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Topological recursion (TR, Chekhov–Eynard–Orantin ’04-’07)

Goal: “Count surfaces Sg,n of genus g with n boundaries (topology (g, n)).”

TR :


Σ Riemann surface
x : Σ→ CP1

ω0,1 = y dx 1-form (discs)
ω0,2 bidifferential (cylinders)

Spectral curve

Multi-differentials
ωg,n(z1, . . . , zn), zi ∈ Σ,
∈ H0(Σn, K�n

Σ (P))Snrecursion on
|χ(Sg,n)| = 2g − 2 + n

z1

z2

zn

=
∑

a∈Cr(x)

Res
z=a

(
g

ωg,n(z1,...,zn)

g−1z1
+
∑ ′z

σa(z)

a

z2

zn

h

g−h

z1

zI

zJ

z

σa(z)

a

)

Ka(z1,z) ωg−1,n+1(z,σa(z),z2,...,zn))

Terms in correspondence with the ways of cutting
a pair of pants (0, 3) from Sg,n.
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Connections

1. Combinatorial maps
(enumerative, analytic, algebraic
combinatorics and probability)

2. Moduli space of curves
(algebraic and enumerative geometry)

4. Resurgence
(analysis)

3. Integrable systems
(differential equations)

Topological recursion
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Spectral curve (input)

Input: Σ Riemann surface ((global) spectral curve),

x : Σ→ C meromorphic function with finitely many and simple critical/ramification
points:

Cr(x) = Ram(x) := {p ∈ Σ | dx(p) = 0},

ω0,1 is a meromorphic 1-form on Σ, often ω0,1 = ydx, with y : Σ→ C holomorphic
on a neighborhood of every a ∈ Cr(x) and dy(a) 6= 0,

ω0,2 is a symmetric bifferential on Σ×Σ with only double poles along the diagonal and
vanishing residues, that is locally

ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2
+

holomorphic︷ ︸︸ ︷
h(z1, z2) .

Around every a ∈ Ram(x), ∃ local coordinate ζa(z)
such that

x(z)− x(a) = ζa(z)2.

∃ neighbourhoods Ua of every a ∈ Ram(x) and
σa : Ua → Ua, with

x(z) = x(σa(z)),∀z ∈ Ua,

σa 6= id, σa(a) = a, ζa(σa(z)) = −ζa(z).
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Fundamental bidifferentials/Bergman kernel ω0,2

Fundamental bidifferentials:

B(Σ) :=
{
H0(Σ2,K�2

Σ (2∆))S2 | res(B) = 0,bires(B) = 1
}
,

with ∆ := {(z, z) ∈ Σ2}. It is an affine space over

H0(Σ2,K�2
Σ )S2 = S2H0(Σ,KΣ),

whose dim =
ĝ(ĝ+1)

2
, with ĝ = genus(Σ).

Normalisation: Symplectic basis (Ai,Bi)ĝi=1 of H1(Σ,Z), L := Vect(A1, . . . ,Aĝ)

Lagrangian. ω0,2 = B = BL ∈ B(Σ) is normalised wrt L if

∀ i ∈ J1, ĝK ,
∮
z1∈Ai

BL(z1, z2) = 0, ∀z2 ∈ Σ.

Then it is unique!

History: Bergman–Schiffer 50’s, Korotkin–Kokotov 00’s

Classical Bergman kernel  ∂2

∂z1∂z2
G(z1, z2)dz1dz2 = B̃(z1, z2)

TR Bergman kernel  ∂2

∂z1∂z2
G(z1, z2)dz1dz2 = B(z1, z2)

G Green function
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Multi-differentials (output)

TR output: For n ≥ 1,

ωg,n(z1, . . . , zn) =
∑

a∈Ram(x)

Res
z=a

Ka(z1, z)

(
ωg−1,n+1(z, σa(z), zJ2,nK)+

+
no disk∑
0≤h≤g

ItJ=J2,nK

ωg−h,1+|I|(z, zI)ωh,1+|J|(σa(z), zJ )

)
,

where Ka(z1, z) :=

∫ z
σa(z) ω0,2(z1,·)

2(ω0,1(z)−ω0,1(σa(z)))
.

ωg,n multi-differentials, i.e.
meromorphic sections of the
bundle⊗n

i=1 π
∗
i (T ∗Σ) = �ni=1T

∗Σ
↓

Σn

with πi : Σn → Σ the ith pro-
jection



TR and ram’s The quantisation problem From loop to KZ equations Non-perturbative Future Bonus

Properties

ωg,n ∈ H0(Σn,K�nΣ (P))Sn , i.e. symmetric with poles at

P =


{poles of ω0,1}, if (g, n) = (0, 1),

∆, if (g, n) = (0, 2),

Ram(x), if 2g − 2 + n > 0.

