic divisor (of degree} = \sum_i \alpha_i = 0) \text{ on } \widetilde{\Sigma_{\mathcal{P}}}, \Sigma_{\mathcal{P}} \coloneqq \Sigma \setminus x^{-1}(\mathcal{P}).$ Perturbative wave function $\psi(D, \hbar)$ associated to D:

 $\exp\left(\sum \sum \frac{\hbar^{2h-2+n}}{n!} \int \cdots \int \left(\omega_{h,n}(z_1,\ldots,z_n) - \delta_{h,0}\delta_{n,2}\frac{dx(z_1)dx(z_2)}{(\pi(x_1)-\pi(x_1))^2}\right)\right).$

$$\sum_{h\geq 0} \sum_{n\geq 0} n! \int_{D} \int_{D} (\pi, \pi(z_{1}) - y, \pi) = \pi, \quad \pi(z_{1}) - x(z_{2}))^{2} \int_{D} e^{-\hbar^{-2}\omega_{0,0}} e^{-\hbar^{-1}\int_{D} \omega_{0,1}} \psi(D, \hbar) \in \mathbb{C}[[\hbar]].$$

 $\psi(D = [z] - [p_2], \hbar)$ has an essential singularity at $p_2 \to \infty^{(\alpha)} \rightsquigarrow$ Need to regularise ψ and KZ equations.

Perturbative partition function $Z(\hbar) = \psi(D = \emptyset, \hbar)$:

$$Z(\hbar) := \exp\left(\sum_{h \ge 0} \hbar^{2h-2} \omega_{h,0}\right), \text{ with } e^{-\hbar^{-2}\omega_{0,0}} Z(\hbar) \in \mathbb{C}[[\hbar]].$$

Remark

Wave functions \rightsquigarrow solutions to a differential equation; the partition function \rightsquigarrow role of tau function from the point of view of isomonodromic or integrable systems.

TR and ram's 0000000000000	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

KZ equations for $d = 2 \rightsquigarrow$ system of PDEs

Loop equations can be combined into a g. s. to form a system of $d \times s$ "differential equations" satisfied by the wave functions. Case d = 2:

Theorem (Eynard–GF,'19)
For
$$k = 1, 2$$
,
 $\hbar^2 \left(\frac{d^2}{dx_k^2} + \sum_{i \neq k} \frac{\frac{d}{dx_k} - \frac{d}{dx_i}}{x_k - x_i} \right) \psi = (R(x_k) + \mathcal{L}(x_k)) \psi.$

 $\zeta_{\infty} \in x^{-1}(\infty)$ and $\zeta_l \in x^{-1}(\Lambda_l)$ poles of $\omega_{0,1}$ of orders m_{∞} and $m_l, l = 1, \ldots, N$, respectively. Let $d_{\infty} := \operatorname{ord}_{\zeta_{\infty}}(x)$. Operator $\mathcal{L}(x) = \mathcal{L}_{\infty}(x) + \mathcal{L}_{\Lambda}(x)$:

$$\mathcal{L}_{\infty}(x) = \sum_{j=1-2d_{\infty}}^{m_{\infty}} t_{\zeta_{\infty},j} \sum_{k=0}^{\frac{1-j}{d_{\infty}}-2} x^{k} \Big(-\frac{j}{d_{\infty}} - k - 2 \Big) \frac{\partial}{\partial t_{\zeta_{\infty},j+d_{\infty}(k+2)}},$$
$$\mathcal{L}_{\Lambda}(x) = \sum_{l=1}^{N} \Big(\frac{1}{x - \lambda_{l}} \frac{\partial}{\partial \lambda_{l}} + \sum_{j=1}^{m_{l}-1} t_{\zeta_{l},j} \sum_{k=1}^{j} (x - \lambda_{l})^{-(k+1)} (j+1-k) \frac{\partial}{\partial t_{\zeta_{l},j+1-k}} \Big).$$

Example

In the Airy case, $y^2 = x$, we have only one pole, at $\zeta_i = \infty$, of degree $m_i = 3$, with $d_i = -2$. The sum is empty and $\mathcal{L}(x) = 0$.

