Canonical coordinates for moduli spaces of rank two irregular connections on curves (joint work with A. Komyo, F. Loray, M.-H. Saito, arXiv:2309.05012)

Szilárd Szabó

Budapest University of Technology and Economics
September 29th 2023
Équations différentielles motiviques et au-delà
Institut Henri Poincaré

Outline

Introduction

Outline

Introduction

Companion normal form

Outline

Introduction

Companion normal form

Symplectic structure

Outline

Introduction

Companion normal form

Symplectic structure

Elliptic example

Outline

Introduction

Companion normal form

Symplectic structure

Elliptic example

Question session

Motivation

- Isomonodromy equations (Poincaré, Painlevé, Garnier, R. Fuchs, Schlesinger,..., Dubrovin, Jimbo-Miwa-Ueno, Okamoto, Iwasaki, Boalch,...)
- Geometry of moduli spaces of sheaves on Poisson surfaces and Hilbert schemes of points on symplectic surfaces (Mukai, Beauville, Donagi-Markman,...)
- Separation of variables in Hitchin systems (Sklyanin, Beauville-Narasimhan-Ramanan, Adams-Harnad-Hurtubise, Hurtubise, Gorsky-Nekrasov-Rubtsov, ...)
- Opers (N. Katz, Beilinson-Drinfeld,...)
- Confluence of singular points of connections (Gaiur-Mazzocco-Rubtsov, Klimeš,...)
- Mirror symmetry and cluster algebras (Kontsevich-Odesskii, Kontsevich-Soibelman, Gross-Hacking-Keel, Fock-Goncharov,...)

Notation

- $r=2$
- $\mathfrak{h} \subset \mathfrak{g l}(2, \mathbb{C})$ standard Cartan subalgebra
- $\mathfrak{h}_{0} \subset \mathfrak{h}$ its regular part
- $\theta^{ \pm}$eigenvalues of $\theta \in \mathfrak{h}$
- $I=\{1, \ldots, \nu\}$ for some $\nu \in \mathbb{Z}_{+}$

Irregular curve (Boalch) with residues

Fixed data

- C smooth projective curve of genus g
- $D=\sum_{i \in I} m_{i}\left[t_{i}\right]$ an effective divisor on $C\left(m_{i} \in \mathbb{Z}_{+}, t_{i} \neq t_{j}\right.$ for $i \neq j$)
- z_{i} a local coordinate centered at t_{i}
- $\left\{\boldsymbol{\theta}_{i}\right\}_{i \in I}$ where $\boldsymbol{\theta}_{\boldsymbol{i}}=\left(\theta_{i,-m_{i}},\left(\theta_{i,-m_{i}+1}, \ldots, \theta_{i,-2}\right)\right) \in \mathfrak{h}_{0} \times \mathfrak{h}^{m_{i}-2}$
- $\boldsymbol{\theta}_{\text {res }}=\left(\theta_{1,-1}, \theta_{2,-1}, \ldots, \theta_{\nu,-1}\right)$ where $\theta_{i,-1} \in \mathfrak{h}$

Assumptions

- $n=\operatorname{deg} D=\sum_{i \in I} m_{i}$ satisfies $4 g-3+n>0$
- $\sum_{i=1}^{\nu} \operatorname{tr}\left(\theta_{i,-1}\right)=-(2 g-1)$
- $\sum_{i=1}^{\nu} \theta_{i,-1}^{ \pm} \notin \mathbb{Z}$
- for all $i \in I$ such that $m_{i}=1$ the eigenvalues of $\theta_{i,-1}$ do not differ by an integer

Meromorphic connection over irregular curve with residues

- $E \rightarrow C$ a holomorphic rank 2 vector bundle of degree $2 g-1$
- $\nabla: E \rightarrow E \otimes \Omega_{C}^{1}(D)$ meromorphic connection (necessarily irreducible!)
- such that in some trivialization of $\left.E\right|_{m_{i}\left[t_{i}\right]}$ we have

$$
\nabla=\mathrm{d}+\theta_{i,-m_{i}} \frac{\mathrm{~d} z_{i}}{z_{i}^{m_{i}}}+\theta_{i,-m_{i}+1} \frac{\mathrm{~d} z_{i}}{z_{i}^{m_{i}-1}}+\cdots+\theta_{i,-2} \frac{\mathrm{~d} z_{i}}{z_{i}^{2}}+\theta_{i,-1} \frac{\mathrm{~d} z_{i}}{z_{i}}
$$