Deformations: Let St be a family of spectral curves depending on a parameter t.

∂tω0,1(z1) =

∫
γt

ω0,2(z, z1) (defines a suitable γt),

∂tω0,2(z1, z2) =

∫
γt

ω0,3(z, z1, z2),

⇒ ∂tωg,n(z1, . . . , zn) =

∫
γt

ωg,n+1(z, z1, . . . , zn).

Dilaton equation:∑
a∈Ram(x)

Res
z=a

Φ(z)ωg,n+1(z1, . . . , zn, z) = (2g − 2 + n)ωg,n(z1, . . . , zm),

where dΦ = ω0,1.
ωg,n satisfy certain symplectic invariance, loop equations, have modularity
properties, are connected to integrable systems...
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Motivations to study TR

Allows to calculate

Gives structure

Provides universality

Gaining context

Nowadays new instances of TR also enrich TR
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Examples

For the Lambert curve x = ye−y , TR provides simple Hurwitz numbers
(Eynard–Mulase–Safnuk, ’09, arXiv:0907.5224). Hurwitz theory
(Bonzom–Chapuy–Charbonnier–G-F, ’22, arXiv:2206.14768)

For y =
− sin(2π

√
x)

2π
, TR gives Mirzakhani’s recursion for Weil–Petersson

volumes (of the moduli space of bordered hyperbolic surfaces), (Eynard–Orantin,
’07, arXiv:0705.3600).
TR on mirror curve of a toric CY3 computes its open Gromov–Witten theory
(Bouchard–Klemm–Mariño–Pasquetti, ’07, arXiv:0709.1453), (Fang–Liu–Zong,
’16, arXiv:1604.07123).
Statistical physics models on random maps: 1-hermitian matrix model, Ising
model, Potts model, O(n)-loop model (Borot–Eynard, ’09, arXiv:0910.5896),
(Borot–Eynard–Orantin, ’13, arXiv:1303.5808)...
Semi-simple cohomological field theories and topological recursion
(Dunin-Barkowski–Orantin–Shadrin–Spitz, ’14, arXiv:1211.4021).
Reconstruction of formal WKB expansions, integrability, isomonodromic systems
(Borot–Eynard, ’11, arXiv:1110.4936), (Eynard, ’17, arXiv:1706.04938),
(Eynard–G-F–Marchal–Orantin, ’21, arXiv:2106.04339)...
Conjecturally, for the A-polynomial of a knot as a spectral curve, TR computes
the colored Jones polynomial of the knot (Borot–Eynard, ’12, arXiv:1205.2261)).
Equivalence with W -constraints (Kontsevich–Soibelman ’17, ABCD of
Andersen–Borot–Chekhov–Orantin ’17,
Borot–Bouchard–Chidambaram–Creutzig–Noshchenko ’18 arXiv:1812.08738)

https://arxiv.org/abs/0907.5224
https://arxiv.org/abs/2206.14768
https://arxiv.org/abs/0705.3600
https://arxiv.org/abs/0709.1453
https://arxiv.org/abs/1604.07123
https://arxiv.org/abs/0910.5896
https://arxiv.org/abs/1303.5808
https://arxiv.org/abs/1211.4021
https://arxiv.org/abs/1110.4936
https://arxiv.org/abs/1706.04938
https://arxiv.org/abs/2106.04339
https://arxiv.org/abs/1205.2261
https://arxiv.org/abs/1812.08738
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Witten’s conjecture  Kontsevich’s theorem

1. Kontsevich maps
and matrix model

2. Intersection numbers∫
Mg,n

ψd1
1 · · ·ψ

dn
n

3. Integrable hierarchy
KdV

TR (’07)

Witten’s conjecture, ’90

Kontsevich, ’91
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Witten’s conjecture  Kontsevich’s theorem

1. Kontsevich maps
and matrix model

2. Intersection numbers∫
Mg,n

ψd1
1 · · ·ψ

dn
n

3. Integrable hierarchy
KdV

TR (’07)

Kontsevich, ’91

Kontsevich, ’91

Kontsevich, ’91

TR applied to the Airy curve (x, y) =
(
z2

2
, z
)
produces

ωg,n(z1, . . . , zn) = 22−2g−n
∑

∑
i di=3g−3+n

(∫
Mg,n

ψd1
1 · · ·ψ

dn
n

) n∏
i=1

(2di + 1)!!dzi

z
2di+2
i

.
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Airy differential equation

Airy function Ai(λ)  
(
d2

dλ2 − λ
)
Ai(λ) = 0. Asymptotic expansion as λ→∞

(g.s. of intersection numbers): logAi(λ)− S0(λ)− S1(λ) =
∑∞
m=2 Sm(λ),

where S0(λ) := − 2
3
λ

3
2 , S1(λ) := − 1

4
log λ− log(2

√
π) and ∀m ≥ 2

Sm(λ) :=
λ−

3
2

(m−1)

2m−1

∑
h≥0 , n>0

2h−2+n=m−1

(−1)n

n!

