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The Riemann ζ-function

ζ(s) =
∑
n≥1

n−s =
∏

p prime

1

1− p−s
(Re(s) > 1)

can be extended to a meromorphic function on C with a simple
pole at s = 1 with residue 1

ζ(2) = π2/6 ζ(3) irrational

ζ(4) = π4/90 ζ(5) ???

ζ(6) = π6/945 ζ(7) ???

...
...
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The ζ-function of a number field

Let F be a number field, i.e., for some irreducible polynomial f (X )
in Q[X ] of degree d , and α a root of f (X ) in C,

k = Q(α) = {b0 + b1α+ · · ·+ bd−1α
d−1, all bj in Q}

the number field generated by α.
Let O be the ring of algebraic integers of F : x ∈ F is an algebraic
integer if it is the zero of a polynomial
X n + an−1X

n−1 + . . .+ a1X + a0 with all ai in Z.

The ζ-function of F is defined by (for Re(s) > 1)

ζF (s) =
∑

(0)̸=I⊂O
I an ideal of O

(#O/I )−s =
∏

0 ̸=P⊂O
P prime ideal

1

1− (#O/P)−s
.

Every non-zero ideal of O is uniquely (up to ordering) the product
of non-zero prime ideals.
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The ζ-function of a number field

ζF (s) can be extended to a meromorphic function on C with a
simple pole at s = 1

Let r1 the number of embeddings F → R, 2r2 the number of
non-real embeddings F → C, so d = r1 + 2r2.
(r1 = #real roots of f (X ), 2r2 = #non-real roots of f (X ))

O∗ ∼= Zr × Z/wZ with r = r1 + r2 − 1 and

w = the number of roots of unity in F

Let σ1, . . . , σr+1 be the embeddings of F into C up to complex
conjugation.

If u1, . . . , ur form a Z-basis of O∗/{roots of unity}, let

R =
2r2

d
| det

1 log |σ1(u1)| . . . log |σ1(ur )|
...

...
...

1 log |σr+1(u1)| . . . log |σr+1(ur )|

 |
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The ζ-function of a number field

Then

Ress=1ζF (s) =
2r1(2π)r2R #Cl(O)

w
√
∆F

• Cl(O) = the class group of O (a finite Abelian group which
measures (failure of) unique factorization in O)
• w = the number of roots of unity in F = #O∗

tor

• ∆F the absolute value of the discriminant of F .

This is a statement about algebraic K -theory:

K0(O) ∼= Z
∐
Cl(O) and K1(O) ∼= O∗,

so

#Cl(O) = #K0(O)tor and w = #K1(O)tor.
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K2 of a field

If F is a field then K2(F ) is an Abelian group written additively,
with

generators {a, b} for a, b in F ∗

relations {a1a2, b} = {a1, b}+ {a2, b}
{a, b1b2} = {a, b1}+ {a, b2}
{a, 1− a} = 0 if a ̸= 0, 1

Then also {a, b} = −{b, a} and {c ,−c} = 0 for a, b, c in F ∗.

Note that K2(F ) ≃ F ∗ ⊗ F ∗/⟨x ⊗ (1− x)⟩ with {a, b}
corresponding to the class of a⊗ b.
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An example: K2(Q)

Proposition

K2(Q)
∼→ {±1} ×

∐
p prime

F∗
p

with components

T∞ : K2(Q) → {±1} with T∞({a, b}) =

{
−1 if a, b < 0

1 otherwise
Tp : K2(Q) → F∗

p with

Tp({a, b}) = (−1)ordp(a)ordp(b) a
ordp(b)

bordp(a)
mod p the tame symbol for p

T∞ gives an isomorphism {±1} ≃ K2(Z) = ⟨{−1,−1}⟩ ⊂ K2(Q)

For the proof of the proposition, for q prime or −1, let
Fq = ⟨{a, b} with a, b ∈ {−1, 2, 3, 5, 7, 11, . . . , q}⟩ ⊆ K2(Q)

Then
Fq/Fq′

∼=→ F∗
q via Tq (q ≥ 2)

with q′ the subprime of q (= one prime smaller) (2′ = −1)
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An example: K2(Q)