- M_{dR} moduli space of meromorphic connections over fixed irregular curve with residues

Cyclic vector, apparent singularities

- Riemann-Roch \Rightarrow for generic E we have $\operatorname{dim}_{\mathbb{C}} H^{0}(C, E)=1$.
- cyclic vector: a generator $\mathbf{e}_{1} \in H^{0}(C, E)$
- $E_{0} \subset E$ rank 2 locally free subsheaf generated by $\mathbf{e}_{1}, \nabla_{\partial}\left(\mathbf{e}_{1}\right)$ for all $\partial \in T_{C}(-D)=\left(\Omega_{C}^{1}(D)\right)^{-1}$
- splitting $E_{0} \cong \mathcal{O}_{C} \oplus\left(\Omega_{C}^{1}(D)\right)^{-1}$
- $\phi_{\nabla}: E_{0} \longrightarrow E$ inclusion
$-\nabla_{0}=\phi_{\nabla}^{*}(\nabla): E_{0} \rightarrow E_{0} \otimes \Omega_{C}^{1}(D+B)$
- B apparent singularities of ∇
- $N:=\operatorname{deg}(B)=4 g-3+n=\frac{1}{2} \operatorname{dim}_{\mathbb{C}} M_{\mathrm{dR}}$

Assumptions

- B is reduced
- $\operatorname{Supp}(B) \cap \operatorname{Supp}(D)=\varnothing$
- $B=q_{1}+\cdots+q_{N}$.

Companion normal form

- With respect to the frame $\left(\mathbf{e}_{1}, \nabla_{0}\left(\mathbf{e}_{1}\right)\right)$ of E_{0} we have

$$
\nabla_{0}=\left(\begin{array}{ll}
\mathrm{d} & \beta \\
1 & \delta
\end{array}\right)
$$

- d: $\mathcal{O}_{C} \rightarrow \Omega_{C}^{1}$ trivial connection
- δ a connection in $\left(\Omega_{C}^{1}(D)\right)^{-1}$ with polar divisor $D+B$
- $\beta \in\left(\Omega_{C}^{1}(D)\right)^{\otimes 2} \otimes \mathcal{O}_{C}(B)$
- $1: \mathcal{O}_{C} \rightarrow\left(\Omega_{C}^{1}(D)\right)^{-1} \otimes \Omega_{C}^{1}(D) \cong \mathcal{O}_{C}$ identity

Properties of the connection δ

- Polar part of δ over D : determined by the irregular curve with residues
- Polar part of δ over B : logarithmic with residue +1
- δ is determined by the irregular curve with residues up to $H^{0}\left(C, \Omega_{C}^{1}\right)$
- choice of $\delta \rightsquigarrow g$ free parameters

Properties of the quadratic differential β

- Laurent series at t_{i}

$$
\beta=\left(\beta_{i,-2 m_{i}} z_{i}^{-2 m_{i}}+\cdots+\beta_{i,-2} z_{i}^{-2}+O\left(z_{i}^{-1}\right)\right)\left(\mathrm{d} z_{i}\right)^{\otimes 2}
$$

- $\beta_{i,-2 m_{i}}, \ldots, \beta_{i,-2}$ are uniquely determined by the irregular curve with residues
- Laurent series at q_{j}

$$
\beta=\left(\beta_{j,-2} z_{j}^{-2}+\beta_{j,-1} z_{j}^{-1}+O\left(z_{j}^{0}\right)\right)\left(\mathrm{d} z_{j}\right)^{\otimes 2}
$$

- $\beta_{j,-2}=0$
- set $\zeta_{j} \mathrm{dz}_{j}=\left.\operatorname{res}_{q_{j}}(\beta) \in \Omega_{C}^{1}(D)\right|_{q_{j}}$
- summarizing:

$$
\operatorname{res}_{q_{j}} \nabla_{0}=\left(\begin{array}{cc}
0 & \zeta_{j} \mathrm{~d} z_{j} \\
0 & 1
\end{array}\right)
$$

