Mahler measures and multiple Eisenstein values

François Brunault
UMPA - ÉNS Lyon

23 February 2024
F. Brunault Mahler measures and multiple Eisenstein values

Definition (Mahler, 1962)

For $P \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right] \backslash\{0\}$, define

$$
m(P)=\frac{1}{(2 \pi i)^{n}} \int_{T^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}}
$$

where $T^{n}:\left|x_{1}\right|=\ldots=\left|x_{n}\right|=1$ is the n-torus.

Definition (Mahler, 1962)

For $P \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right] \backslash\{0\}$, define

$$
m(P)=\frac{1}{(2 \pi i)^{n}} \int_{T^{n}} \log \left|P\left(x_{1}, \ldots, x_{n}\right)\right| \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{n}}{x_{n}}
$$

where $T^{n}:\left|x_{1}\right|=\ldots=\left|x_{n}\right|=1$ is the n-torus.

- The integral converges absolutely.
- If P has coefficients in $\overline{\mathbf{Q}}$ then $m(P)$ should be a period in the sense of Kontsevich-Zagier.
- $m(P)$ measures the "size" of a polynomial in $\mathbf{Z}\left[x_{1}, \ldots, x_{n}\right]$.
- Lehmer's problem (1933): For $P \in \mathbf{Z}[x]$ monic irreducible, not cyclotomic, can $m(P)>0$ be arbitrarily small?

Theorem (Jensen, 1899)

For $P \in \mathbf{C}[x] \backslash\{0\}, P=a_{d} \prod_{i=1}^{d}\left(x-\alpha_{i}\right)$, we have

$$
m(P)=\log \left|a_{d}\right|+\sum_{\substack{k=1 \\\left|\alpha_{k}\right| \geq 1}}^{d} \log \left|\alpha_{k}\right| .
$$

Theorem (Jensen, 1899)

For $P \in \mathbf{C}[x] \backslash\{0\}, P=a_{d} \prod_{i=1}^{d}\left(x-\alpha_{i}\right)$, we have

$$
m(P)=\log \left|a_{d}\right|+\sum_{\substack{k=1 \\\left|\alpha_{k}\right| \geq 1}}^{d} \log \left|\alpha_{k}\right| .
$$

- Jensen's formula is still useful for multivariate polynomials: it reduces an n-dimension integral to an ($n-1$)-dimensional one.
- Example: using Jensen's formula with respect to y, we have

$$
m(1+x+y)=\frac{1}{2 \pi i} \int_{\substack{|x|=1 \\|1+x| \geq 1}} \log |1+x| \frac{d x}{x}=\frac{1}{2 \pi} \int_{-2 \pi / 3}^{2 \pi / 3} \log \left|1+e^{i \theta}\right| d \theta
$$

- How to evaluate further?

Timeline of identities

Smyth (1981): $m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{3}, 2\right)$
Here $L\left(\chi_{3}, s\right)=\sum_{n=1}^{\infty} \chi_{3}(n) / n^{s}$ is the Dirichlet L-function for

$$
\chi_{3}(n)= \begin{cases}1 & \text { if } n \equiv 1 \bmod 3 \\ -1 & \text { if } n \equiv 2 \bmod 3 \\ 0 & \text { if } n \equiv 0 \bmod 3\end{cases}
$$

Timeline of identities

Smyth (1981): $m(1+x+y)=\frac{3 \sqrt{3}}{4 \pi} L\left(\chi_{3}, 2\right)$
Here $L\left(\chi_{3}, s\right)=\sum_{n=1}^{\infty} \chi_{3}(n) / n^{s}$ is the Dirichlet L-function for

$$
\chi_{3}(n)= \begin{cases}1 & \text { if } n \equiv 1 \bmod 3 \\ -1 & \text { if } n \equiv 2 \bmod 3 \\ 0 & \text { if } n \equiv 0 \bmod 3\end{cases}
$$

The proof uses the series expansion

$$
\log \left|1+e^{i \theta}\right|=-\operatorname{Re} \sum_{n=1}^{\infty} \frac{e^{-i n \theta}}{n}
$$

and then integration from $\theta=-2 \pi / 3$ to $2 \pi / 3$.