Divisor $D = [z_1] - [z_2]$: • PDEs for Airy curve: $y^2 = x$. We had $\mathcal{L}(x) = 0$.

$$\begin{cases} \hbar^2 \Big(\frac{d^2}{dx_1^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \Big) \psi &= x_1 \psi, \\ \hbar^2 \Big(\frac{d^2}{dx_2^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \Big) \psi &= x_2 \psi. \end{cases}$$

Divisor $D = [z_1] - [z_2]$: • PDEs for Airy curve: $y^2 = x$. We had $\mathcal{L}(x) = 0$.

$$\begin{cases} \hbar^2 \Big(\frac{d^2}{dx_1^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \Big) \psi &= x_1 \psi, \\ \hbar^2 \Big(\frac{d^2}{dx_2^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \Big) \psi &= x_2 \psi. \end{cases}$$

More generally, admissible curves considered in Bouchard–Eynard, '17 (empty Newton polygon) are those for which $\mathcal{L}(x) = 0$.

Divisor $D = [z_1] - [z_2]$: • PDEs for Airy curve: $y^2 = x$. We had $\mathcal{L}(x) = 0$.

$$\begin{cases} \hbar^2 \Big(\frac{d^2}{dx_1^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \Big) \psi &= x_1 \psi, \\ \hbar^2 \Big(\frac{d^2}{dx_2^2} + \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2} \Big) \psi &= x_2 \psi. \end{cases}$$

More generally, admissible curves considered in Bouchard–Eynard, '17 (empty Newton polygon) are those for which $\mathcal{L}(x) = 0$.

• PDEs for elliptic curve: $R(x(z)) = y(z)^2 = x^3 + tx + V$, with

$$-V = \int_{\mathcal{B}_{\infty,1}} \omega_{0,1} = \frac{\partial}{\partial t_{\infty,1}} \omega_{0,0} = -\frac{\partial}{\partial t} \omega_{0,0}$$

 $\Rightarrow R(x(z)) = x^3 + tx + \frac{\partial}{\partial t}\omega_{0,0}.$ We have $\mathcal{L}(x) = \frac{\partial}{\partial t}.$

$$\left(\hbar^2 \frac{d^2}{dx_k^2} + \hbar^2 \frac{\frac{d}{dx_1} - \frac{d}{dx_2}}{x_1 - x_2}\right)\psi = \left(x_k^3 + tx_k + V + \frac{\partial}{\partial t}\right)\psi,$$

for k = 1, 2.

TR and ram's 0000000000000	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

Problem for genus $\hat{g} > 0$: $\int_{o}^{z} \cdots \int_{o}^{z} \omega_{g,n}$ are not invariant after z goes around a cycle. Very bad monodromies when z goes around a \mathcal{B}_{i} (first type cycle).

Lemma

$$\forall j \in \llbracket 1, \hat{g} \rrbracket : \psi([z + \mathcal{A}_j] - [\infty^{(\alpha)}], \hbar) = e^{\frac{2\pi i\epsilon_j}{\hbar}} \psi([z] - [\infty^{(\alpha)}], \hbar),$$

$$\psi(D + \mathcal{B}_j, \hbar) = \exp\left(\sum_{(h, n, m) \in \mathbb{N}^3} \frac{\hbar^{2h-2+n+m}}{n!m!} \underbrace{\int_D \cdots \int_D \int_{\mathcal{B}_j} \cdots \int_{\mathcal{B}_j} \omega_{h, n+m}}\right).$$

TR and ram's		From loop to KZ equations		Future	Bonus
Monodromies	of the perturbativ	e wave function \rightsquigarrow	bad monodro	omies	

Problem for genus $\hat{g} > 0$: $\int_{o}^{z} \cdots \int_{o}^{z} \omega_{g,n}$ are not invariant after z goes around a cycle. Very bad monodromies when z goes around a \mathcal{B}_{i} (first type cycle).

Lemma

$$\forall j \in \llbracket 1, \hat{g} \rrbracket : \psi([z + \mathcal{A}_j] - [\infty^{(\alpha)}], \hbar) = e^{\frac{2\pi i\epsilon_j}{\hbar}} \psi([z] - [\infty^{(\alpha)}], \hbar),$$

$$\psi(D + \mathcal{B}_j, \hbar) = \exp\left(\sum_{(h, n, m) \in \mathbb{N}^3} \frac{\hbar^{2h-2+n+m}}{n!m!} \int_D \cdots \int_D \int_{\mathcal{B}_j} \cdots \int_{\mathcal{B}_j} \omega_{h, n+m}\right).$$