∑
d∈Nn

〈
τd1

. . . τdn
〉
h,n

n∏
i=1

(2di − 1)!! .

Formal parameter ~ to keep track of the Euler characteristics of the surfaces
enumerated  ψKont(λ, ~) := Ai(~−

2
3 λ) satisfies(

~2 d2

dλ2
− λ
)
ψKont(λ, ~) = 0

and admits an asymptotic expansion

logψKont(λ, ~)− ~−1S0(λ)− S1(λ) =
∞∑
m=2

~m−1Sm(λ).

TR on the Airy spectral curve y2 − x = 0 computes ZKont(~, t) and ψKont(λ, ~),
and allows to construct the quantum curve

(
~2 d2

dλ2 − λ
)
ψKont(λ, ~) = 0.

General phenomenon?
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Presentation of the quantum curve conjecture

P ∈ C[x, y] and Σ = {(x, y) ∈ C2 | P (x, y) = 0} plane curve of genus ĝ.

A quantization of Σ is a differential operator P̂ of the form

P̂ (x̂, ŷ; ~) = P0(x̂, ŷ) +O(~),

where x̂ = x· , ŷ = ~ d
dx

, such that P0(x, y) = P (x, y).

The operators x̂ and ŷ satisfy [ŷ, x̂] = ~.

P̂ (x̂, ŷ)ψ(x, ~) = 0. Schrödinger equation:
(
~2 d2

dx2 − R̂(x̂, ~)
)
ψ(x, ~) = 0.

WKB asymptotic expansion logψ(x, ~) =
∑
k≥−1

~kSk(x) ∈ ~−1C[[~]].

Question: Can we construct the operator P̂ and the solution ψ from P?

Conjecture

Both P̂ and ψ can be constructed from Σ using topological recursion.

Subtlety: We want P̂ to have a controlled pole structure, more precisely, to have the
same pole structure as P .
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History and literature

Proved for many particular cases  genus ĝ = 0 spectral curves.

Bouchard–Eynard ’17  spectral curves whose Newton polygon has
NI := #{interior points} = 0 (Fact: ĝ ≤ NI).

Mariño–Eynard ’08  Holomorphic, modular and background independent,
non-perturbative partition functions.

Borot–Eynard ’12  Only non-perturbative wave functions can obey “good”
quantum curves (for ĝ > 0).

Eynard ’17  General idea to construct integrable systems and their τ -functions
from the geometry of the spectral curve.

Chidambaram–Bouchard–Dauphinee ’18  ĝ = 1, but bad properties (infinitely
many ~ corrections with poles at ramification points, not even functions of x)!

Iwaki–Marchal–Saenz ’18, Marchal–Orantin ’19 (reversed approach)  Lax pairs
associated with ~-dependent Painlevé equations and any
~∂xΨ(x, ~) = L(x, ~)Ψ(x, ~), with L(x, ~) ∈ sl2(C), satisfy the topological type
property from Bergère–Borot–Eynard ’15 (ĝ = 0).

Iwaki–Saenz ’16, Iwaki ’19  Painlevé I and elliptic curves (ĝ = 1).

Marchal–Orantin ’19, Eynard–GF ’19  Hyperelliptic (any ĝ).

Eynard–GF–Marchal–Orantin ’21  any algebraic curve with simple ramifications.
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Chidambaram–Bouchard–Dauphinee ’18  ĝ = 1, but bad properties (infinitely
many ~ corrections with poles at ramification points, not even functions of x)!

Iwaki–Marchal–Saenz ’18, Marchal–Orantin ’19 (reversed approach)  Lax pairs
associated with ~-dependent Painlevé equations and any
~∂xΨ(x, ~) = L(x, ~)Ψ(x, ~), with L(x, ~) ∈ sl2(C), satisfy the topological type
property from Bergère–Borot–Eynard ’15 (ĝ = 0).

Iwaki–Saenz ’16, Iwaki ’19  Painlevé I and elliptic curves (ĝ = 1).

Marchal–Orantin ’19, Eynard–GF ’19  Hyperelliptic (any ĝ).

Eynard–GF–Marchal–Orantin ’21  any algebraic curve with simple ramifications.
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Mariño–Eynard ’08  Holomorphic, modular and background independent,
non-perturbative partition functions.