Timeline of identities

Smyth (1981): $m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)$
Boyd and Deninger (1997):

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}+1\right) \stackrel{?}{=} \frac{15}{4 \pi^{2}} L(E, 2)=L^{\prime}(E, 0)
$$

where $L(E, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ is the L-function of the elliptic curve

$$
E: x+\frac{1}{x}+y+\frac{1}{y}+1=0
$$

Timeline of identities

Smyth (1981): $m(1+x+y+z)=\frac{7}{2 \pi^{2}} \zeta(3)$
Boyd and Deninger (1997):

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}+1\right) \stackrel{?}{=} \frac{15}{4 \pi^{2}} L(E, 2)=L^{\prime}(E, 0)
$$

where $L(E, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ is the L-function of the elliptic curve

$$
E: x+\frac{1}{x}+y+\frac{1}{y}+1=0 .
$$

- Discovered using numerical experiments + theoretical insights.
- Proved by Rogers and Zudilin (2011).

Boyd (1998): Families of conjectural identities, such as

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right) \stackrel{?}{=} c_{k} L^{\prime}\left(E_{k}, 0\right) \quad(k \in \mathbf{Z}, k \neq 0, \pm 4)
$$

for some rational number $c_{k} \in \mathbf{Q}^{\times}$.

Boyd (1998): Families of conjectural identities, such as

$$
m\left(x+\frac{1}{x}+y+\frac{1}{y}+k\right) \stackrel{?}{=} c_{k} L^{\prime}\left(E_{k}, 0\right) \quad(k \in \mathbf{Z}, k \neq 0, \pm 4)
$$

for some rational number $c_{k} \in \mathbf{Q}^{\times}$.

- Generalises to other families $m(P(x, y)+k)$ where the Newton polygon of $P(x, y)$ has $(0,0)$ as the only interior point.
- Only finitely many such identities are proved.
- Related to the algebraic K-group $K_{2}\left(E_{k}\right)$ and the Bloch-Beilinson regulator map $K_{2}\left(E_{k}\right) \rightarrow \mathbf{R}$.

Conjecture (Boyd and Rodriguez Villegas, 2003):

$$
m((1+x)(1+y)+z) \stackrel{?}{=} \frac{15^{2}}{4 \pi^{4}} L(E, 3)=-2 L^{\prime}(E,-1)
$$

where E is an elliptic curve of conductor 15 .

Conjecture (Boyd and Rodriguez Villegas, 2003):

$$
m((1+x)(1+y)+z) \stackrel{?}{=} \frac{15^{2}}{4 \pi^{4}} L(E, 3)=-2 L^{\prime}(E,-1)
$$

where E is an elliptic curve of conductor 15 .

- There are several other $L(E, 3)$ identities, but they do not seem to come in families.
- Why does an elliptic curve appear here?

Conjecture (Boyd and Rodriguez Villegas, 2003):

$$
m((1+x)(1+y)+z) \stackrel{?}{=} \frac{15^{2}}{4 \pi^{4}} L(E, 3)=-2 L^{\prime}(E,-1)
$$

where E is an elliptic curve of conductor 15 .

- There are several other $L(E, 3)$ identities, but they do not seem to come in families.
- Why does an elliptic curve appear here?
- Because

$$
E:\left\{\begin{array}{l}
(1+x)(1+y)+z=0 \\
\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)+\frac{1}{z}=0 .
\end{array}\right.
$$

- Note that $\{(1+x)(1+y)+z=0\} \cap T^{3} \subset E$.