For the proof of this isomorphism, let q ≥ 2
• surjectivity: {a, q} 7→ a ∈ F∗

q (a = 1, . . . , q − 1)

• injectivity: the kernel of Fq
Tq→ F∗

q is Fq′ : Fq′ ⊆ ker(Tq): clear;
if q = 2 then F2 = F−1 as {2, 2} = {2,−1} = {−1, 2} = 0
if q > 2 then Fq/Fq′ is generated by the classes of {a, q} − {b, q}
with a, b ∈ Mq

def
= {−1, 1, 2, 3, 4, 5, . . . , q − 1}

If a1, a2 ∈ Mq then {a1, q}+ {a2, q}
Fq′≡ {a3, q} for a3 ∈ Mq:

division with remainder gives a1a2 − a3 = Aq with
a3 = 1, 2, . . . , q − 1 ∈ Mq and A = −1, 0, 1, . . . , q − 2.
If A = 0: a1a2 = a3 so clear;

If A ̸= 0: 0 = {a1a2
Aq ,

a3
−Aq}

Fq′≡ {a3, q} − {a1, q} − {a2, q}.

So Fq/Fq′ = {{a, q} − {b, q} with a, b ∈ Mq}

Finally, if Tq({a, q}) = Tq({b, q}) for a, b ∈ Mq then
a− b = 0,±q and {a, q} ≡ {b, q} modulo F ′

q as before
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Some results by Quillen and Soulé

Quillen defined Abelian groups Kn(R) (n ≥ 0) for rings R, as well
as for algebraic varieties.

Let F be a number field, with r1 real and 2r2 non-real embeddings,
d = r1 + 2r2, and ring of algebraic integers O, and let ∆F be the
absolute value of the discriminant of F

Then

• K0(O) ∼= Z
∐

Cl(O)

• K1(O) ∼= O∗ has rank r1 + r2 − 1

Theorem (Quillen) Kn(O) is finitely generated for all n ≥ 0.

Theorem (Soulé) The localisation map Kn(O) → Kn(F ) is injective
for n > 0.

This implies that Kn(O) = Kn(F ) for n > 1 odd because Km of a
finite field is 0 for m > 0 and even.
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Borel’s theorem

Theorem (Borel; with some results of Quillen and Soulé thrown in)
(1) K2n(O) is a finite group if n ≥ 1.
(2) For n ≥ 2, K2n−1(O) is finitely generated of rank

m2n−1 =

{
r2, if n is even

r1 + r2, if n is odd

(3) There exists a natural regulator map

K2n−1(O) → Rm2n−1 (n ≥ 2).

Its image is a lattice with (normalized) volume of a fundamental
domain

Rn(F ) = q
ζF (n)

πn(d−m2n−1)
√
∆F

with q in Q∗.

Rob de Jeu Bloch-Kato conjecture for elliptic curves, and indivisibility



Example: the K -theory of Z

ζQ is the Riemann zeta function. For n ≥ 2:

K2n−1(Z) = K2n−1(Q)

this is finite for n even;

it has rank 1 for n odd, and Rn(F ) = qnζ(n) with qn ∈ Q∗.

n 2 3 4 5 6 7 . . .

m2n−1 0 1 0 1 0 1 . . .

ζ(n) π2/6 irrational π4/90 ??? π6/945 ??? . . .
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Bloch’s construction and result

Let E/Q be an elliptic curve. There is a commutative diagram

K2(E ) //

reg

��

K2(Q(E ))
T //

reg

��

∐
E (1)Q(P)∗

L
��

0 // H1
dR(E (C),R) // H1

dR(C(E ),R) //
∐

Q∈E(C)R // . . .

with exact rows, and

• T =
∏

P TP the tame symbol; TP uses ordP(·) : Q(E )∗ → Z

• L(a|P) = (log |σ(a)||σ(P))σ:Q(P)→C

• reg({f , g}) = the class of log |f |d arg(g)− log |g |d arg(f ) in
H1
dR(C(E ),R)

def
= lim→U H1

dR(U,R) with E (C) \ U finite

• reg({f , 1− f }) = df ∗(D) with D : C \ {0, 1} → R the
Bloch-Wigner dilogarithm
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Bloch’s construction and result

Theorem (Bloch) Let E be an elliptic curve defined over Q, and ω
a non-zero holomorphic form on E (C) with

∫
E(R) ω = 1.