- geometric interpretation: quasi-parabolic structure of E_{0} over B, different from $\mathcal{O}_{C} \subset E_{0}$

Generic independence

- For fixed $\left\{\left(q_{j}, \zeta_{j} \mathrm{~d} z_{j}\right)\right\}_{j=1}^{N}, \beta$ is determined by the irregular curve with residues up to $H^{0}\left(C,\left(\Omega_{C}^{1}\right)^{\otimes 2}(D)\right)$
- choice of $\beta \rightsquigarrow 3 g-3+n$ free parameters
- recall: g free parameters for δ
- $\operatorname{deg}(B)=4 g-3+n=N$
- condition: q_{j} are apparent singularities

Set $\Omega(D)=$ total space of $\Omega_{C}^{1}(D)$.

Proposition

For generic data $\left\{\left(q_{j}, \zeta_{j} \mathrm{~d} z_{j}\right)\right\}_{j=1}^{N} \in \operatorname{Sym}^{N}(\Omega(D))$ there exist unique β and δ as above such that ∇_{0} has apparent singularities at all the points $q_{j}(1 \leq j \leq N)$, and such that $\operatorname{res}_{q_{j}}(\beta)=\zeta_{j} \mathrm{~d} z_{j}$.

Generic independence: sketch of proof

- Condition for q_{j} to be apparent:

$$
\left(\beta-\zeta_{j} \delta \otimes \mathrm{~d} z_{j}-\zeta_{j}^{2} \mathrm{~d} z_{j}^{\otimes 2}\right)\left(q_{j}\right)=0
$$

- $\left(\omega_{l}\right)_{l=1}^{g},\left(\nu_{k}\right)_{k=1}^{N-g}$ bases of $H^{0}\left(C, \Omega_{C}^{1}\right)$ and $H^{0}\left(C,\left(\Omega_{C}^{1}\right)^{\otimes 2}(D)\right)$ respectively
- fix any $\left(\delta_{0}, \beta_{0}\right)$ with apparent singularities $q_{1}+\cdots+q_{N}$
- take base expansions

$$
\left\{\begin{array}{l}
\beta=\beta_{0}+b_{1} \nu_{1}+\cdots+b_{N-g} \nu_{N-g} \\
\delta=\delta_{0}+d_{1} \omega_{1}+\cdots+d_{g} \omega_{g}
\end{array}\right.
$$

- linear system of N equations in N variables b_{k}, d_{l}
- for generic choices the determinant does not vanish
- for $g>0$ there always exist special choices such that the determinant vanishes

Affine bundle

- Let $c_{d}=c_{1}(E) \in H^{2}(C, \mathbb{C}) \cong \operatorname{Ext}_{\mathcal{O}_{C}}^{1}\left(T_{C}, \mathcal{O}_{C}\right)$
- Consider the corresponding locally free rank 2 extension

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow \mathcal{A}_{C}\left(c_{d}\right) \longrightarrow T_{C} \longrightarrow 0
$$

- It gives rise to the Atiyah-Lie algebroid

$$
0 \longrightarrow \mathcal{O}_{C} \longrightarrow \mathcal{A}_{C}\left(c_{d}, D\right) \longrightarrow T_{C}(-D) \longrightarrow 0
$$

- affine bundle $\Omega_{C}^{1}\left(D, c_{d}\right)$ modelled on $\Omega_{C}^{1}(D)$:

$$
\Omega_{C}^{1}\left(D, c_{d}\right)=\left\{\phi \in \mathcal{A}_{C}\left(c_{d}, D\right)^{\vee} \mid\left\langle\phi, 1_{\mathcal{A}_{C}\left(c_{d}, D\right)}\right\rangle=1\right\} .
$$

- total space of $\Omega_{C}^{1}\left(D, c_{d}\right)$

$$
\pi_{c_{d}}: \Omega\left(D, c_{d}\right) \longrightarrow C
$$

Darboux coordinates

- for (E, ∇) meromorphic connection, $\operatorname{tr}(\nabla)$ global section of $\Omega_{C}^{1}\left(D, c_{d}\right) \rightarrow C$
- affine isomorphism

$$
\Omega(D) \longrightarrow \Omega\left(D, c_{d}\right) ; \quad(q, p) \longmapsto(q, p+\operatorname{tr}(\nabla))=(q, \tilde{p})
$$