F. Brunault Mahler measures and multiple Eisenstein values

In this talk, we will consider L-functions of modular forms. If $f(\tau)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n \tau}$ is a modular form on a congruence subgroup of $\mathrm{SL}_{2}(\mathbf{Z})$, its L-function is defined by

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

In this talk, we will consider L-functions of modular forms. If $f(\tau)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n \tau}$ is a modular form on a congruence subgroup of $\mathrm{SL}_{2}(\mathbf{Z})$, its L-function is defined by

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Integral representation:

$$
(2 \pi)^{-s} \Gamma(s) L(f, s)=\int_{0}^{\infty}\left(f(i y)-a_{0}\right) y^{s} \frac{d y}{y} .
$$

- Meromorphic continuation to \mathbf{C} and functional equation.

Theorem (B. 2023)
We have $m((1+x)(1+y)+z)=-2 L^{\prime}(E,-1)$.

Theorem (B. 2023)
We have $m((1+x)(1+y)+z)=-2 L^{\prime}(E,-1)$.

- Now related to the K-group $K_{4}(E)$.
- Uses joint work with Zudilin on K_{4} regulators.
- Key tool: Multiple modular values

$$
\int_{0}^{\infty} f_{1}\left(i y_{1}\right) y_{1}^{s_{1}-1} d y_{1} \int_{y_{1}}^{\infty} f_{2}\left(i y_{2}\right) y_{2}^{s_{2}-1} \ldots \int_{y_{n-1}}^{\infty} f_{n}\left(i y_{n}\right) y_{n}^{s_{n}-1} d y_{n}
$$

where f_{1}, \ldots, f_{n} are modular forms.

Let $P=(1+x)(1+y)+z$.

Step 1: Deninger's method

Use Jensen's formula with respect to z.

$$
\leadsto \quad m(P)=\frac{1}{(2 \pi i)^{2}} \int_{\Gamma} \eta(x, y, z)
$$

where:

- η is an explicit closed 2-form on $V_{P}=\{P(x, y, z)=0\}$.
- $\Gamma=\left\{(x, y, z) \in V_{P}:|x|=|y|=1,|z| \geq 1\right\}$.

Step 2: Stokes's theorem

In our case, the form η happens to be exact. Writing $\eta=d \rho$, we have by Stokes's theorem

$$
m(P)=\frac{1}{(2 \pi i)^{2}} \int_{\Gamma} d \rho=\frac{1}{(2 \pi i)^{2}} \int_{\gamma} \rho
$$

with

$$
\gamma=\partial \Gamma=\left\{(x, y, z) \in V_{P}:|x|=|y|=|z|=1\right\} .
$$

- $\gamma=V_{P} \cap T^{3}$ is contained in E.
- ρ is a closed 1-form on E.
- So we now have a 1-dimensional integral on E.

For any two functions f, g on E, define
$\rho(f, g)=-D(f) \operatorname{darg}(g)+\frac{1}{3} \log |g|(\log |1-f| \operatorname{dog}|f|-\log |f| \operatorname{dog}|1-f|)$
where $D: \mathbf{P}^{\mathbf{1}}(\mathbf{C}) \rightarrow \mathbf{R}$ is the Bloch-Wigner dilogarithm

$$
D(z)=\operatorname{Im}\left(\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}\right)+\log |z| \arg (1-z)
$$

Theorem (Lalín, 2015)

- $\rho=\rho(-y, x)-\rho(-x, y)$.
- γ is a generator of $H_{1}(E(\mathbf{C}), \mathbf{Z})^{+}$.

Step 3: Translate in the modular world

The elliptic curve E is isomorphic to the modular curve $X_{1}(15)$.

$$
X_{1}(N)=\Gamma_{1}(N) \backslash \mathcal{H} \cup\{\text { cusps }\}
$$

where

$$
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z}): a, d \equiv 1 \bmod N, c \equiv 0 \bmod N\right\} .
$$

Nice feature: the functions x and y on E correspond to modular units on $X_{1}(15)$, that is, all their zeros and poles are at the cusps.

Key fact: if u is a modular unit, then $\operatorname{dlog}(u)=E_{2}(z) d z$ where E_{2} is an Eisenstein series of weight 2.