If E (C) has complex multiplication, then there exists α in K2(E )
with

L′(E , 0) = q
1

2π

∫
E(C)

reg(α) ∧ ω

with q in Q∗, or, using the functional equation for the L-function

1

2π
L(E , 2) = q′

∫
E(C)

reg(α) ∧ ω

with q′ in Q∗.
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The kernel of the tame symbol

Let C be a regular, projective curve over a field F . For P a closed
point of C we have the tame symbol at P

TP : K2(F (C )) → F (P)∗

{f , g} 7→ (−1)ordP(f )ordP(g)
f ordP(g)

gordP(f )
(P)

For β in K2(F (C )) we have
∏

P NmF (P)/F (TP(β)) = 1 in F ∗

product formula

We have an exact localisation sequence

. . .→
∐
P

K2(F (P)) → K2(C ) → K2(F (C ))
T→
∐
P

F (P)∗

→ K1(C ) → F (C )∗
div→
∐
P

Z → K0(C ) → Z → 0

Set KT
2 (C ) = ker(T ), the image of K2(C ) in K2(F (C )) under

localisation

Fact K2(F ) of a number field F is an infinite torsion group.
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The integrality condition

Now assume F is a number field, and C a regular, flat and proper
model over OF of C over F . For an irreducible curve D ⊆ C with
residue field F(D), we have the tame symbol at D

TD : K2(F (C )) → F(D)∗

{f , g} 7→ (−1)vD(f )vD(g) f
vD(g)

g vD(f )
(D)

Set K2(C ;Z) = ker
(∏

D TD : K2(F (C )) →
∐

D F(D)∗
)

Then K2(C ;Z) ⊆ KT
2 (C ): ‘horizontal’ D correspond to P in C

Proposition (Liu-de Jeu (2015)) K2(C ;Z) is independent of C. It is
the image of K2(C) in K2(F (C )) under localisation (hence behaves
functorially).

K2(C ;Z) = ‘integral elements’ of KT
2 (C ), coming from K2(C)
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Beilinson’s conjecture for K2 of curves

For notational simplicity, suppose C is defined over Q.

Conjecture (Beilinson; with Bass for supposed finite generation)

(1) The group K2(C ;Z) is a finitely generated Abelian group of
rank the genus g of C .

(2) The pairing

H1(C (C);Z)− × K2(C ;Z)tf → R

(γ, α) =
1

2π

∫
γ
reg(α)

is non-degenerate. H1(C (C);Z)− ∼= Zg : anti-invariants under
complex conjugation on C (C); reg as in Bloch’s construction

(3) Let the Beilinson regulator R be the absolute value of the
determinant of (·, ·) with respect to Z-bases of H1(C (C);Z)− and
K2(C ;Z)tf . Then, for some q in Q∗,

(2π)−2gL(C , 2) = qR.
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A philosophy with ramification(s)

u ≥ 5 integer with D = u2 − 4 squarefree. A fundamental unit for
OF in F = Q(

√
D) is v > 1 with v2 − uv + 1 = 0; it has regulator

log(v) = F1(u) = log(u)−
∞∑
n=1

(
2n

n

)
u−2n

2n
,

hence −
ζ ′F (0)

F1(u)
=

#Cl(O(F ))

2
=

#Cl+(O(F ))

4
.