Borot–Eynard ’12  Only non-perturbative wave functions can obey “good”
quantum curves (for ĝ > 0).
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Beyond Airy: some meaningful generalisations

y2 = x  Witten (conj) ’90, Kontsevich
’91, Airy, KW KdV tau function∫

Mg,n

ψd1
1 · · ·ψ

dn
n

(
~2 d2

dx2
− x
)
ψ(z, ~) = 0

y2x = 1  Norbury (conj) ’17,
Chidambaram, Giacchetto, G-F, ’22,
Bessel, BGW KdV tau function∫

Mg,n

Θg,nψ
d1
1 · · ·ψ

dn
n

(
~2 d

dx
x
d

dx
− 1
)
ψ(z, ~) = 0

•

yr = x  Witten ’93,
Faber–Shadrin–Zvonkine, ’10, rAiry, rKdV∫
Mg,n

W r
g,n(a1, . . . , an)ψd1

1 · · ·ψ
dn
n

(
~r

dr

dxr
− x
)
ψ(z, ~) = 0

y2 = x3 + tx+ V  Painlevé I, elliptic
curve (ĝ = 1)∫
Mg,n+m

ψ2
n+1 · · ·ψ2

n+mψ
d1
1 · · ·ψ

dn
n(

~2 d2

dx2
−
(
x3 + tx+ V +

∂

∂t

))
ψ = 0

•
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Spectral curves

N distinct points Λ1, . . . ,ΛN ∈ P1 \ {∞}. Let Hd(Λ1, . . . ,ΛN ,∞) be the Hurwitz
space of degree d ramified coverings x : Σ→ P1, where Σ is the Riemann surface:

Σ :=
{

(λ, y) | P (λ, y) = 0
}

of genus ĝ, where x(λ, y) := λ and

P (λ, y) =
d∑
l=0

(−1)lyd−lPl(λ), P0(λ) = 1,

Pl being a rational function with possible poles at λ ∈ P := {Λi}Ni=1

⋃
{∞}.

Classical spectral curve:  (Σ, x).

Definition (Admissible classical spectral curves)

A classical spectral curve (Σ, x) is admissible if:

P (λ, y) = 0 is an irreducible algebraic curve;

a ∈ Ram(x) are simple, i.e. dx has only a simple zero at a ∈ R;
∀a ∈ R, dy(a) 6= 0;
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Torelli marking and filling fractions

Fix a symplectic basis (Ai,Bi)ĝi=1 of H1(Σ,Z) and a Lagrangian L associated to the
A-cycles.

Remark

Choice of Torelli marking can be thought of as a choice of polarisation.

Let
(

(Σ, x), (Ai,Bi)ĝi=1

)
be some admissible initial data. We define the tuple (εi)

ĝ
i=1

of filling fractions by

∀ i ∈ J1, ĝK , εi :=
1

2πi

∮
Ai
ydx.

ω0,1(z) = y(z)dx(z), ω0,2(z1, z2) = BL(z1, z2) ⇒

∂

∂εi
ωh,n(z1, . . . , zn) =

∮
z∈Bi

ωh,n+1(z, z1, . . . , zn), ∀i ∈ J1, ĝK.
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Loop equations

Q
(l)
h,n+1(λ; z) symmetric algebraic combinations of the ωg,ns taken at all preimages

x−1(λ).

Theorem (Loop equations)

The function λ 7→
Q

(l)
h,n+1

(λ;z)

(dλ)l
has no poles at λ ∈ x(R), ∀z ∈ (Σ \ R)n.

Linear:

Q
(1)
h,n+1(λ; z) =

∑
z∈x−1(λ)

ωh,n+1(z, z) = δn,0δh,0P1(λ)dλ+ δn,1δh,0
dλ dx(z1)

(λ− x(z1))2
.
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Perturbative wave function over a divisor

D =
s∑
i=1

αi[pi] a generic divisor (of degree=
∑
i αi = 0) on Σ̃P , ΣP := Σ \ x−1(P).

Perturbative wave function ψ(D, ~) associated to D:

exp

(∑
h≥0

∑
n≥0

~2h−2+n

n!

∫
D
· · ·
∫
D

(
ωh,n(z1, . . . , zn)− δh,0δn,2

dx(z1)dx(z2)

(x(z1)− x(z2))2

))
.

e−~−2ω0,0e−~−1 ∫
D ω0,1ψ(D, ~) ∈ C[[~]].

ψ(D = [z]− [p2], ~) has an essential singularity at p2 →∞(α)  Need to regularise ψ
and KZ equations.

Perturbative partition function Z(~) = ψ(D = ∅, ~):

Z(~) := exp

(∑
h≥0

~2h−2ωh,0

)
, with e−~−2ω0,0Z(~) ∈ C[[~]].

Remark

Wave functions  solutions to a differential equation; the partition function  role of
tau function from the point of view of isomonodromic or integrable systems.
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KZ equations for d = 2  system of PDEs

Loop equations can be combined into a g. s. to form a system of d× s “differential
equations” satisfied by the wave functions. Case d = 2:

Theorem (Eynard–GF,’19)

For k = 1, 2,

~2

(
d2

dx2
k

+
∑
i6=k

d
dxk
− d
dxi

xk − xi

)
ψ = (R(xk) + L(xk))ψ.