Since the \mathcal{B}_j period of $\omega_{h,n+1}$ is equal to the variation of $\omega_{h,n}$ wrt $\epsilon_j \coloneqq \oint_{\mathcal{A}_j} \omega_{0,1}$,

$$\psi(D+\mathcal{B}_j,\hbar) = \exp\left(\sum_{(h,n)\in\mathbb{N}^2} \frac{\hbar^{2h-2+n}}{n!} \underbrace{\int_D \cdots \int_D}_{m\geq 0} \sum_{m\geq 0} \frac{1}{m!} \left(\hbar \frac{\partial}{\partial \epsilon_j}\right)^m \omega_{h,n}\right) \Rightarrow$$

 $\psi([z+\mathcal{B}_j]-[\infty^{(\alpha)}],\hbar) = e^{\hbar\frac{\partial}{\partial\epsilon_j}}\psi([z]-[\infty^{(\alpha)}],\hbar) = \psi([z]-[\infty^{(\alpha)}],\hbar,\epsilon_j \to \epsilon_j + \hbar).$

- イロト イヨト イヨト ・ヨー わんの

TR and ram's 0000000000000	From loop to KZ equations	Non-perturbative	Future 000	Bonus 0000
Outline				

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's 0000000000000		From loop to KZ equations	Non-perturbative	Future 000	Bonus 0000
Summing over	er the lattice				

Remark

Our KZ equations do not depend on $z \in \Sigma$ but only on its image $x(z) \Rightarrow$ For any finite family of c_{γ} , the following sum satisfies the same KZ equations

$$\psi_l([z] - [\infty^{(\alpha)}], \hbar, \{c_\gamma\}) \coloneqq \sum_{\gamma \in \pi_1(\Sigma \setminus x^{-1}(\mathcal{P}))} c_\gamma \ \psi_l([z] + \gamma - [\infty^{(\alpha)}], \hbar)$$

Goal: Build solutions to the same KZ equations but with better monodromies along the \mathcal{B}_i -cycles.

TR and ram's		From loop to KZ equations	Non-perturbative	Future 000	Bonus 0000		
Summing over the lattice							

Remark

Our KZ equations do not depend on $z \in \Sigma$ but only on its image $x(z) \Rightarrow$ For any finite family of c_{γ} , the following sum satisfies the same KZ equations

$$\psi_l([z] - [\infty^{(\alpha)}], \hbar, \{c_\gamma\}) \coloneqq \sum_{\gamma \in \pi_1(\Sigma \setminus x^{-1}(\mathcal{P}))} c_\gamma \ \psi_l([z] + \gamma - [\infty^{(\alpha)}], \hbar)$$

Goal: Build solutions to the same KZ equations but with better monodromies along the \mathcal{B}_i -cycles.

Strategy: Sum over $\gamma = \sum_{i=1}^{g} n_i \mathcal{B}_i$, i.e. $\epsilon_i \to \epsilon_i + \hbar$. Formally \rightsquigarrow discrete Fourier transform of the perturbative wave function:

$$\psi_l^{\infty^{(\alpha)}}(z,\hbar;\epsilon,\boldsymbol{\rho}) \coloneqq \sum_{\mathbf{n}\in\mathbb{Z}^g} e^{\frac{2\pi i}{\hbar}\sum_{j=1}^g \rho_j n_j} \psi_l([z] - [\infty^{(\alpha)}],\hbar,\epsilon + \hbar \mathbf{n}).$$

1 とうタウ・ヨート キョン・キー ション

Trans-series with special ordering

Strategy: Sum over $\gamma = \sum_{i=1}^{3} n_i \mathcal{B}_i$, i.e. $\epsilon_i \to \epsilon_i + \hbar$. Formally \rightsquigarrow discrete Fourier

transform of the perturbative wave function:

$$\psi_l^{\infty^{(\alpha)}}(z,\hbar;\epsilon,\boldsymbol{\rho}) \coloneqq \sum_{\mathbf{n}\in\mathbb{Z}^g} e^{\frac{2\pi i}{\hbar}\sum_{j=1}^{\hat{g}}\rho_j n_j} \psi_l([z]-[\infty^{(\alpha)}],\hbar,\epsilon+\hbar\mathbf{n}).$$

Remark (Limitations)

• Filling fraction $\epsilon = (\epsilon_1, \dots, \epsilon_g) \rightsquigarrow$ not a global coordinate on the space of classical spectral curves with fixed spectral times (only a local coordinate).

