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Abstract. The values of solutions of linear differential equations occasionally
happen to be expressible via interesting arithmetic quantities, like the values of L-
functions at integers. Several sources of this phenomenon are known, however most
of the underlying identities remain unproven. In my talk I will systematically walk
through examples of such identities linked with arithmetic differential equations
of second order. Surprisingly enough, not all such second order instances are
pullbacks of hypergeometric or Heun equations; these new arithmetic differential
equations source from innocent-looking identities for π and are a subject of study
in our recent work with Mark van Hoeij and Duco van Straten.

Many interesting numbers can be expressed in terms of the Euler–Gauss hyper-
geometric function
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where (a)n = Γ(a+n)/Γ(a) = a(a+1) · · · (a+n−1) denotes the Pochhammer symbol
(aka shifted factorial). At the same time, many special choices of the parameters
a, b, c, z lead to interesting ‘closed-form’ evaluations. There are many features that
make the function really special, and one of them is the (hypergeometric) linear
differential equation HF = 0, where
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of second order, with three regular singularities, at z = 0, 1 and ∞. Though
the function possesses several algebraic-function specialisations (for example, when
b = c), it is generically a transcendental function.

Let me first review two different methods for special evaluations in which the

2F1-function shows up, and then connect them with a general problem of describing
second-order differential equations (operators) having ‘strong arithmetic flavour’.

A decade ago, Akihito Ebisu came up with a simple use of the fact that every
three contiguous 2F1-series are linked by a relation over Q(a, b, c, z). The term
‘contiguous’ refers here to the fact that the parameters a, b, c of one series differs from
the corresponding parameters of the other by integers, so that Ebisu’s methodology
exploits the difference structure of the hypergeometric series rather than differential.
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1



2 WADIM ZUDILIN

The two however are naturally linked to each other — the recurrence equations for
the coefficients of the series translate into the linear differential equation above, and
this is true for more general linear differential equations.

In Ebisu’s method, one fixes two contiguous series, say F0 = F (a, b, c | z) and
F1 = F ′(a, b, c | z) (its z-derivative) and write, for any choice of ‘shift’ (k, l,m) of
the parameters (a, b, c),

F (a+ k, b+ l, c+m | z) = Rk,l,m(a, b, c, z)F0(z) +Qk,l,m(a, b, c, z)F1(z),

where R and Q are certain computable rational functions of a, b, c, z. If we now
choose an admissible quadruple (a, b, c, z0), that is, such that Qk,l,m(a+kt, b+ lt, c+
mt, z0) = 0 for all t ∈ C, then

F (a+ k(t+ 1), b+ l(t+ 1), c+m(t+ 1) | z0) = Rk,l,m(a+ kt, b+ lt, c+mt, z0)F0(z0).

At the same time the latter first-order recursion in t can be solved explicitly in
terms of the gamma values; the detailed analysis of this (quite delicate!) part was
recently given by Beukers and Forsg̊ard. One example, corresponding to the shift
(k, l,m) = (2, 2, 1) and the admissible set (a, b, c, z0) = (0, 1
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In his 2017 AMS memoir “Special values of the hypergeometric series” Ebisu lists
hundreds of evaluations.

One can find a certain level of similarity of Ebisu’s 2F1-evaluations with the for-
mulae like
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where t is a nonnegative integer and

R(n, t) =
56n2 + 72nt+ 34n+ 16t2 + 16t+ 3

2n+ 2t+ 1
.

These are due to Jesús Guillera who uses a quite different methodology of WZ
(Wilf–Zeilberger) pairs, in turn a baby version of creative telescoping. Now the hy-
pergeometric series are more involved (because there are more Pochhammer symbols
in the sums). When specialised at t = 0 the formulae become
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The first equality is an example of Ramanujan’s formulae for 1/π, which can be
proven based on the modular parametrisation of the underlying 3F2-hypergeometric
series
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The result is however rigid in this case and does not lead, in any obvious way, to
the t-extension. The second equality does not have such a modular interpretation,
though there is some geometry and Hilbert modular form detection in our joint work
with Dembélé, Panchishkin and Voight.