Cl+(OF )[2] ≃ (Z/2Z)r−1 if D has r factors. r = 2 is necessary for
ord2(#Cl(O)) = 0 but not sufficient:

minimal 2-part in class group

u u2 − 4 ord2(#Cl(OF ))

5 3 · 7 0

9 7 · 11 0

21 19 · 23 0

45 43 · 47 0

69 67 · 71 0

81 79 · 83 0

105 103 · 107 0

minimal number of factors in u2 − 4

u u2 − 4 ord2(#Cl(OF ))

99 97 · 101 2

2139 2137 · 2141 3

195 193 · 197 4

3531 3529 · 3533 5

2859 2857 · 2861 6

5691 5689 · 5693 7

17979 17977 · 17981 8
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A family of elliptic curves E with an element in KT
2 (E )

On the elliptic curve

Eu : y2 = x(x + 1)(x + u2) (u in Q with u2 ̸= 0, 1).

let

v =
x + u2

y
w =

u(x + 1)− y

u(x + 1) + y
h =

u(x + 1) + y

x + u

All have divisors in ⟨(−1, 0), (u, u2 − u)⟩ ≃ Z/2Z× Z/4Z.

Proposition
(1) αu = {v ,w}+ {−1, h} is in KT

2 (Eu) ⊂ K2(Q(Eu)).
(2) If 4u is an integer then 2αu is in K2(Eu;Z).

Idea the rational number qu in the Beilinson conjecture using the
regulator of αu should behave similarly to the quadratic number
field situation; in particular, limiting ord2(qu) should limit the
number of primes of bad reduction of Eu.
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A relation with Boyd’s family

X + Y + X−1 + Y−1 = 4u for X = −vw and Y = v/w . This
defines an isogeny with kernel {O, (−u2, 0)} of Eu to an elliptic
curve C4u in a pencil considered by Boyd.

Then {X ,Y } is in K2(C4u;Z), its pullback in K2(Eu;Z) is −2αu.
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Some numerical data

Let F (u) = log(4u)−
∑∞

n=1

(
2n
n

)2 (4u)−2n

2n > 0 for u > 1.

Proposition For u > 1, the Beilinson regulator of αu is
R(αu) = |(γ, αu)| = F (u), where γ generates H1(Eu(C),Z)−.

Numerical examples Nu the conductor of Eu; qu in Q∗ with

±N−1
u L′(Eu, 0) = (2πi)−2L(Eu, 2) = quR(αu)

u Nu reg(αu) L(Eu, 2) −quNu

4 3 · 5 2.76463477084577. . . 0.66147518792106. . . 11−1

92 3 · 7 · 13 · 23 · 31 5.90806816924716. . . 0.57516744273982. . . 25 · 3 · 5
236 3 · 5 · 47 · 59 · 79 6.85012392180782. . . 0.69525456664861. . . 28 · 3 · 11
556 3 · 5 · 37 · 139 · 557 7.70706225101732. . . 0.69222426353636. . . 25 · 5 · 13 · 47

Remark For u = 4 it is known that qu = − 1
165 .
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Some indivisibility results

Uniform assumption (for expository purposes) from now on:
u > 0 is integer congruent to 4 mod 8 and 1

4u(u
2−1) is squarefree.

Then Eu has conductor Nu = u(u2 − 1)/4 and has

ordinary good reduction at 2;

split multiplicative reduction with 4 components at each prime
dividing u/4;

multiplicative reduction with 2 components at each prime p
divdiding u2 − 1, split if p ≡ 1 modulo 4, non-split otherwise.

Theorem Let mu = 1 if u + 1 has a prime factor congruent to 3
modulo 4, and 2 otherwise. Then:

1 the image of αu in H1(Q,H1
ét(Eu,Q,Z2(2))) modulo torsion

under the 2-adic regulator map is not divisible by 2mu ;
2 αu is not in 2muKT

2 (Eu) + KT
2 (Eu)tor;

3 2αu is in K2(Eu;Z) but not in 2K2(Eu;Z) + K2(Eu;Z)tor.
Observation 2αu always has 2-divisible image under the 2-adic
regulator map but is not 2-divisible in K2(Eu;Z) modulo torsion.
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ℓ-adic regulator maps

Let ℓ be a prime number.

Proposition (1) The structure map Eu → Q gives an injective
pullback H2

ét(Spec(Q),Zℓ(2)) → H2
ét(Eu,Zℓ(2)).