- $\Omega\left(D, c_{d}\right)$ is a symplectic surface with form $\mathrm{d} \tilde{p} \wedge \mathrm{~d} q$
- accessory parameter of (E, ∇) at q_{j}

$$
\tilde{p}_{j}=\operatorname{res}_{q_{j}}(\beta)+\left.\operatorname{tr}(\nabla)\right|_{q_{j}}
$$

- $\left\{\left(q_{j}, \tilde{p}_{j}\right)\right\}_{j=1}^{N}$ canonical coordinates of (E, ∇)

Coordinate map

- Let $M_{\mathrm{dR}}^{0} \subset M_{\mathrm{dR}}$ parameterize (E, ∇) such that $\operatorname{dim}_{\mathbb{C}} H^{0}(C, E)=1, B$ is reduced and $\operatorname{Supp}(B) \cap \operatorname{Supp}(D)=\varnothing$
$-\pi_{c_{d}, N}: \operatorname{Sym}^{N}\left(\Omega\left(D, c_{d}\right)\right) \rightarrow \operatorname{Sym}^{N}(C)$ the map induced by the $\operatorname{map} \pi_{c_{d}}: \Omega\left(D, c_{d}\right) \rightarrow C$

$$
\Delta=\left\{q_{j_{1}}=q_{j_{2}} \text { for some } j_{1} \neq j_{2}\right\} \subset \operatorname{Sym}^{N}(C)
$$

$$
\operatorname{Sym}^{N}\left(\Omega\left(D, c_{d}\right)\right)_{0}:=\pi_{c_{d}, N}^{-1}\left(\operatorname{Sym}^{N}(C \backslash \operatorname{Supp}(D)) \backslash \Delta\right)
$$

- coordinate map

$$
\begin{aligned}
f_{\mathrm{App}}: M_{X}^{0} & \rightarrow \operatorname{Sym}^{N}\left(\Omega\left(D, c_{d}\right)\right)_{0} \\
\quad(E, \nabla) & \mapsto\left\{\left(q_{j}, \tilde{p}_{j}\right)\right\}_{j=1}^{N}
\end{aligned}
$$

Symplectic isomorphism

Atiyah-Bott, Bottacin-Markman, Boalch: M_{dR} is a holomorphic symplectic manifold of dimension $2 N=8 g-6+2 n$.

Proposition

The map $f_{\text {App }}$ is birational.
(Slight modification of independence and equality of dimensions.) Symplectic form on $\operatorname{Sym}^{N}\left(\Omega\left(D, c_{d}\right)\right)$:

$$
\omega=\sum_{j=1}^{N} \mathrm{~d} \tilde{p}_{j} \wedge \mathrm{~d} q_{j}
$$

Theorem
The map $f_{\text {App }}$ is symplectic.

Elliptic curve and divisors D, B

Fix $\lambda \in \mathbb{C} \backslash\{0,1, \infty\}$,

- curve C obtained by gluing

$$
\begin{aligned}
& U_{0}:=\left(y_{1}^{2}-x_{1}\left(x_{1}-1\right)\left(x_{1}-\lambda\right)=0\right) \text { with } \\
& U_{\infty}:=\left(y_{2}^{2}-x_{2}\left(1-x_{2}\right)\left(1-\lambda x_{2}\right)=0\right), \text { via identifying } \\
& x_{1}=x_{2}^{-1} \text { and } y_{1}=y_{2} x_{2}^{-2}
\end{aligned}
$$

- polar divisor $D=(t, s)+(t,-s)$ for fixed $t \in \mathbb{C}$
- case $t \notin\{0,1, \lambda, \infty\}$: two logarithmic poles
- otherwise one irregular singularity of Poincaré-Katz rank 1
- $4-3+2=3$ points q_{1}, q_{2}, q_{3} on C

$$
q_{j}:\left(x_{1}, y_{1}\right)=\left(u_{j}, v_{j}\right)
$$

such that $u_{j} \notin\{0,1, \lambda, \infty, t\}$

Connection ∇_{0}

- $E_{0}=\mathcal{O}_{C} \oplus\left(\Omega_{C}^{1}(D)\right)^{-1}$
- Over U_{0} with respect to a trivialization of $\left(\Omega_{C}^{1}(D)\right)^{-1}$

$$
\nabla_{0}=\mathrm{d}+\left(\begin{array}{cc}
0 & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right)
$$