We want to understand

$\rho(u, v)=-D(u) \operatorname{darg}(v)+\frac{1}{3} \log |v|(\log |1-u| \operatorname{dog}|u|-\log |u| \operatorname{dog}|1-u|)$. when u and v are modular units on $X_{1}(N)$.

We want to understand
$\rho(u, v)=-D(u) \operatorname{darg}(v)+\frac{1}{3} \log |v|(\log |1-u| \operatorname{dog}|u|-\log |u| \operatorname{dog}|1-u|)$. when u and v are modular units on $X_{1}(N)$.

- dlog(u) and $d \log (v)$ are Eisenstein series, so the log terms of the formula are well-understood.

We want to understand
$\rho(u, v)=-D(u) \operatorname{darg}(v)+\frac{1}{3} \log |v|(\log |1-u| \operatorname{d} \log |u|-\log |u| \operatorname{dog}|1-u|)$.
when u and v are modular units on $X_{1}(N)$.

- $\mathrm{d} \log (u)$ and $\operatorname{dlog}(v)$ are Eisenstein series, so the log terms of the formula are well-understood.
- The challenging piece is $D(u)$. We use

$$
d(D(u))=\log |u| \operatorname{darg}(1-u)-\log |1-u| \operatorname{darg}(u)
$$

- If u and $1-u$ are modular units, then $D(u)$ is an iterated integral of Eisenstein series.

Definition

For $k \geq 1$ and $\boldsymbol{x}=\left(x_{1}, x_{2}\right) \in(\mathbf{Z} / N \mathbf{Z})^{2}$, define the Eisenstein series

$$
E_{x}^{(k)}(\tau)=\sum_{m, n \in \mathbf{Z}} \frac{\exp \left(\frac{2 \pi i}{N}\left(m x_{2}-n x_{1}\right)\right)}{(m \tau+n)^{k}} \in M_{k}(\Gamma(N))
$$

For $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in(\mathbf{Z} / N \mathbf{Z})^{2}$, define the multiple Eisenstein values (Manin, Brown)

$$
\begin{aligned}
\Lambda(\boldsymbol{x}, \boldsymbol{y}) & :=\int_{0}^{i \infty} E_{x}^{(2)}\left(\tau_{1}\right) d \tau_{1} \int_{\tau_{1}}^{i \infty} E_{y}^{(2)}\left(\tau_{2}\right) d \tau_{2} \\
\Lambda(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) & :=\int_{0}^{i \infty} E_{\boldsymbol{x}}^{(2)}\left(\tau_{1}\right) d \tau_{1} \int_{\tau_{1}}^{i \infty} E_{y}^{(2)}\left(\tau_{2}\right) d \tau_{2} \int_{\tau_{2}}^{i \infty} E_{z}^{(2)}\left(\tau_{3}\right) d \tau_{3}
\end{aligned}
$$

\leadsto The Mahler measure of P can be written as an explicit linear combination of multiple Eisenstein values.

Theorem (B.-Zudilin, 2023)

Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in(\mathbf{Z} / N \mathbf{Z})^{2}$ such that $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=0$. If all the coordinates of $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ are non-zero, then

$$
\begin{aligned}
& \operatorname{Re}(\Lambda(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y})-\Lambda(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{y})+\Lambda(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{x})-\Lambda(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{x})+\Lambda(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{x})+\Lambda(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{y}) \\
& \quad-(\Lambda(\boldsymbol{y})-\Lambda(\boldsymbol{x}))(\Lambda(\boldsymbol{x}, \boldsymbol{y})+\Lambda(\boldsymbol{y}, \boldsymbol{z})+\Lambda(\boldsymbol{z}, \boldsymbol{x})))=L^{\prime}\left(F_{x, y},-1\right)+c_{x}, \boldsymbol{y} \zeta(3)
\end{aligned}
$$

for some explicit $F_{\boldsymbol{x}, \boldsymbol{y}} \in M_{2}(\Gamma(N))$, and $c_{\boldsymbol{x}, \boldsymbol{y}} \in \mathbf{Q}$.