Trans-series with special ordering

Strategy: Sum over $\gamma = \sum_{i=1}^{g} n_i \mathcal{B}_i$, i.e. $\epsilon_i \to \epsilon_i + \hbar$. Formally \rightsquigarrow discrete Fourier

transform of the perturbative wave function:

$$\psi_l^{\infty^{(\alpha)}}(z,\hbar;\epsilon,\boldsymbol{\rho}) \coloneqq \sum_{\mathbf{n}\in\mathbb{Z}^g} e^{\frac{2\pi i}{\hbar}\sum_{j=1}^{\hat{j}}\rho_j n_j} \psi_l([z] - [\infty^{(\alpha)}],\hbar,\epsilon + \hbar \mathbf{n}).$$

Remark (Limitations)

 Filling fraction ε = (ε₁,..., ε_g) → not a global coordinate on the space of classical spectral curves with fixed spectral times (only a local coordinate).

We need a special ordering of the trans-monomials:

$$\sum_{r\geq 0}\sum_{\mathbf{n}\in\mathbb{Z}^{\hat{g}}}F_{\mathbf{n},r}\hbar^{r}e^{\frac{1}{\hbar}\sum_{j=1}^{\hat{g}}n_{j}v_{j}}.$$

The partial sums $\sum_{\mathbf{n}\in\mathbb{Z}^{\hat{g}}}F_{\mathbf{n},r}e^{rac{1}{\hbar}\sum\limits_{j=1}^{\hat{g}}n_{j}v_{j}}$ will give rise to theta functions.

Equalities: coefficient by coefficient in the trans-monomials.

TR and ram's

The quantisation probler

From loop to KZ equations

Non-perturbative wave functions

Riemann matrix of periods of Σ : $\tau_{i,j} = \frac{1}{2\pi i} \int_{\mathcal{B}_i} \int_{\mathcal{B}_j} \omega_{0,2}, \forall (i,j) \in [\![1,\hat{g}]\!]^2$. Riemann theta function (analytic function of $\mathbf{v} \in \mathbb{C}^{\hat{g}}$) and its derivatives:

$$\Theta^{(i_1,...,i_k)}(\mathbf{v},\tau) = \sum_{(n_1,...,n_{\hat{g}})\in\mathbb{Z}^{\hat{g}}} e^{2\pi \mathrm{i} \sum_{i=1}^{\hat{g}} n_i v_i} e^{\pi \mathrm{i} \sum_{(i,j)\in[\![1,\hat{g}]\!]^2} n_i \tau_{i,j} n_j} \prod_{j=1}^k n_{i_j}.$$

TR and ram's

The quantisation probler

From loop to KZ equations

Non-perturbative wave functions

Riemann matrix of periods of Σ : $\tau_{i,j} = \frac{1}{2\pi i} \int_{\mathcal{B}_i} \int_{\mathcal{B}_j} \omega_{0,2}, \forall (i,j) \in [\![1,\hat{g}]\!]^2$. Riemann theta function (analytic function of $\mathbf{v} \in \mathbb{C}^{\hat{g}}$) and its derivatives:

$$\Theta^{(i_1,...,i_k)}(\mathbf{v},\tau) = \sum_{(n_1,...,n_{\hat{g}})\in\mathbb{Z}^{\hat{g}}} e^{2\pi \mathrm{i} \sum_{i=1}^{\hat{g}} n_i v_i} e^{\pi \mathrm{i} \sum_{(i,j)\in[\![1,\hat{g}]\!]^2} n_i \tau_{i,j} n_j} \prod_{j=1}^k n_{i_j}.$$

 $D = [z] - [\infty^{(\alpha)}] \rightsquigarrow$ non-perturbative wave function

$$\psi_{\rm NP}(D;\hbar,\rho) \coloneqq e^{\hbar^{-2}\omega_{0,0}+\omega_{1,0}}e^{\hbar^{-1}\int_D\omega_{0,1}}\frac{1}{E(D)} \quad \sum_{r=0}^{\infty}\hbar^r G^{(r)}(D;\rho),$$

where ${\boldsymbol E}$ is the prime form on $\boldsymbol{\Sigma}\text{,}$

$$G^{(r)}(D; \boldsymbol{\rho}) \coloneqq \sum_{k=0}^{3r} \sum_{i_1, \dots, i_k \in [\![1, \hat{g}]\!]^k} \Theta^{(i_1, \dots, i_k)}(\mathbf{v}, \tau) G^{(r)}_{(i_1, \dots, i_k)}(D)$$

and where $v_j\coloneqq rac{
ho_j+arphi_j}{\hbar}+\mu_j^{(lpha)}(z)$, $\mathbf{v}=(v_1,\ldots,v_{\hat{g}})$, with

$$\varphi_j \coloneqq \frac{1}{2\pi i} \oint_{\mathcal{B}_j} \omega_{0,1} \quad \text{ and } \quad \mu_j^{(\alpha)}(z) \coloneqq \frac{1}{2\pi i} \int_D \oint_{\mathcal{B}_j} \omega_{0,2}.$$