(2) There is a short exact sequence

0 → H2
ét(Spec(Q),Zℓ(2)) → H2

ét(Eu,Zℓ(2))
πℓ→ HHℓ → 0

with HHℓ = H1(Q,H1
ét(Eu,Q,Z2(2))) which can be split by

pullback to any rational point of Eu.
Here H1(Q, ·) is continuous Galois cohomology

(3) The ℓ-adic Chern class induces a map regℓ that fits into a
commutative diagram

K2(Eu) //

chℓ
��

KT
2 (Eu)

regℓ
��

H2
ét(Eu,Zℓ(2))

πℓ // H1(Q,H1
ét(Eu,Q,Zℓ(2)))tf .
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Interpreting the powers of 2 in the rational number

The 2-Selmer subgroup H1
f (Q,Eu[2

∞](−1)) ⊆ H1(Q,Eu[2
∞](−1))

is defined using local conditions involving ramification groups at all
primes and ∞.
Its 2-torsion is explicitly computable:

Proposition Let S be the set of prime divisors of u2 − 1, and S ′ the
set of prime divisors of u that are congruent to 1 modulo 4. Then
the 2-torsion in H1

f (Q,Eu[2
∞](−1)) is in bijection with

pairs (D,D ′) of positive squarefree integers, where the prime
factors of D are in S and those of D ′ in S ′, and which satisfy

D ′ is a square modulo p for every p in S ;

2ordp(D
′)D is a square modulo p for every p in S ′;

D ≡ 1 modulo 8.

Remark It happens often (u = 4, 12, 20, 28, 60, 68, 140, 156, . . . )
that the group has no 2-torsion, hence is trivial!
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The prediction of the Bloch-Kato conjecture

For a positive integer n, let
• ω(n): the number of distinct prime divisors of n
• ω1(n): the number of distinct prime divisors of n congruent to 1
• ω3(n): the number of distinct prime divisors of n congruent to 3

Theorem Assume

K2(Eu;Z)⊗Z Q is 1-dimensional,
L(Eu ,2)

(2πi)2F (u)
is a non-zero rational number qu,

H1
f (Q,Eu[2

∞](−1)) is finite, of order 2Su ,

Then the Bloch-Kato conjecture predicts that

ord2(qu) + nu + 2 = ω3(u) + 2ω1(u) + ω(u2 − 1) + Su.

where nu is such that reg2(αu) is divisible by 2nu but not by 21+nu .

Remark We have 0 ≤ nu ≤ mu − 1 with mu = 1 or 2 by the earlier
indivisibility result. We have no indication that nu = 1 occurs.
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Minimising the exponent of 2 in qu

Remark The terms involving the ω come from Tamagawa factors.

Proposition

The right-hand side in the prediction is at least 2,

it equals 2 for u = 4 only,

it equals 3 for u = 12 only,

it equals 4 if and only if u − 1 and u + 1 are primes, and
u = 12p for a prime number p congruent to 3 modulo 4.

(The last case is for ω1(u) = 0, ω3(u) = 2, ω(u2− 1) = 2, Su = 0.)

Ramifications in the philosophy?
If ord2(qu) = 2 then Nu has a very short and specific factorisation
(and conversely). But if we allow more prime factors then ord2(qu)
grows but the Selmer group can still be trivial or of small predicted
order. So this is different from the earlier situation of the class
group, which has to grow as more primes ramify.
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Numerical data: small values of u

2Ŝu is the predicted order of the 2-Selmer group
2S

′
u is the order of its 2-torsion subgroup

0∗: nu = 0 and Ŝu = S ′
u (so Selmer group should be 2-torsion)

1+: Ŝu = S ′
u if we assume nu = 0 (it could be 1)