Theorem (B.-Zudilin, 2023)

Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in(\mathbf{Z} / N \mathbf{Z})^{2}$ such that $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=0$. If all the coordinates of $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ are non-zero, then

$$
\begin{array}{r}
\operatorname{Re}(\Lambda(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y})-\Lambda(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{y})+\Lambda(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{x})-\Lambda(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{x})+\Lambda(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{x})+\Lambda(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{y}) \\
\quad-(\Lambda(\boldsymbol{y})-\Lambda(\boldsymbol{x}))(\Lambda(\boldsymbol{x}, \boldsymbol{y})+\Lambda(\boldsymbol{y}, \boldsymbol{z})+\Lambda(\boldsymbol{z}, \boldsymbol{x})))=L^{\prime}\left(F_{x, y},-1\right)+c_{x, y} \zeta(\tag{3}
\end{array}
$$

for some explicit $F_{\boldsymbol{x}, \boldsymbol{y}} \in M_{2}(\Gamma(N))$, and $c_{\boldsymbol{x}, \boldsymbol{y}} \in \mathbf{Q}$.
Proving this formula requires two ingredients:

- Interpolate the multiple Eisenstein values to continuous parameters, viewing $(\mathbf{Z} / N \mathbf{Z})^{2}$ inside $(\mathbf{R} / \mathbf{Z})^{2}$ using $\left(x_{1}, x_{2}\right) \mapsto\left(\frac{x_{1}}{N}, \frac{x_{2}}{N}\right)$.
- Differentiate with respect to these parameters to reduce the length of the iterated integrals.

Key lemma

For $\boldsymbol{x}=\left(x_{1}, x_{2}\right) \in(\mathbf{R} / \mathbf{Z})^{2}$, we have

$$
\frac{d}{d x_{2}} E_{x}^{(2)}(\tau)=\frac{d}{d \tau} E_{x}^{(1)}(\tau)
$$

Key lemma

For $\boldsymbol{x}=\left(x_{1}, x_{2}\right) \in(\mathbf{R} / \mathbf{Z})^{2}$, we have

$$
\frac{d}{d x_{2}} E_{x}^{(2)}(\tau)=\frac{d}{d \tau} E_{x}^{(1)}(\tau)
$$

So for example

$$
\begin{aligned}
\frac{d}{d y_{2}} \Lambda(\boldsymbol{x}, \boldsymbol{y}) & =\int_{0}^{i \infty} E_{\boldsymbol{x}}^{(2)}\left(\tau_{1}\right) d \tau_{1} \int_{\tau_{1}}^{i \infty} \frac{d}{d y_{2}} E_{\boldsymbol{y}}^{(2)}\left(\tau_{2}\right) d \tau_{2} \\
& =\int_{0}^{i \infty} E_{x}^{(2)}\left(\tau_{1}\right) d \tau_{1} \int_{\tau_{1}}^{i \infty} \frac{d}{d \tau_{2}} E_{y}^{(1)}\left(\tau_{2}\right) d \tau_{2} \\
& =\int_{0}^{i \infty} E_{\boldsymbol{x}}^{(2)}\left(\tau_{1}\right)\left(E_{\boldsymbol{y}}^{(1)}(i \infty)-E_{\boldsymbol{y}}^{(1)}\left(\tau_{1}\right)\right) d \tau_{1}
\end{aligned}
$$

This reduces a double integral to a single integral.

To prove the formula

$$
\begin{array}{r}
\operatorname{Re}(\Lambda(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y})-\Lambda(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{y})+\Lambda(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{x})-\Lambda(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{x})+\Lambda(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{x})+\Lambda(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{y}) \\
\quad-(\Lambda(\boldsymbol{y})-\Lambda(\boldsymbol{x}))(\Lambda(\boldsymbol{x}, \boldsymbol{y})+\Lambda(\boldsymbol{y}, \boldsymbol{z})+\Lambda(\boldsymbol{z}, \boldsymbol{x})))=L^{\prime}\left(F_{\boldsymbol{x}, \boldsymbol{y}},-1\right)+c_{x, y} \zeta(\tag{3}
\end{array}
$$

we differentiate the LHS with respect to x_{2}.
We get a sum of double integrals of the form

$$
\int_{0}^{i \infty} E_{\boldsymbol{a}}^{(2)}\left(\tau_{1}\right) d \tau_{1} \int_{\tau_{1}}^{i \infty} E_{\boldsymbol{b}}^{(2)}\left(\tau_{2}\right) E_{\boldsymbol{c}}^{(1)}\left(\tau_{2}\right) d \tau_{2}
$$