ζ∞ ∈ x−1(∞) and ζl ∈ x−1(Λl) poles of ω0,1 of orders m∞ and ml, l = 1, . . . , N ,
respectively. Let d∞ := ordζ∞ (x). Operator L(x) = L∞(x) + LΛ(x):

L∞(x) =

m∞∑
j=1−2d∞

tζ∞,j

1−j
d∞
−2∑

k=0

x
k
(
−

j

d∞
− k − 2

) ∂

∂tζ∞,j+d∞(k+2)

,

LΛ(x) =

N∑
l=1

(
1

x− λl
∂

∂λl
+

ml−1∑
j=1

tζl,j

j∑
k=1

(x− λl)−(k+1)
(j + 1− k)

∂

∂tζl,j+1−k

)
.

Example

In the Airy case, y2 = x, we have only one pole, at ζi =∞, of degree mi = 3, with
di = −2. The sum is empty and L(x) = 0.
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Airy and elliptic cases for two-point divisors

Divisor D = [z1]− [z2]:

PDEs for Airy curve: y2 = x. We had L(x) = 0.
~2
(
d2

dx2
1

+
d
dx1
− d
dx2

x1−x2

)
ψ = x1ψ,

~2
(
d2

dx2
2

+
d
dx1
− d
dx2

x1−x2

)
ψ = x2ψ.

More generally, admissible curves considered in Bouchard–Eynard, ’17 (empty Newton
polygon) are those for which L(x) = 0.

PDEs for elliptic curve: R(x(z)) = y(z)2 = x3 + tx+ V , with

−V =

∫
B∞,1

ω0,1 =
∂

∂t∞,1
ω0,0 = −

∂

∂t
ω0,0

⇒ R(x(z)) = x3 + tx+ ∂
∂t
ω0,0.

We have L(x) = ∂
∂t
.

(
~2 d2

dx2
k

+ ~2
d
dx1
− d
dx2

x1 − x2

)
ψ =

(
x3
k + txk + V +

∂

∂t

)
ψ,

for k = 1, 2.
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Monodromies of the perturbative wave function  bad monodromies

Problem for genus ĝ > 0:
∫ z
o · · ·

∫ z
o ωg,n are not invariant after z goes around a cycle.

Very bad monodromies when z goes around a Bi (first type cycle).

Lemma

∀ j ∈ J1, ĝK : ψ([z +Aj ]− [∞(α)], ~) = e
2πiεj

~ ψ([z]− [∞(α)], ~),

ψ(D + Bj , ~) = exp

( ∑
(h,n,m)∈N3

~2h−2+n+m

n!m!

n︷ ︸︸ ︷∫
D
· · ·
∫
D

m︷ ︸︸ ︷∫
Bj
· · ·
∫
Bj
ωh,n+m

)
.

Since the Bj period of ωh,n+1 is equal to the variation of ωh,n wrt εj :=
∮
Aj

ω0,1,

ψ(D + Bj , ~) = exp

( ∑
(h,n)∈N2

~2h−2+n

n!

n︷ ︸︸ ︷∫
D
· · ·
∫
D

∑
m≥0

1

m!

(
~
∂

∂εj

)m
ωh,n

)
⇒

ψ([z + Bj ]− [∞(α)], ~) = e
~ ∂
∂εj ψ([z]− [∞(α)], ~) = ψ([z]− [∞(α)], ~, εj → εj + ~).
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∫ z
o · · ·

∫ z
o ωg,n are not invariant after z goes around a cycle.

Very bad monodromies when z goes around a Bi (first type cycle).

Lemma
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Summing over the lattice

Remark

Our KZ equations do not depend on z ∈ Σ but only on its image x(z) ⇒
For any finite family of cγ , the following sum satisfies the same KZ equations

ψl([z]− [∞(α)], ~, {cγ}) :=
∑

γ∈π1(Σ\x−1(P))

cγ ψl([z] + γ − [∞(α)], ~).

Goal: Build solutions to the same KZ equations but with better
monodromies along the Bi-cycles.

Strategy: Sum over γ =
g∑
i=1

niBi, i.e. εi → εi + ~. Formally  discrete Fourier

transform of the perturbative wave function:

ψ∞
(α)

l (z, ~; ε,ρ) :=
∑
n∈Zg

e

2πi
~

g∑
j=1

ρjnj
ψl([z]− [∞(α)], ~, ε+ ~n).
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Trans-series with special ordering

Strategy: Sum over γ =
ĝ∑
i=1

niBi, i.e. εi → εi + ~. Formally  discrete Fourier

transform of the perturbative wave function:

ψ∞
(α)

l (z, ~; ε,ρ) :=
∑
n∈Zg

e

2πi
~

ĝ∑
j=1

ρjnj
ψl([z]− [∞(α)], ~, ε+ ~n).