990

TR and ram's	From loop to KZ equations	Non-perturbative	Future 000	Bonus 0000
Outline				

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system Good monodromies

Lax systems

Present and future

 Non-perturbative wave functions satisfy the same KZ equations as their perturbative partners.

$$\begin{split} \hbar \frac{d\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho})}{dx(z)} + \psi_{l+1,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho}) = \\ \sum_{P \in \mathcal{P}} \sum_{k \in S_P^{(l+1)}} \xi_P^{-k}(x(z)) \mathrm{ev.} \left[\widetilde{\mathcal{L}}_{P,k,l} \, \psi_{0,\mathrm{NP}}^{\infty^{(\alpha)},\,\mathrm{symbol}}(z,\hbar,\boldsymbol{\rho}) \right]. \end{split}$$

 \bullet Non-perturbative wave functions \leadsto simple monodromy properties. For $j\in [\![1,\hat{g}]\!],$ we have

$$\begin{split} \psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z+\mathcal{A}_{j},\hbar,\pmb{\rho}) &= e^{\frac{2\pi i\epsilon_{j}}{\hbar}}\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\pmb{\rho}),\\ \psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z+\mathcal{B}_{j},\hbar,\pmb{\rho}) &= e^{-\frac{2\pi i\rho_{j}}{\hbar}}\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\pmb{\rho})\\ \text{and }\forall \ p\in x^{-1}(\mathcal{P}) \end{split}$$

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z+\mathcal{C}_p,\hbar,\boldsymbol{\rho}) = (-1)^{\delta_{p,\infty^{(\alpha)}}} e^{\frac{2\pi i t_{p,0}}{\hbar}} \psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho})$$

TR and ram's 0000000000000	From loop to KZ equations	Non-perturbative	Future 000	Bonus 0000
Outline				

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's 00000000000000	From loop to KZ equations	Non-perturbative	Future 000	Bonus 0000
Lax systems				

For $l \ge 0$, we define

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho}) \coloneqq \mathrm{ev}. \sum_{\substack{\beta \subseteq \left(x^{-1}(x(z)) \setminus \{z\}\right)}} \frac{1}{l!} \left(\prod_{j=1}^{l} \mathcal{I}_{\mathcal{C}_{\beta_{j}},1}\right) \ \psi_{\mathrm{NP}}^{\mathrm{symbol}}(D;\hbar,\boldsymbol{\rho}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

TR and ram's		From loop to KZ equations	Non-perturbative	Future	Bonus
0000000000000	00000000	00000000	000000000000000	000	0000
Lax systems					

For $l \ge 0$, we define

$$\psi_{l,\mathrm{NP}}^{\infty^{(\alpha)}}(z,\hbar,\boldsymbol{\rho}) \coloneqq \mathrm{ev.} \sum_{\substack{\beta \subseteq \left(x^{-1}(x(z)) \setminus \{z\}\right)}} \frac{1}{l!} \left(\prod_{j=1}^{l} \mathcal{I}_{\mathcal{C}_{\beta_{j}},1}\right) \ \psi_{\mathrm{NP}}^{\mathrm{symbol}}(D;\hbar,\boldsymbol{\rho}).$$

We use them to define a $d\times d$ matrix

$$\widehat{\Psi}_{\mathrm{NP}}(\lambda,\hbar,oldsymbol{
ho})\coloneqq \left[\psi_{l-1,\mathrm{NP}}^{\infty^{(lpha)}}(z^{(eta)}(\lambda),\hbar,oldsymbol{
ho})
ight]_{1< l,eta< d}$$

where $z^{(\beta)}(\lambda)$ denotes the β^{th} preimage by x of λ .