To prove the formula

$$
\begin{array}{r}
\operatorname{Re}(\Lambda(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y})-\Lambda(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{y})+\Lambda(\boldsymbol{y}, \boldsymbol{x}, \boldsymbol{x})-\Lambda(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{x})+\Lambda(\boldsymbol{z}, \boldsymbol{y}, \boldsymbol{x})+\Lambda(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{y}) \\
\quad-(\Lambda(\boldsymbol{y})-\Lambda(\boldsymbol{x}))(\Lambda(\boldsymbol{x}, \boldsymbol{y})+\Lambda(\boldsymbol{y}, \boldsymbol{z})+\Lambda(\boldsymbol{z}, \boldsymbol{x})))=L^{\prime}\left(F_{\boldsymbol{x}, \boldsymbol{y}},-1\right)+c_{x, y} \zeta(\tag{3}
\end{array}
$$

we differentiate the LHS with respect to x_{2}.
We get a sum of double integrals of the form

$$
\int_{0}^{i \infty} E_{\boldsymbol{a}}^{(2)}\left(\tau_{1}\right) d \tau_{1} \int_{\tau_{1}}^{i \infty} E_{\boldsymbol{b}}^{(2)}\left(\tau_{2}\right) E_{\boldsymbol{c}}^{(1)}\left(\tau_{2}\right) d \tau_{2}
$$

Miracle: The (complicated) linear combination of products $E_{b}^{(2)} E_{c}^{(1)}$ is actually an Eisenstein series of weight 3!
This means that we have a double Eisenstein value.

The double Eisenstein values can be computed using the Rogers-Zudilin method. We get

$$
\frac{d}{d x_{2}}(\text { LHS })=\text { sum of } L \text {-values } L^{\prime}\left(G_{\boldsymbol{a}}^{(1)} G_{\boldsymbol{b}}^{(2)}, 0\right)
$$

for some (other) Eisenstein series $G^{(1)}$ and $G^{(2)}$.

The double Eisenstein values can be computed using the Rogers-Zudilin method. We get

$$
\frac{d}{d x_{2}}(\text { LHS })=\text { sum of } L \text {-values } L^{\prime}\left(G_{\boldsymbol{a}}^{(1)} G_{\boldsymbol{b}}^{(2)}, 0\right)
$$

for some (other) Eisenstein series $G^{(1)}$ and $G^{(2)}$.
This can be integrated to

$$
\text { LHS }=\text { sum of } L \text {-values } L^{\prime}\left(G_{\boldsymbol{a}}^{(1)} G_{\boldsymbol{b}}^{(1)},-1\right)
$$

We arrive at our L-value $L^{\prime}\left(F_{\boldsymbol{x}, \boldsymbol{y}},-1\right)$.

The double Eisenstein values can be computed using the Rogers-Zudilin method. We get

$$
\frac{d}{d x_{2}}(\text { LHS })=\text { sum of } L \text {-values } L^{\prime}\left(G_{\boldsymbol{a}}^{(1)} G_{\boldsymbol{b}}^{(2)}, 0\right)
$$

for some (other) Eisenstein series $G^{(1)}$ and $G^{(2)}$.
This can be integrated to

$$
\text { LHS }=\text { sum of } L \text {-values } L^{\prime}\left(G_{\boldsymbol{a}}^{(1)} G_{\boldsymbol{b}}^{(1)},-1\right)
$$

We arrive at our L-value $L^{\prime}\left(F_{x, y},-1\right)$.

