
 

p adic periods and the connectivity

of the motivic Hopfalgebra

I Intro

p adic analogs char p analogs of

1 the notionof period
2 the connectivity property of the motivic

Hopf algebra

Remark Y X over aly var motive

w Hair X re H x

Spw I



Q1 Is there a p adic version of this

Can one get some elements in Qp in a
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Example X is smooth and projective

with good reduction at p
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III Motivic framework for p adic period

overI we have the notion of abstract

period a Kontsevich Zagia

these form an algebra P which is

the algebra of a torsor over the motivic

Galois group Also P 0

conjectured to be
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One way to introduce P is as follows
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has a Kenneth formula
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connective and Pp Qp

and an action of Gmos A Pp
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Proof one reduces to show that

Hmos Rig Tor is connective
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