Remark (Limitations)

Filling fraction ε = (ε1, . . . , εg)  not a global coordinate on the space of
classical spectral curves with fixed spectral times (only a local coordinate).

We need a special ordering of the trans-monomials:

∑
r≥0

∑
n∈Zĝ

Fn,r~re
1
~

ĝ∑
j=1

njvj
.

The partial sums
∑

n∈Zĝ
Fn,re

1
~

ĝ∑
j=1

njvj
will give rise to theta functions.

Equalities: coefficient by coefficient in the trans-monomials.
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Non-perturbative wave functions

Riemann matrix of periods of Σ: τi,j = 1
2πi

∫
Bi

∫
Bj
ω0,2, ∀(i, j) ∈ J1, ĝK2.

Riemann theta function (analytic function of v ∈ Cĝ) and its derivatives:

Θ(i1,...,ik)(v, τ) =
∑

(n1,...,nĝ)∈Zĝ
e

2πi

ĝ∑
i=1

nivi

e

πi

∑
(i,j)∈J1,ĝK2

niτi,jnj k∏
j=1

nij .

D = [z]− [∞(α)]  non-perturbative wave function

ψNP(D; ~,ρ) := e~
−2ω0,0+ω1,0e~

−1 ∫
D ω0,1

1

E(D)

∞∑
r=0

~rG(r)(D;ρ),

where E is the prime form on Σ,

G(r)(D;ρ) :=
3r∑
k=0

∑
i1,...,ik∈J1,ĝKk

Θ(i1,...,ik)(v, τ)G
(r)
(i1,...,ik)

(D)

and where vj :=
ρj+ϕj

~ + µ
(α)
j (z), v = (v1, . . . , vĝ), with

ϕj :=
1

2πi

∮
Bj
ω0,1 and µ

(α)
j (z) :=

1

2πi

∫
D

∮
Bj
ω0,2.



TR and ram’s The quantisation problem From loop to KZ equations Non-perturbative Future Bonus

Non-perturbative wave functions

Riemann matrix of periods of Σ: τi,j = 1
2πi

∫
Bi

∫
Bj
ω0,2, ∀(i, j) ∈ J1, ĝK2.
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ĝ∑
i=1

nivi

e

πi

∑
(i,j)∈J1,ĝK2
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Same KZ equations and good monodromies

Non-perturbative wave functions satisfy the same KZ equations as their
perturbative partners.

~
dψ∞

(α)

l,NP (z, ~,ρ)

dx(z)
+ ψ∞

(α)

l+1,NP(z, ~,ρ) =

∑
P∈P

∑
k∈S(l+1)

P

ξ−kP (x(z))ev.

[
L̃P,k,l ψ∞

(α), symbol
0,NP (z, ~,ρ)

]
.

Non-perturbative wave functions  simple monodromy properties.

For j ∈ J1, ĝK, we have

ψ∞
(α)

l,NP (z +Aj , ~,ρ) = e
2πiεj

~ ψ∞
(α)

l,NP (z, ~,ρ),

ψ∞
(α)

l,NP (z + Bj , ~,ρ) = e−
2πiρj

~ ψ∞
(α)

l,NP (z, ~,ρ)

and ∀ p ∈ x−1(P)

ψ∞
(α)

l,NP (z + Cp, ~,ρ) = (−1)
δ
p,∞(α) e

2πitp,0
~ ψ∞

(α)

l,NP (z, ~,ρ).
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Lax systems

For l ≥ 0, we define

ψ∞
(α)

l,NP (z, ~,ρ) := ev.
∑

β⊆
l
(x−1(x(z))\{z})

1

l!

 l∏
j=1

ICβj,1

 ψsymbol
NP (D; ~,ρ).

We use them to define a d× d matrix

Ψ̂NP(λ, ~,ρ) :=
[
ψ∞

(α)

l−1,NP(z(β)(λ), ~,ρ)
]
1≤l,β≤d

,

where z(β)(λ) denotes the βth preimage by x of λ.
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Lax systems

Theorem (ODE and Lax system)

Let L̂(λ, ~) := −P̂ (λ) + ~
∑
P∈P

∑
k∈N ξ

−k
P (λ)∆̂P,k(λ, ~). Then,

~
dΨ̂NP(λ, ~)

dλ
= L̂(λ, ~)Ψ̂NP(λ, ~),

where

P̂ (λ) :=


−P1(λ) 1 0 . . . 0
−P2(λ) 0 1 . . . 0

...
...