Remark

We have no good understanding of the $\zeta(3)$ term in the formula.

The proof of the theorem also builds on:

- The Siegel modular units $g_{\boldsymbol{x}}$ for $\boldsymbol{x} \in(\mathbf{Z} / N \mathbf{N})^{2}$ on the modular curve $Y(N)=\Gamma(N) \backslash \mathcal{H}$
- Milnor symbols $\left\{g_{\boldsymbol{x}}, g_{\boldsymbol{y}}\right\}$ in $K_{2}(Y(N)) \otimes \mathbf{Q}$
- Three-term relations: if $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=0$ then

$$
\left\{g_{x}, g_{y}\right\}+\left\{g_{y}, g_{z}\right\}+\left\{g_{z}, g_{x}\right\}=0
$$

- We can actually find a "triangulation"

$$
g_{x} \wedge g_{y}+g_{y} \wedge g_{z}+g_{z} \wedge g_{x}=\sum_{i} m_{i} \cdot u_{i} \wedge\left(1-u_{i}\right)
$$

where u_{i} and $1-u_{i}$ are modular units, and $m_{i} \in \mathbf{Q}$.

- This triangulation leads to an element of $K_{4}(Y(N)) \otimes \mathbf{Q}$.

This should extend in higher weight: for $k \geq 0$ and $\boldsymbol{x} \in(\mathbf{Z} / N \mathbf{Z})^{2}$, there is the Eisenstein symbol

$$
\operatorname{Eis}^{k}(\boldsymbol{x}) \in K_{k+1}\left(E(N)^{k}\right) \otimes \mathbf{Q}
$$

where $E(N)^{k}$ is the k-fold fibre product of the universal elliptic curve $E(N)$ over the modular curve $Y(N)$.

Definition

For $k, \ell \geq 0$ and $\boldsymbol{x}, \boldsymbol{y} \in(\mathbf{Z} / N \mathbf{Z})^{2}$, define

$$
X^{k} Y^{\ell}(\boldsymbol{x}, \boldsymbol{y})=p_{1}^{*} \operatorname{Eis}^{k}(\boldsymbol{x}) \cup p_{2}^{*} \operatorname{Eis}^{\ell}(\boldsymbol{y}) \in K_{k+\ell+2}\left(E(N)^{k+\ell}\right) \otimes \mathbf{Q}
$$

where $p_{1}: E^{k+\ell} \rightarrow E^{k}$ and $p_{2}: E^{k+\ell} \rightarrow E^{\ell}$ are the projections.

Conjecture

Let $k, \ell \geq 0$ and $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in(\mathbf{Z} / N \mathbf{Z})^{2}$ with $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=0$. Then

$$
X^{k} Y^{\ell}(\boldsymbol{x}, \boldsymbol{y})+X^{\ell}(-X-Y)^{k}(\boldsymbol{y}, \boldsymbol{z})+Y^{k}(-X-Y)^{\ell}(z, \boldsymbol{x})=0 .
$$

Conjecture

Let $k, \ell \geq 0$ and $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in(\mathbf{Z} / N Z)^{2}$ with $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=0$. Then

$$
X^{k} Y^{\ell}(\boldsymbol{x}, \boldsymbol{y})+X^{\ell}(-X-Y)^{k}(\boldsymbol{y}, \boldsymbol{z})+Y^{k}(-X-Y)^{\ell}(\boldsymbol{z}, \boldsymbol{x})=0 .
$$

- One should be able to prove this in Deligne cohomology.
- Induction on the weight, using differentiation with respect to the parameters of the Eisenstein symbols.

Conjecture

Let $k, \ell \geq 0$ and $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in(\mathbf{Z} / N \mathbf{Z})^{2}$ with $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=0$. Then

$$
X^{k} Y^{\ell}(\boldsymbol{x}, \boldsymbol{y})+X^{\ell}(-X-Y)^{k}(\boldsymbol{y}, \boldsymbol{z})+Y^{k}(-X-Y)^{\ell}(\boldsymbol{z}, \boldsymbol{x})=0 .
$$

- One should be able to prove this in Deligne cohomology.
- Induction on the weight, using differentiation with respect to the parameters of the Eisenstein symbols.
- Open question: what is the triangulation?