- where for some $\zeta_{1}, \zeta_{2}, \zeta_{3}, A_{1}, \ldots, B_{3} \in \mathbb{C}$

$$
\begin{aligned}
& \omega_{12}=\sum_{j=1}^{3} \frac{\zeta_{j}}{2} \cdot \frac{y_{1}+v_{j}}{x_{1}-u_{j}} \cdot \frac{\mathrm{~d} x_{1}}{y_{1}}+\left(\frac{A_{1}+A_{2} y_{1}}{x_{1}-t}+A_{3}+A_{4} x_{1}\right) \frac{\mathrm{d} x_{1}}{y_{1}} \\
& \omega_{21}:=\frac{1}{x_{1}-t} \frac{\mathrm{~d} x_{1}}{y_{1}} \\
& \omega_{22}:=\sum_{j=1}^{3} \frac{1}{2} \cdot \frac{y_{1}+v_{j}}{x_{1}-u_{j}} \cdot \frac{\mathrm{~d} x_{1}}{y_{1}}+\left(\frac{B_{1}+B_{2} y_{1}}{x_{1}-t}+B_{3}\right) \frac{\mathrm{d} x_{1}}{y_{1}} .
\end{aligned}
$$

Fixing the polar parts - logarithmic case

- $t_{1}=(t, s) \neq(r,-s)=t_{2}$
- fix complex numbers $\theta_{1}^{ \pm}, \theta_{2}^{ \pm}$such that $\sum_{i=1}^{2}\left(\theta_{i}^{+}+\theta_{i}^{-}\right)=-1$
- impose eigenvalues of the matrix

$$
\operatorname{res}_{t_{1}}\left(\begin{array}{cc}
0 & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right)
$$

are given by $\theta_{1}^{+}, \theta_{1}^{-}$, and similarly for t_{2}

Lemma

There exist unique values of the parameters A_{1}, A_{2}, B_{1}, and B_{2} such that the residues satisfy these constraints. Moreover, these parameter values are independent of $u_{1}, u_{2}, u_{3}, \zeta_{1}, \zeta_{2}$, and ζ_{3}.

Linear system - logarithmic case

The system to solve reads as

$$
\frac{A_{1}+A_{2} s}{s} \cdot \frac{1}{s}=\theta_{1}^{+} \cdot \theta_{1}^{-} \quad \text { and } \quad \frac{A_{1}-A_{2} s}{-s} \cdot \frac{1}{-s}=\theta_{2}^{+} \cdot \theta_{2}^{-}
$$

and

$$
\frac{B_{1}+B_{2} s}{s}=\theta_{1}^{+}+\theta_{1}^{-} \quad \text { and } \quad \frac{B_{1}-B_{2} s}{-s}=\theta_{2}^{+}+\theta_{2}^{-}
$$

This is clearly solvabe, and the solution is independent of $u_{1}, u_{2}, u_{3}, \zeta_{1}, \zeta_{2}$, and ζ_{3}.

Fixing the polar parts - irregular case

- for instance $t=0$
- fix $\theta_{-2}^{ \pm}, \theta_{-1}^{+} \in \mathbb{C}$ so that $\theta_{-2}^{+} \neq \theta_{-2}^{-}$
- set $\theta_{-1}^{-}=-1-\theta_{-1}^{+}$(Fuchs)

Lemma

There exist unique $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{C}$ such that the eigenvalues of

$$
\operatorname{res}\left(\begin{array}{cc}
0 & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right)
$$

admit Laurent expansions of the form

$$
\left(\theta_{-2}^{ \pm} \frac{1}{y_{1}^{2}}+\theta_{-1}^{ \pm} \frac{1}{y_{1}}+O(1)\right) \otimes \mathrm{d} y_{1}
$$

Moreover, these values are independent of u_{i}, ζ_{i}.