u u/4 u − 1 u + 1 Nu −Nuqu Ŝu − nu S ′
u mu − 1

4 1 3 5 3 · 5 11−1 0 0 1+

12 3 11 13 3 · 11 · 13 2 0 0 1+

20 5 19 3 · 7 3 · 5 · 7 · 19 23 0 0 0*

52 13 3 · 17 53 3 · 13 · 17 · 53 25 · 3 2 1 1

60 3 · 5 59 61 3 · 5 · 59 · 61 23 · 29 0 0 1+

68 17 67 3 · 23 3 · 17 · 23 · 67 23 · 33 0 0 0*

84 3 · 7 83 5 · 17 3 · 5 · 7 · 17 · 83 25 · 17 2 1 1

92 23 7 · 13 3 · 31 3 · 7 · 13 · 23 · 31 25 · 3 · 5 2 2 0*

132 3 · 11 131 7 · 19 3 · 7 · 11 · 19 · 131 26 · 33 3 1 0

140 5 · 7 139 3 · 47 3 · 5 · 7 · 47 · 139 24 · 113 0 0 0*

156 3 · 13 5 · 31 157 3 · 5 · 13 · 31 · 157 24 · 32 · 23 0 0 1+

164 41 163 3 · 5 · 11 3 · 5 · 11 · 41 · 163 210 · 3 6 1 0

204 3 · 17 7 · 29 5 · 41 3 · 5 · 7 · 17 · 29 · 41 210 · 7 5 1 1

212 53 211 3 · 71 3 · 53 · 71 · 211 23 · 32 · 73 0 0 0*

220 5 · 11 3 · 73 13 · 17 3 · 5 · 11 · 13 · 17 · 73 29 · 13 4 1 1

228 3 · 19 227 229 3 · 19 · 227 · 229 22 · 3 · 54 0 0 1+

236 59 5 · 47 3 · 79 3 · 5 · 47 · 59 · 79 28 · 3 · 11 5 2 0

268 67 3 · 89 269 3 · 67 · 89 · 269 24 · 3 · 5 · 43 2 1 1

284 71 283 3 · 5 · 19 3 · 5 · 19 · 71 · 283 25 · 449 2 2 0*

292 73 3 · 97 293 3 · 73 · 97 · 293 25 · 419 2 2 1+
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Numerical data: some special cases (300 ≤ u ≤ 24996)

• ord2(qu) minimal • ord2(qu) maximal • few primes of bad
reduction but ord2(qu) large (the Tamagawa factors contribute
little to it and S ′

u is small, but Ŝu is large) • more primes of bad
reduction (contributing to ord2(qu) through the Tamagawa factors,
but Su = 0) • Selmer group supposedly cyclic of large order

u u/4 u − 1 u + 1 Nu −Nuqu Ŝu − nu S ′
u mu − 1

1668 3 · 139 1667 1669 3 · 139 · 1667 · 1669 22 · 32 · 68023 0 0 1+

3252 3 · 271 3251 3253 3 · 271 · 3251 · 3253 22 · 3 · 5 · 29 · 9067 0 0 1+

4548 3 · 379 4547 4549 3 · 379 · 4547 · 4549 22 · 32 · 1268759 0 0 1+

8292 3 · 691 8291 8293 3 · 691 · 8291 · 8293 22 · 3 · 61 · 71 · 5099 0 0 1+

8628 3 · 719 8627 8629 3 · 719 · 8627 · 8629 22 · 36 · 98257 0 0 1+

9012 3 · 751 9011 9013 3 · 751 · 9011 · 9013 22 · 3 · 52 · 7 · 11 · 13903 0 0 1+

10068 3 · 839 10067 10069 3 · 839 · 10067 · 10069 22 · 107381389 0 0 1+

12612 3 · 1051 12611 12613 3 · 1051 · 12611 · 12613 22 · 3 · 59 · 409 · 3271 0 0 1+

17988 3 · 1499 17987 17989 3 · 1499 · 17987 · 17989 22 · 1487 · 396953 0 0 1+

18132 3 · 1511 18131 18133 3 · 1511 · 18131 · 18133 22 · 33 · 17 · 59 · 79 · 283 0 0 1+

19428 3 · 1619 19427 19429 3 · 1619 · 19427 · 19429 22 · 33 · 112 · 283 · 859 0 0 1+

22660 5 · 11 · 103 3 · 7 · 13 · 83 17 · 31 · 43 3 · 5 · 7 · 11 · 13 · 17 · 31 · 43 · 83 · 103 225 · 3 · 43 16 4 0

2716 7 · 97 3 · 5 · 181 11 · 13 · 19 3 · 5 · 7 · 11 · 13 · 19 · 97 · 181 220 · 32 13 3 0

