p-adric periods and the connectivity of the motivic Hopf algebra I. Intro p-adic analogs / charp analogs of: 1) the notion of period (C 2) the connectivity property of the motivic Hopf algebra Remark ; y X over Q2, alg vor / motive $\omega \in H_{dR}^{n}(X)$, $Y \in H_{n}^{Sing}(X)$ Jy W ∈ €

Q.] Is there a p-adic version of this? Can one get some elements in Qp in a Similar manner? Remark: In ch.o, kCC. ~ motivic Hopf algebra Kmot (k). dg- Hopfalz Spec (Hmot) = Gmot acts on singular cohomology of modives /k in a universal way. known Fach; Hi (Hmot)=0 i<0. Gmot CGml Spetto (Hmol). Nori 'n muliure Galrisgroup

Q.J. Is there a version of this in ch >0. II Construction of p-adic periodo X over Q a variety/mohire $\omega \in H^n_{dR}(\hat{X})$ a de Rhan col class Q. I what would be the analog of topologial chains? A. J Suslin homology of Xan_ the nigid analytic variety / De associated to X. Reminder: X a variety /k.

 $Cor(\Delta, y, X) = \left[\begin{array}{c} \tilde{\Sigma} \\ \Delta y \end{array} \right]$ $\Delta_{alg} = \operatorname{Spec}(k[t_0, ..., t_n]/t_{o1} - 4 t_n - 1)$ $H_n^{Sus}(X) := H_n Cor(\Delta_{uy}, X)$ More generally $H_{n,m}^{Sus}(\hat{X}) := H_{n-m} \operatorname{Cor} \left(\Delta_{ny} \times G_{m}^{nm}, X \right)$ Obviously: this is an algebraic version of Singular homology. $k \in \mathbb{C}, \quad H^{Sus}_{n,m}(\hat{x}) \rightarrow H^{Sin}_{n}(\hat{x})(-m)$ Remark: If X is smooth and proper then Suslin homology is just motivic

Cohomology d = dim X $H_{n,m}^{Sins}(x) = H_{mot}^{2d-n, d-m}(x).$ $\frac{\text{Remark}:}{\underset{\substack{k=0\\ k=0}}{\text{H}_{n,m}}} (x) \xrightarrow{\text{H}_{n}} (x) (-m) \xrightarrow{\underline{k=0}} (x) \xrightarrow{\underline{k=0}} (x)$ $\omega \in H_{dR}^{n}(\hat{x})$, $\int_{\mathcal{X}} \omega \stackrel{?}{=} \mathcal{Q} \cdot (2\pi i)^{n}$. Construction; If K a complete non-ard. field (eg (Rp) and X a rigid analytic K-variety, the $Cor(\Delta_{iig}, X)$ $\Delta n_{ij} = Spr(K[t_0, ..., t_n]/t_{a+\cdots+t_n-1})$

 $\mathcal{H}_{\gamma m}^{Sus}(\chi) = \mathcal{H}_{n-m}\left(\Delta_{rij} \times \partial \mathcal{B}^{n}, \chi\right)$ By construction, X / Q $H_{n_m}^{sus}(\hat{x}) \longrightarrow H_{n_m}^{sus}(x^{an})$ Proposition: X/Q, $\omega \in \mathcal{H}^{n}_{dR}(\widehat{x})(m)$ $\mathcal{X} \in \mathcal{H}^{Sus}_{n,m}(x^{an})$ the F Jow E Rp $\frac{\operatorname{Rmk}}{\operatorname{Rmk}} \quad d \in H_{n,m}^{\operatorname{Sus}}(\widehat{X}) \longmapsto \widetilde{X} \in H_{n,m}^{\operatorname{Sus}}(X^{a_n})$ $\int_{Y} \omega \in \mathbb{R}$

Example: X is smooth and projective with good reduction at p $H_{n,m}(X^{an}) = H_{nym}(\mathcal{Z}_{p})$ III Motivic framework for p-adric periods over C: we have the notion of "abstract period" (à Kontsevich-Zagrica). these form an algebra P, which is the algebra of a tossor over the mohiviz Galois group. Also P-> C.

inje chive. One way to introduce P is as follows: DM = Voewodsky cat of motives over Q. B: DM Betti realisation D(Q) T_{dR} — the object representing de Rham Cohomology. D'/k væved as a compley of presheaves m Sm fr. $P = B(\Pi_{dR})$ <u>Fuch</u>: P is connective is, $H_i(P) = 0$ (i. 2.) 1) Grat (Spec (P) and this is torson. $\mathfrak{Y} \mathcal{F} \rightarrow \mathfrak{C}$

7 Il'B rep. Belt: ch. $\Gamma_{dR} \otimes C \simeq \Gamma_{B} \otimes C.$ $= B(\Pi_{dR}) \rightarrow B(\Pi_{dR} \circ C)$ $= B(\Pi_{B} \odot \mathbb{C})$ $= B(\Pi_{B}) \otimes \mathbb{C} \xrightarrow{ev_{1}} \mathbb{C}$ = O(Gmot) Over (Dp : $Rig: DM(G) \longrightarrow RigDM(Q_{p})$ $M(X) \longrightarrow M(X^{a_{n}})$ $R_{ig}(\Pi_{dR}) \in R_{ig}DM(Q_{p}).$ thm, Rig (Tak) represents a Weil cohomology theory on signal analytic verve hies. (It

hes a Kunnell formula).

Rock We get in this way a new Weil coh. theory. y Coefficient sins is very big. the ming of abstract p-adric period Pp 2) this Weil col. theory compares with Il the clonical ones: an isr $(Rig T_{dR}) \otimes \overline{Q}_{e} \simeq T_{e} \otimes \overline{Q}_{e}$ <u>Conclusion</u>; 3 deg-algebre P_p ,

connective, and Pp- Pp, and an action of Gmst () Pp. A Spec (\mathcal{P}_p) is not a torsor over Gmt. Iv Connechivity. GI Is the motivic thopf alg connective? chor. ch p? Defn dy-Hopf algebra = cosimplicial dy algebra H.

y H = base ming / field. 2) $\mathcal{H}^{\infty} - \infty \mathcal{H}^{1} \xrightarrow{q \cdot isr} \mathcal{H}^{m}$ $i j i \mathcal{H}^{S} \subset \mathcal{L}^{S}$ Defn: let Two be a Weil uh theory (Tw: Smga - dy-dy). the $T_{W} \in DM$. $\mathcal{H}_{met}(T_{W})$ $\Pi_W \otimes \Pi_W \simeq \Pi_W \otimes (dg_algebra)$

Hm. Tw = Te (l- which coh) the Hmot (Te) is connective.

Proof one reduces to show that \mathcal{H}_{md} ($R_{ig}(\Gamma_{dR})$) 15 connedire Rig (Iar) --- -> Ie @ Re. - Grot (Te) is the stabilizer of Grout (Tar) acting a Spec (Pp) Spec(Qe) References . Connectivity of the motivic Hopf algebros. . Nouvelles cohomologies de Weil . Ancora-Fratila

Andre