TR and ram's	From loop to KZ equations	Non-perturbative	Future	Bonus
		000000000000000		
Lax systems				

Theorem (ODE and Lax system)

Let
$$\hat{L}(\lambda,\hbar) \coloneqq -\widehat{P}(\lambda) + \hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_P^{-k}(\lambda) \widehat{\Delta}_{P,k}(\lambda,\hbar)$$
. Then,

$$\hbar \frac{d\widehat{\Psi}_{\rm NP}(\lambda,\hbar)}{d\lambda} = \hat{L}(\lambda,\hbar)\widehat{\Psi}_{\rm NP}(\lambda,\hbar),$$

where

$$\widehat{P}(\lambda) := \begin{bmatrix} -P_1(\lambda) & 1 & 0 & \dots & 0\\ -P_2(\lambda) & 0 & 1 & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -P_{d-1}(\lambda) & 0 & 0 & \dots & 1\\ -P_d(\lambda) & 0 & 0 & \dots & 0 \end{bmatrix}$$

For any $P \in \mathcal{P}$, $k \in \mathbb{N}$, $l \in [\![0, d-1]\!]$, one has the auxiliary systems

$$\hbar^{-1} \text{ev.} \mathcal{L}_{P,k,l} \widehat{\Psi}_{\text{NP}}^{\text{symbol}}(\lambda,\hbar) = \widehat{A}_{P,k,l}(\lambda,\hbar) \widehat{\Psi}_{\text{NP}}(\lambda,\hbar),$$

where $\hat{L}(\lambda, \hbar)$ and $\hat{A}_{P,k,l}(\lambda, \hbar)$ are \hbar -trans-series functions that are rational functions of λ , with no poles at critical values $\lambda \in x(\mathcal{R})$.

TR and ram's	From loop to KZ equations	Non-perturbative	Future	Bonus
Lax systems				

Theorem (ODE and Lax system)

Let
$$\hat{L}(\lambda,\hbar) \coloneqq -\hat{P}(\lambda) + \hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_P^{-k}(\lambda) \hat{\Delta}_{P,k}(\lambda,\hbar)$$
. Then,

$$\hbar \frac{d\hat{\Psi}_{NP}(\lambda,\hbar)}{d\lambda} = \hat{L}(\lambda,\hbar) \hat{\Psi}_{NP}(\lambda,\hbar), \tag{1}$$

where

$$\widehat{P}(\lambda) := \begin{bmatrix} -P_1(\lambda) & 1 & 0 & \dots & 0\\ -P_2(\lambda) & 0 & 1 & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -P_{d-1}(\lambda) & 0 & 0 & \dots & 1\\ -P_d(\lambda) & 0 & 0 & \dots & 0 \end{bmatrix}$$

For any $P \in \mathcal{P}$, $k \in \mathbb{N}$, $l \in \llbracket 0, d-1 \rrbracket$, one has the auxiliary systems

$$\hbar^{-1} \text{ev.} \mathcal{L}_{P,k,l} \widehat{\Psi}_{\text{NP}}^{\text{symbol}}(\lambda,\hbar) = \widehat{A}_{P,k,l}(\lambda,\hbar) \widehat{\Psi}_{\text{NP}}(\lambda,\hbar),$$

where $\hat{L}(\lambda,\hbar)$ and $\hat{A}_{P,k,l}(\lambda,\hbar)$ are \hbar -trans-series functions that are rational functions of λ , with no poles at critical values $\lambda \in x(\mathcal{R})$.

- (1) → linear differential system of size d × d whose formal fundamental solution can be computed by TR, with poles at the poles of the leading WKB term...
- $\hat{L}(\lambda,\hbar)$ has poles only at $\lambda \in \mathcal{P}$ and at zeros of the Wronskian det $\widehat{\Psi}_{NP}(\lambda,\hbar)$, apparent singularities of the system (can be computed thanks to the KZ eqns).