Let me focus from now on formulae for 1/π originating from the original work
“Modular equations and approximations to π” of Ramanujan (1914). Their general
shape is
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n=0

An(a+ bn)zn0 =

√
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π
,

in which f(z) =
∑∞

n=0Anz
n ∈ Z[[z]] and a, b, c, z0 are nonzero rationals (more

generally, f(z) is a globally bounded series, f(Cz) ∈ O[[z]] for some C ∈ Z>0 and

the ring of integers O of a number field, while a, b, c, z0 ∈ Q×). At the moment there
are three generations of examples:
(1) hypergeometric ones given by Ramanujan himself, like the one we have seen and
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each corresponding to a (special) 3F2 hypergeometric f(z) (which is in turn the
square of a 2F1 thanks to Clausen’s identity);
(2) Ramanujan–Sato formulae, in which f(z) is not any more hypergeometric but
still satisfying a third order Picard–Fuchs equation and is, again, a square of a
series coming from order 2 (those are always algebraic pullbacks of 3F2 and 2F1

hypergeometric examples, respectively); and
(3) Ramanujan-type formulae originating from Sun’s conjectures (2011–present),
when f(z) is a solution of a fourth order Picard–Fuchs equation, whose (Zariski
closure of the) monodromy group turns out to be an orthogonal group.
One standard example for the latter generation is
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here {un} is a sequence generated by the Apéry-like recursion

(n+1)2un+1−(7n2+7n+2)un−8n2un−1 = 0 for n = 0, 1, 2, . . . , u−1 = 0, u0 = 1,

while
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are classical Legendre polynomials generated by

∞∑
n=0
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1− 2yz + z2
.

It may not be straightforward that the sequence {un} is integer-valued; one could

use its different representations for that, un =
∑n

k=0
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)3
(these are known as Franel

numbers) or
∞∑
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the latter one shows that
∑∞

n=0 unx
n is a pullback of a 2F1 hypergeometric function.

The Picard–Fuchs equation for f(z) behind (2) has order 4 but it decomposes as

∞∑
n=0

unPn

(
(X + Y )(1− 8XY )− 14XY

(Y −X)(1 + 8XY )

)(
Y −X

1 + 8XY

)n

= (1 + 8XY )

{ ∞∑
n=0

unX
n

}{ ∞∑
n=0

unY
n

}
,

an identity we showed with James Wan in 2011 (in a greater generality); this cor-
responds to the product of two so-called D2 operators. In fact, the formulae in (1)
and (2) are equivalent, as they originate from the same specialisation of modular
parametrisations of the underlying solutions of second order equations.

In many other formulae for 1/π from generation (3) similar decompositions were
found and it was quite believed for a long time (by a narrow group of experts) that
the situation is precisely like this: The function f(z) is (up to an algebraic factor)
a product of f1(z) and f2(z), each a pullback of a 2F1 hypergeometric function (in
every single case representing an elliptic integral). The situation is quite similar for
generations (1) and (2), except there we get f1(z) = f2(z) (Clausen-type formulae).
Sun’s list however contained examples where f(z) is

∞∑
n=0

(
2n

n

)
Pn(y)2zn or

∞∑
n=0

Pn(y)3zn,

for which no decompositions were possible to produce. Some proofs of the formulae
corresponding to the first generating function were given by me in 2013 based on its
modular parametrisation for a particular choice of z = z(y).