11452 7 · 409 3 · 11 · 347 13 · 881 3 · 7 · 11 · 13 · 347 · 409 · 881 220 · 3 · 173 14 2 1

20460 3 · 5 · 11 · 31 41 · 499 7 · 37 · 79 3 · 5 · 7 · 11 · 31 · 37 · 41 · 79 · 499 220 · 33 · 5 · 29 12 2 0

20596 19 · 271 3 · 5 · 1373 43 · 479 3 · 5 · 19 · 43 · 271 · 479 · 1373 220 · 32 · 7 · 47 15 3 0

2308 577 3 · 769 2309 3 · 577 · 769 · 2309 210 · 33 · 5 · 37 7 2 1

19212 3 · 1601 19211 19213 3 · 1601 · 19211 · 19213 27 · 33 · 72 · 19 · 977 4 1 1

24572 6143 24571 3 · 8191 3 · 6143 · 8191 · 24571 29 · 33 · 23 · 15583 7 1 0

340 5 · 17 3 · 113 11 · 31 3 · 5 · 11 · 17 · 31 · 113 26 · 3 · 7 · 17 0 0 0*

1508 13 · 29 11 · 137 3 · 503 3 · 11 · 13 · 29 · 137 · 503 26 · 3 · 7517 0 0 0*

24492 3 · 13 · 157 19 · 1289 7 · 3499 3 · 7 · 13 · 19 · 157 · 1289 · 3499 27 · 47863201 0 0 0*

5612 23 · 61 31 · 181 3 · 1871 3 · 23 · 31 · 61 · 181 · 1871 216 · 3 · 349 11 1 0

Rob de Jeu Bloch-Kato conjecture for elliptic curves, and indivisibility



Sketch of proof of the indivisibility statements

From now on abbreviate HH2 = H1(Q,H1
ét(Eu,Q,Z2(2))) to HH

Proposition HHtor ≃ Z/2Z× Z/2Z.

• Pullback to a point R in E (Q) gives a map i∗R : K2(Eu) → K2(Q)
• KT

2 (Eu) = H0(Eu,K2), the global sections of the sheafified K2,
and the pullback factorises through K2(Eu) → KT

2 (Eu).
• The pullback KT

2 (Eu) → K2(Q) is explicitly computable by
rewriting elements in KT

2 (Eu).

The pullbacks in K2(Q) of some elements in KT
2 (Eu) at some

points in E (Q) are as follows.

P = (0, 0) Q = (−u2, 0)

{−1, x} 0 {−1,−1}
{−1, x + 1} 0

{
−1, 1− u2

}
αu = {v ,w}+ {−1, h} 0 {−1, 1 + u}
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Sketch of proof of the indivisibility statements

For P,Q in the table, and m ≥ 1, we have a commutative diagram

K2(Eu)
ch2 //

��

H2
ét(Eu,Z2(2))

π2 //

i∗Q−i∗P

��

HH

yy

KT
2 (Eu)

i∗Q−i∗P
��

K2(Q)

��

ch2 // H2
ét(Spec(Q),Z2(2))

��
K2(Q)/2m

ch2,m

≃
// H2

ét(Spec(Q), µ⊗2
2m )

ch2,m is an isomorphism
by Merkur’ev-Suslin

where K2(Eu) → KT
2 (Eu) is surjective with torsion kernel. We get

a map ψm : HH → K2(Q)/2m.
The pullback table gives:
• lifting {−1, x} and {−1, x + 1} from KT

2 (Eu) to K2(Eu) and
then applying π2 ◦ ch2 produces an F2-basis of HHtor;
• ψm is injective on HHtor
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Proof of the indivisibility statement for reg2(α)

reg2 is induced by π2 ◦ ch2, so
reg2(α) is in 2mHHtf if and only if, for any lift α̃ of α to K2(Eu),

π2 ◦ ch2(α̃) = 2ms + t

in HH for s, t in HH with t torsion.