TR and ram's	From loop to KZ equations	Non-perturbative	Future	Bonus
		00000000000000000		
Lax systems				

Theorem (ODE and Lax system)

Let
$$\hat{L}(\lambda,\hbar) \coloneqq -\hat{P}(\lambda) + \hbar \sum_{P \in \mathcal{P}} \sum_{k \in \mathbb{N}} \xi_P^{-k}(\lambda) \widehat{\Delta}_{P,k}(\lambda,\hbar)$$
. Then,

$$\hbar \frac{d\widehat{\Psi}_{\rm NP}(\lambda,\hbar)}{d\lambda} = \hat{L}(\lambda,\hbar)\widehat{\Psi}_{\rm NP}(\lambda,\hbar),\tag{2}$$

where

$$\hat{P}(\lambda) \coloneqq \begin{bmatrix} -P_1(\lambda) & 1 & 0 & \dots & 0\\ -P_2(\lambda) & 0 & 1 & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ -P_{d-1}(\lambda) & 0 & 0 & \dots & 1\\ -P_d(\lambda) & 0 & 0 & \dots & 0 \end{bmatrix}$$

For any $P \in \mathcal{P}$, $k \in \mathbb{N}$, $l \in [[0, d - 1]]$, one has the auxiliary systems

$$\hbar^{-1} \text{ev.} \mathcal{L}_{P,k,l} \widehat{\Psi}_{\text{NP}}^{\text{symbol}}(\lambda,\hbar) = \widehat{A}_{P,k,l}(\lambda,\hbar) \widehat{\Psi}_{\text{NP}}(\lambda,\hbar),$$

where $\hat{L}(\lambda,\hbar)$ and $\hat{A}_{P,k,l}(\lambda,\hbar)$ are \hbar -trans-series functions that are rational functions of λ , with no pole at critical values $\lambda \in x(\mathcal{R})$.

- Most technical proof ~> by induction on the order of the transseries.
- Proof uses admissibility conditions (distinct critical values, smooth simple ramification points) → should adapt without them but involving more technical computations.

R and ram's The quantisation problem From loop to KZ equations Non-perturbative Future Bonus 00000000000 000000000 00000000 00000000 00000 0000</

4 different interesting gauges and examples

None of the gauge transformations modify the first line of the wave functions matrix (used to define the quantum curve).

- Gauge $\widehat{\Psi}$: Gauge coming from KZ equations which provides compatible auxiliary systems $(\mathcal{L}_{P,k,l})_{P \in \mathcal{P}, l \in [\![0,d-1]\!], k \in S_P^{(l+1)}}$.
- Gauge $\widetilde{\Psi}$ (\hbar^0 gauge transformation from $\widehat{\Psi}$): Leading order in \hbar of \widetilde{L} is companion-like \rightsquigarrow the classical spectral curve directly recovered from last line.
- Gauge Ψ : Lax matrix L is companion-like at all orders in $\hbar \rightarrow both$ the quantum and classical curves directly read from the last line of L and its $\hbar \rightarrow 0$ limit. Natural framework for Darboux coordinates and isomonodromic deformations.
- Gauge $\underline{\Psi}$: Lax matrix \underline{L} has no apparent singularities $\rightsquigarrow \underline{L}(\lambda, \hbar)d\lambda$ as an \overline{h} -familly of Higgs fields giving rise to a flow in the corresponding Hitchin system.

Example

- Reconstruction via TR of a 2-parameter family of formal transseries solutions to Painlevé 2 and quantization. Classical spectral curve: $y^2 P_1(\lambda)y + P_2(\lambda) = 0$, where $P_1(\lambda) = P_{\infty,2}^{(1)}\lambda^2 + P_{\infty,1}^{(1)}\lambda + P_{\infty,0}^{(1)}$ and $P_2(\lambda) = P_{\infty,4}^{(2)}\lambda^4 + P_{\infty,3}^{(2)}\lambda^3 + P_{\infty,2}^{(2)}\lambda^2 + P_{\infty,1}^{(2)}\lambda + P_{\infty,0}^{(2)}$.
- Quantisation of a degree 3, genus 1 classical spectral curve with a single singularity at infinity: $y^3 (P_{\infty,1}^{(1)}\lambda + P_{\infty,0}^{(1)})y^2 + (P_{\infty,2}^{(2)}\lambda^2 + P_{\infty,1}^{(2)}\lambda + P_{\infty,0}^{(2)})y P_{\infty,3}^{(3)}\lambda^3 P_{\infty,2}^{(3)}\lambda^2 P_{\infty,1}^{(3)}\lambda P_{\infty,0}^{(3)} = 0.$

TR and ram's 0000000000000	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten–Kontsevich and Airy

The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future

TR and ram's		From loop to KZ equations	Non-perturbative	Future	Bonus				
				000					
Some of my	questions	Some of my questions							

- Explore the connection with summability, exact WKB, Stokes phenomenon and resurgence. Conjecture: There exist values of ε and \hbar making the transseries involved summable.
- Conjecture: The non-perturbative partition function is a tau function.
- How does the connection built as $d \mathcal{L}(x,\hbar)dx/\hbar$ depend on the choice of cycles $(\mathcal{A}_i, \mathcal{B}_i)$?
- Remove resurgence assumption from our proof of large genus asymptotics of Weil–Petersson volumes.
- Interesting enumerative geometry in higher genus TR problems?
- Extend TR beyond orientable surfaces: Klein surfaces, non-orientable enumerative geometry and real moduli space.
- Master x y swap transformation.