...
. . .

...
−Pd−1(λ) 0 0 . . . 1
−Pd(λ) 0 0 . . . 0


For any P ∈ P, k ∈ N, l ∈ J0, d− 1K, one has the auxiliary systems

~−1ev.LP,k,lΨ̂symbol
NP (λ, ~) = ÂP,k,l(λ, ~)Ψ̂NP(λ, ~),

where L̂(λ, ~) and ÂP,k,l(λ, ~) are ~-trans-series functions that are rational functions
of λ, with no poles at critical values λ ∈ x(R).
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Let L̂(λ, ~) := −P̂ (λ) + ~
∑
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∑
k∈N ξ

−k
P (λ)∆̂P,k(λ, ~). Then,

~
dΨ̂NP(λ, ~)

dλ
= L̂(λ, ~)Ψ̂NP(λ, ~), (1)

where

P̂ (λ) :=


−P1(λ) 1 0 . . . 0
−P2(λ) 0 1 . . . 0

...
...

...
. . .

...
−Pd−1(λ) 0 0 . . . 1
−Pd(λ) 0 0 . . . 0


For any P ∈ P, k ∈ N, l ∈ J0, d− 1K, one has the auxiliary systems

~−1
ev.LP,k,lΨ̂symbol

NP (λ, ~) = ÂP,k,l(λ, ~)Ψ̂NP(λ, ~),

where L̂(λ, ~) and ÂP,k,l(λ, ~) are ~-trans-series functions that are rational functions of λ,
with no poles at critical values λ ∈ x(R).

(1)  linear differential system of size d× d whose formal fundamental solution can be
computed by TR, with poles at the poles of the leading WKB term...

L̂(λ, ~) has poles only at λ ∈ P and at zeros of the Wronskian det Ψ̂NP(λ, ~), apparent
singularities of the system (can be computed thanks to the KZ eqns).
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Lax systems

Theorem (ODE and Lax system)

Let L̂(λ, ~) := −P̂ (λ) + ~
∑
P∈P

∑
k∈N ξ

−k
P (λ)∆̂P,k(λ, ~). Then,

~
dΨ̂NP(λ, ~)

dλ
= L̂(λ, ~)Ψ̂NP(λ, ~), (2)

where

P̂ (λ) :=


−P1(λ) 1 0 . . . 0
−P2(λ) 0 1 . . . 0

...
...

...
. . .

...
−Pd−1(λ) 0 0 . . . 1
−Pd(λ) 0 0 . . . 0


For any P ∈ P, k ∈ N, l ∈ J0, d− 1K, one has the auxiliary systems

~−1
ev.LP,k,lΨ̂symbol

NP (λ, ~) = ÂP,k,l(λ, ~)Ψ̂NP(λ, ~),

where L̂(λ, ~) and ÂP,k,l(λ, ~) are ~-trans-series functions that are rational functions of λ,
with no pole at critical values λ ∈ x(R).

Most technical proof  by induction on the order of the transseries.

Proof uses admissibility conditions (distinct critical values, smooth simple ramification
points)  should adapt without them but involving more technical computations.
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4 different interesting gauges and examples

None of the gauge transformations modify the first line of the wave functions matrix
(used to define the quantum curve).

Gauge Ψ̂: Gauge coming from KZ equations which provides compatible auxiliary
systems

(
LP,k,l

)
P∈P,l∈J0,d−1K,k∈S(l+1)

P

.

Gauge Ψ̃ (~0 gauge transformation from Ψ̂): Leading order in ~ of L̃ is
companion-like  the classical spectral curve directly recovered from last line.
Gauge Ψ: Lax matrix L is companion-like at all orders in ~  both the quantum
and classical curves directly read from the last line of L and its ~→ 0 limit.
Natural framework for Darboux coordinates and isomonodromic deformations.
Gauge Ψ̌: Lax matrix Ľ has no apparent singularities  Ľ(λ, ~)dλ as an
~-familly of Higgs fields giving rise to a flow in the corresponding Hitchin system.

Example

Reconstruction via TR of a 2-parameter family of formal transseries solutions to
Painlevé 2 and quantization. Classical spectral curve: y2 − P1(λ)y + P2(λ) = 0,

where P1(λ) = P
(1)
∞,2λ

2 + P
(1)
∞,1λ+ P

(1)
∞,0 and

P2(λ) = P
(2)
∞,4λ

4 + P
(2)
∞,3λ

3 + P
(2)
∞,2λ

2 + P
(2)
∞,1λ+ P

(2)
∞,0.