Conjecture

Let $k, \ell \geq 0$ and $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in(\mathbf{Z} / N \mathbf{Z})^{2}$ with $\boldsymbol{x}+\boldsymbol{y}+\boldsymbol{z}=0$. Then

$$
X^{k} Y^{\ell}(\boldsymbol{x}, \boldsymbol{y})+X^{\ell}(-X-Y)^{k}(\boldsymbol{y}, \boldsymbol{z})+Y^{k}(-X-Y)^{\ell}(\boldsymbol{z}, \boldsymbol{x})=0
$$

- One should be able to prove this in Deligne cohomology.
- Induction on the weight, using differentiation with respect to the parameters of the Eisenstein symbols.
- Open question: what is the triangulation?
- In this range, Deligne cohomology is just de Rham cohomology, so this amounts to say that a particular differential form is exact. Can we make explicit a primitive?

Beyond the reach of current technology

Conjecture (Rodriguez Villegas, 2003)

$$
\begin{aligned}
m\left(1+x_{1}+x_{2}+x_{3}+x_{4}\right) & =-L^{\prime}(f,-1) \\
m\left(1+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) & =-8 L^{\prime}(g,-1)
\end{aligned}
$$

for modular forms $f \in S_{3}\left(\Gamma_{1}(15)\right)$ and $g \in S_{4}\left(\Gamma_{0}(6)\right)$.

Beyond the reach of current technology

Conjecture (Rodriguez Villegas, 2003)

$$
\begin{gathered}
m\left(1+x_{1}+x_{2}+x_{3}+x_{4}\right)=-L^{\prime}(f,-1) \\
m\left(1+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)=-8 L^{\prime}(g,-1)
\end{gathered}
$$

for modular forms $f \in S_{3}\left(\Gamma_{1}(15)\right)$ and $g \in S_{4}\left(\Gamma_{0}(6)\right)$.

Conjecture (B.-Pengo, 2023)

$$
m(x y t+x z t+y z t+x y+x z-y z-y t+z t-y+z-t+1)=\frac{1}{6} L^{\prime}(E,-2)
$$

where $E=32 a 2$ is an elliptic curve of conductor 32 .

How we found the polynomial

Take $P(x, y, z, t)$ of the form

$$
P=a(x, y)+b(x, y) z+c(c, y) t+d(x, y) z t
$$

Eliminating t in $P(x, y, z, t)=P\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}, \frac{1}{t}\right)=0$ gives

$$
W_{P}: A(x, y) z^{2}+B(x, y) z+C(x, y)=0 .
$$

Want: $\Delta=B^{2}-4 A C$ is a square $\delta(x, y)^{2}$ in $\mathbf{Q}(x, y)$.
Then $W_{P}=W_{1} \cup W_{2}$ with

$$
W_{1} \cap W_{2}: \delta(x, y)=0
$$

We look for a, b, c, d such that $W_{1} \cap W_{2}$ is an elliptic curve.

Numerical computation of $m(P)$

Rodriguez Villegas: $2 m(P)=\log k-\int_{0}^{1 / k} \phi_{P}(u) d u$ where k is the constant coefficient of $P(x, y, z, t) P\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}, \frac{1}{t}\right)$ and

$$
\phi_{P}(u)=\frac{1}{(2 \pi i)^{n}} \int_{T^{n}} \frac{Q}{1-u Q} \cdot \frac{d x}{x} \frac{d y}{y} \frac{d z}{z} \frac{d t}{t}
$$

with $Q=P(x, y, z, t) P\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}, \frac{1}{t}\right)-k$.
Pengo-Ringeling: Using creative telescoping, one can find a polynomial ODE satisfied by ϕ_{P}. This takes a long time, but then $m(P)$ can be computed quickly with high precision.