It came as a big surprise that the generating function

F (y, z) =
∞∑
n=0

(
2n

n

)
Pn(y)2zn

as a function of two parameters y and z (when one of them is fixed, say) does not
meet the expectations. It satisfies a fourth-order linear differential equation, viewed
as a function of either variable, and both equations have (the Zariski closure of) the
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monodromy group O4. In joint work with Mark van Hoeij and Duco van Straten we
obtain the decomposition

F (y, z) = w I+(4z, w2) I−(4z, w2),

where w =
√

(1 + 4z)2 − 16y2z + 4y
√
−z and

I±(u, x) =
1

π

∫ 1

0

1− uv ± v
√

2u2 − 2u√
v(1− v)((1− v)(1− u2v)(1 + uv)2 + x v(1− uv)2)

dv

are generically hyperelliptic integrals. Furthermore, for each u ∈ C, the function
I±(u, x) satisfies a second-order differential equation with coefficients from L[x],
where L = Q(u,

√
2u2 − 2u). Surprisingly enough, such second-order equations (and

there are infinitely many of them because of the extra parameter u), not reducible
to elliptic integrals, were not recorded in the literature; they are reasonably simple
counterexamples to a 1990 conjecture of Dwork (which is already disproven finitely
many times through examples based on Shimura and Teichmüller curves defined
over quadratic extensions of Q).

Parametrisation

y = (x+ (t2 − 1)2)
√
z/x, z =

1

4(1− 2t2)

rationalises the square root in the decomposition of F (y, z), namely,
√

2u2 − 2u =
2tu and u = 1/(1 − 2t2), so that L = Q(t). One of the most remarkable aspects is
that the hyperelliptic integrals I±(u, x) satisfy second order equations, namely

LPF
± = Lx

±
∣∣
x 7→ −x

4u2
∈ L(x)[d/dx].

This is unusual, the Picard–Fuchs equation for a hyperelliptic integral of genus g
is expected to have order 2g. For such a reduction to lower order to happen, the
corresponding hyperelliptic curve and differential must have special properties. One
of these, encountered in our monodromy computation, is multiplication by

√
2. For

the underlying family of curves C = Cu,x : Y 2 = H(x, u, v), where

H = v(1− v)
(
(1− v)(1− u2v)(1 + uv)2 + x v(1− uv)2

)
∈ Q(u, x)[v],

we verify this property with a Humbert relation.
To add further value to our result, one should also take into account the follow-

ing. After decomposing our the forth order differential operator into the product
of LPF

+ and LPF
− , we were left with solving the corresponding second order differen-

tial equations that are not pullbacks of hypergeometric (and even Heun) equations.
But then there is no access to explicit formulae for their solutions! It was some
tough work, massaging the differential equations via suitable changes of variables
and analysing arithmetic behaviour of the solutions, to come up with explicit family
of hyperelliptic integrals.

An arithmetic way of displaying our finding is via the following infinite family
of Apéry-type recursions: Define degree 4n polynomials un = un(t) by un = 0 for
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n < 0, u0 = 1 and

(n+ 1)2un+1

− 22(16(t4 − 6t3 − 4t2 + 6t− 1)(n2 + n) + 4t4 − 24t3 − 12t2 + 20t− 3)un

− 211t(t− 1)3(t+ 1)(8(t2 + 2t− 1)n2 − 2t2 − 6t+ 3)un−1

+ 218t2(t− 1)6(t+ 1)2(2n+ 1)(2n− 3)un−2 = 0 for n = 0, 1, 2, . . . .

Then un ∈ Z[t].
At the end of the day, we have realised that one can easily engineer examples start-

ing from (essentially) any family of hyperelliptic integrals whose Jacobian possesses
real multiplication. Not necessarily by a quadratic order! This gives an extremely
rich structure of second order arithmetic differential equations, well beyond original
expectations of Dwork.

One further remark is the Hilbert surface X8 related to our example (and it only!)
has received a differential treatment 35 years ago in the work of Takeshi Sasaki and
Masaaki Yoshida. As an illustration of their general construction, they explicitly
gave a rank 4 system of partial differential equations for the surface. We expect that
system to be related to the one we encountered: To test this we have checked that
it has a similar decomposition to rank 2, which it does.
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