Your questions?

Merci beaucoup pour votre attention !

TR and ram's 0000000000000	From loop to KZ equations	Future 000	Bonus 0000
Outline			

- Introduction, connections, examples
- One of our playgrounds: Witten-Kontsevich and Airy

2 The quantisation problem

- Quantum curve problem
- Origins, context and examples
- (Classical) spectral curves

From loop equations to KZ equations

- Perturbative wave functions
- KZ-like equations
- Bad monodromies

Non-perturbative wave functions and Lax system

- Good monodromies
- Lax systems

Present and future
		·	000	0000
TR and ram's	From loop to KZ equations		Future	Bonus

"The geometry of large random maps is universal"

 \bullet $\mathcal{O}(n)$ loop model \leadsto statistical ensemble of maps endowed with loop configurations.

 \bullet 2 new universality classes (depending continuously on n) \rightsquigarrow dense and dilute.

"The geometry of large random maps is universal"

• O(n) loop model \rightsquigarrow statistical ensemble of maps endowed with loop configurations.

- \bullet 2 new universality classes (depending continuously on n) \rightsquigarrow dense and dilute.
- **Q** G. Borot, J. Bouttier et B. Duplantier \rightsquigarrow nesting properties (0,1) and (0,2).
- Analysis of critical behavior of TR in the presence of large and small boundaries.
- Nesting properties for arbitrary topologies.

When $V \to \infty$:

• Typical configuration with small boundaries \rightsquigarrow probably incident to distinct arms (with $O(\ln V)$ separating loops).

[Borot-G-F arXiv:1609.02074]

Let $\mathfrak{d} = 1(-1)$ and $c = \frac{1}{1-b}(1)$ in the dense (dilute) phase, with $b(\mathbf{n}) \in (\frac{1}{2}, 0)$.

For $2g-2+\bar{k}>0,$ when $u\to1^-,$ we have for g.s. of configurations with k_S small boundaries

 $\mathsf{Conf}_{k}^{[g]}(x_{1},\ldots,x_{k}) \stackrel{\cdot}{\sim} (1-u)^{c((2\mathsf{g}-2+k)(\mathfrak{d}\frac{b}{2}-1)-\frac{k}{2}+\frac{3}{4}k_{S})}.$

Recent work:

- A [Eynard–G-F–Gregori–Lewański–Schiappa, '23 arXiv:2305.16940]: non-perturbative corrections to JT gravity via TR, geometric interpretation of instanton corrections and large genus asymptotics of Weil–Petersson volumes (assuming resurgence!).
- B [Eynard–G-F–Giacchetto–Gregori–Lewański, '23 arXiv:2309.03143]: Large genus asymptotics of intersection numbers (with no assumptions!).

TR and ram's		From loop to KZ equations	Non-perturbative	Future	Bonus			
					0000			
A triple duality: symplectic, simple and free								

Through monotone Hurwitz numbers

• Free probability:

```
Moments \varphi \leftrightarrow Free cumulants \kappa
```

[Borot, Charbonnier, Leid, Shadrin, G-F, '21 arXiv:2112.12184]

• Combinatorics:

Maps \leftrightarrow Fully simple maps

[Borot, G-F, '17 arXiv:1710.07851] [Borot, Charbonnier, Do, G-F, '19 arXiv:1904.02267]

• Topological recursion (TR):

$$(x,y) \stackrel{\mathsf{TR}}{\leadsto} \omega_{g,n} \quad \leftrightarrow \quad (\check{x},\check{y}) \stackrel{\mathsf{TR}}{\leadsto} \check{\omega}_{g,n},$$

with $dx \wedge dy = d\check{x} \wedge d\check{y}$ (symplectic transformation).

[Alexandrov, Bychkov, Dunin-Barkowski, Kazarian, Shadrin, '21 arXiv:2212.00320]

• Quantum curves: Harnad duality?