Linear system - irregular case

- locally C is given by $x_{1}=h\left(y_{1}^{2}\right)$ for $h: U \rightarrow \mathbb{C}, h(0)=0$

$$
\begin{gathered}
\frac{\mathrm{d} x_{1}}{y_{1}}=\frac{2 \mathrm{~d} y_{1}}{3 x_{1}^{2}-2(1+\lambda) x_{1}+\lambda} \\
\frac{\mathrm{d} x_{1}}{x_{1} y_{1}}=\frac{\mathrm{d} y_{1}}{y_{1}^{2}} g\left(y_{1}^{2}\right) \quad(g(0)=2)
\end{gathered}
$$

- these show

$$
\begin{aligned}
& \omega_{12}=\left(A_{1}+A_{2} y_{1}\right) \frac{\mathrm{d} x_{1}}{x_{1} y_{1}}+O(1)=2\left(A_{1}+A_{2} y_{1}\right) \frac{\mathrm{d} y_{1}}{y_{1}^{2}}+O(1) \\
& \omega_{21}=2 \frac{\mathrm{~d} y_{1}}{y_{1}^{2}}+O(1) \\
& \omega_{22}=\left(B_{1}+B_{2} y_{1}\right) \frac{\mathrm{d} x_{1}}{x_{1} y_{1}}+O(1)=2\left(B_{1}+B_{2} y_{1}\right) \frac{\mathrm{d} y_{1}}{y_{1}^{2}}+O(1) .
\end{aligned}
$$

Solution of linear system - irregular case

- We find

$$
B_{1}=\frac{1}{2}\left(\theta_{-2}^{+}+\theta_{-2}^{-}\right), \quad B_{2}=\frac{1}{2}\left(\theta_{-1}^{+}+\theta_{-1}^{-}\right)=-\frac{1}{2} .
$$

- The quadratic equation

$$
-\omega_{12} \omega_{21}=-4\left(A_{1}+A_{2} y_{1}\right) \frac{\left(\mathrm{d} y_{1}\right)^{\otimes 2}}{y_{1}^{4}}+O\left(\frac{1}{y_{1}^{2}}\right) .
$$

gives

$$
A_{1}=-\frac{1}{4} \theta_{-2}^{+} \theta_{-2}^{-}, \quad A_{3}=-\frac{1}{4}\left(\theta_{-2}^{+} \theta_{-1}^{-}+\theta_{-2}^{-} \theta_{-1}^{+}\right)
$$

Apparent conditions

Lemma

The fact that ∇_{0} has apparent singular points at q_{1}, q_{2}, q_{3} imposes 3 linear conditions on A_{3}, A_{4}, B_{3} in terms of spectral data, and $\left(\left(u_{j}, v_{j}\right), \zeta_{j}\right)$'s; we can uniquely determine A_{3}, A_{4}, B_{3} from these conditions if, and only if, we have

$$
\operatorname{det}\left(\begin{array}{lll}
1 & u_{1} & \zeta_{1} \\
1 & u_{2} & \zeta_{2} \\
1 & u_{3} & \zeta_{3}
\end{array}\right) \neq 0
$$

Vector bundle E

$$
\tilde{U}_{0}:=U_{0} \backslash\left\{q_{1}, q_{2}, q_{3}\right\} \quad \text { and } \quad \tilde{U}_{\infty}:=U_{\infty} \backslash\left\{q_{1}, q_{2}, q_{3}\right\} .
$$

- tiny analytic open neighbourhoods $q_{j} \in \tilde{U}_{q_{j}}$

$$
\begin{aligned}
B_{0 q_{j}} & :=\left(\begin{array}{cc}
1 & \frac{\zeta_{j}}{x_{1}-u_{j}} \\
0 & \frac{1}{x_{1}-u_{j}}
\end{array}\right) \\
B_{0 \infty} & :=\left(\begin{array}{cc}
1 & 0 \\
0 & -x_{2}
\end{array}\right)
\end{aligned}
$$

- this cocycle $\rightsquigarrow E$ rank 2 holomorphic vector bundle

Connection ∇

- ∇_{0} induces a connection ∇ on E
- ∇ has no singularity at q_{j}
- the canonical coordinates are q_{j} and $\tilde{p}_{j}=C \zeta_{j}+D$ for some $C, D \in \mathbb{C}$

Further questions

- extension over D and Δ
- generalization to higher rank
- application to isomonodromy