Quantisation of a degree 3, genus 1 classical spectral curve with a single
singularity at infinity: y3 − (P

(1)
∞,1λ+ P

(1)
∞,0)y2 + (P

(2)
∞,2λ

2 + P
(2)
∞,1λ+ P

(2)
∞,0)y −

P
(3)
∞,3λ

3 − P (3)
∞,2λ

2 − P (3)
∞,1λ− P

(3)
∞,0 = 0.
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Some of my questions

Explore the connection with summability, exact WKB, Stokes phenomenon and
resurgence. Conjecture: There exist values of ε and ~ making the transseries
involved summable.

Conjecture: The non-perturbative partition function is a tau function.

How does the connection built as d−L(x, ~)dx/~ depend on the choice of cycles
(Ai,Bi)?
Remove resurgence assumption from our proof of large genus asymptotics of
Weil–Petersson volumes.

Interesting enumerative geometry in higher genus TR problems?

Extend TR beyond orientable surfaces: Klein surfaces, non-orientable enumerative
geometry and real moduli space.

Master x− y swap transformation.

Your questions?



Merci beaucoup pour votre attention !
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Large maps with small and large boundaries, and with loops

“The geometry of large random maps is universal”

• O(n) loop model  statistical ensemble of maps endowed with
loop configurations.

• 2 new universality classes (depending continuously on n)  dense
and dilute.

1 G. Borot, J. Bouttier et B. Duplantier  nesting properties (0, 1) and (0, 2).
2 Analysis of critical behavior of TR in the presence of large and small boundaries.
3 Nesting properties for arbitrary topologies.
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Large maps with small and large boundaries, and with loops

“The geometry of large random maps is universal”

• O(n) loop model  statistical ensemble of maps endowed with
loop configurations.

• 2 new universality classes (depending continuously on n)  dense
and dilute.

1 G. Borot, J. Bouttier et B. Duplantier  nesting properties (0, 1) and (0, 2).
2 Analysis of critical behavior of TR in the presence of large and small boundaries.
3 Nesting properties for arbitrary topologies.

When V →∞:
• Typical configuration with small boundaries  probably
incident to distinct arms (with O(lnV ) separating loops).

[Borot–G-F arXiv:1609.02074]

Let d = 1(−1) and c = 1
1−b (1) in the dense (dilute) phase,

with b(n) ∈ ( 1
2
, 0).

For 2g − 2 + k > 0, when u→ 1−, we have for g.s. of
configurations with kS small boundaries

Conf[g]k (x1, . . . , xk) ·∼ (1− u)c((2g−2+k)(d b
2
−1)− k

2
+ 3

4
kS).

https://arxiv.org/abs/1609.02074
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Non perturbative TR and resurgence

Natural extension of perturbative expansions to transseries:∑
g≥0

a
(0)
g ~n

︸ ︷︷ ︸
perturbative expansion

+ e−A/~
∑
g≥0

a
(1)
g ~g

︸ ︷︷ ︸
1st instanton sector

+ O(e−2A/~)︸ ︷︷ ︸
higher instanton corrections

.

behavior of a(0)
g

when g →∞
↔ a

(1)
0 (+corrections)

1. Cartes 2. Intersection theory onMg,n

3. Integrability

RT

4. Resurgence
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Non perturbative TR and resurgence

1. Cartes 2. Intersection theory onMg,n

3. Integrability

RT

4. Resurgence

Asymptotic
behavior
g →∞

Recent work:
A [Eynard–G-F–Gregori–Lewański–Schiappa, ’23 arXiv:2305.16940]:

non-perturbative corrections to JT gravity via TR, geometric interpretation of
instanton corrections and large genus asymptotics of Weil–Petersson volumes
(assuming resurgence!).

B [Eynard–G-F–Giacchetto–Gregori–Lewański, ’23 arXiv:2309.03143]: Large genus
asymptotics of intersection numbers (with no assumptions!).

https://arxiv.org/abs/2305.16940
https://arxiv.org/abs/2309.03143
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A triple duality: symplectic, simple and free

Through monotone Hurwitz numbers

Free probability:
Moments ϕ ↔ Free cumulants κ

[Borot, Charbonnier, Leid, Shadrin, G-F, ’21 arXiv:2112.12184]

Combinatorics:
Maps ↔ Fully simple maps

[Borot, G-F, ’17 arXiv:1710.07851]
[Borot, Charbonnier, Do, G-F, ’19 arXiv:1904.02267]

Topological recursion (TR):

(x, y)
TR
 ωg,n ↔ (x̌, y̌)

TR
 ω̌g,n,

with dx ∧ dy = dx̌ ∧ dy̌ (symplectic transformation).

[Alexandrov, Bychkov, Dunin-Barkowski, Kazarian, Shadrin, ’21
arXiv:2212.00320]

Quantum curves: Harnad duality?

https://arxiv.org/abs/2112.12184
https://arxiv.org/abs/1710.07851
https://arxiv.org/abs/1904.02267
https://arxiv.org/abs/2212.00320
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