If this holds then applying ψm leads to

{−1, 1 + u} ∈ ⟨{−1,−1} ,
{
−1, 1− u2

}
⟩+ 2mK2(Q)

inside K2(Q).
• Applying T∞ shows {−1, 1 + u} or {−1, u − 1} is in 2mK2(Q).
• Applying Tp to {−1, u − 1} for a prime p ≡ 3 modulo 4 dividing
u − 1 shows this is not in 2K2(Q).
• Applying Tp to {−1, 1 + u} for a prime p ≡ 1 + 2mu modulo 4
dividing u + 1 with m = mu = 1 or 2 shows it is not in 2muK2(Q).
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Proof of the indivisibility statement for 2α

2α is in 2K2(Eu;Z) + K2(Eu;Z)tor if and only if 2α = 2β + γ for
β, γ in K2(Eu;Z) with γ torsion.
That is equivalent to, inside KT

2 (Eu),

β = α+ δ

with δ in KT
2 (Eu)tor.

• β came from K2(Eu) so (i∗P − i∗Q)(β) is in K2(Z) = ⟨{−1,−1}⟩
• Lifting δ to K2(Eu) and going through HH in the diagram then
gives, in K2(Q), for any m ≥ 1, that

{−1, 1 + u} ∈ ⟨{−1,−1} ,
{
−1, 1− u2

}
⟩+ 2mK2(Q).

Applying T∞ shows that then either {−1, u + 1} or {−1, u − 1}
must be in 2mK2(Q). Fix a prime p dividing u + 1, a prime q
dividing u − 1, and m such that 2m+1 ∤ p − 1 or q − 1.
Then Tp({−1, u + 1}) = −1 is not a 2mth power in F∗

p, and
Tq({−1, u − 1}) = −1 is not a 2mth power in F∗

q; contradiction.
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The Bloch-Kato conjecture

For every prime number ℓ, with
• Tℓ(Eu) the Tate module,
• T = Tℓ(Eu)(−1)
• V = T ⊗Zℓ

Qℓ,
we have

nu,ℓ + ordℓ(qu) = ordℓ

(∏
p≤∞Tam0

p,ωp
(T (2))#H1

f (Q,V /T )

#H0(Q, (V /T )(2))#H0(Q,V /T )

)

where
• the Tam0

p,ωp
(T (2)) are Tamagawa factors

• nu,ℓ is such that regℓ(αu) is divisible by ℓnu,ℓ but not by ℓ1+nu,ℓ

(and is assumed to exist)
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The definition of H1
f (Q,V /T )

• Let (also for p = ∞)

H1
f (Qp,V ) =

{
ker(H1(Qp,V ) → H1(Ip,V )) p ̸= ℓ;

ker(H1(Qp,V ) → H1(Qp,V ⊗ Bcris) p = ℓ,

where Ip ⊆ GQp is the inertia subgroup.

• Let H1
f (Qp,V /T ) be the image of H1

f (Qp,V ) under the natural
map from H1(Qp,V ) to H1(Qp,V /T ).

• H1
f (Q,V /T ) := ∩p res

−1
p (H1

f (Qp,V /T )), where
resp : H1(Q,V /T ) → H1(Qp,V /T ) is the restriction map.
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The definition of H1
f (Q,V /T )

If p ̸= ℓ,∞ then g in H1(Q,V /T ) has resp(g) in H1
f (Qp,V /T ) if

and only if it comes from H1
f (Qp,V ) in the commutative

inflation/restriction diagram

0 // H1
f (Qp,V ) //

��

H1(Qp,V ) //

��

H1(Ip,V )

��
0 // H1(Fp, (V /T )Ip) // H1(Qp,V /T ) // H1(Ip,V /T )

with exact rows. Here GQp/Ip ≃ GFp , H
1
f (Qp,V ) ≃ H1(Fp,V

Ip).

The left-most vertical map is the composition of
• the surjection H1(Fp,V

Ip) → H1(Fp,V
Ip/T Ip)

• the natural map H1(Fp,V
Ip/T Ip) → H1(Fp, (V /T )Ip)

So the condition is: resp(g) comes from an h in H1(Fp, (V /T )Ip)
that maps to 0 in H1(Fp,C ) with C the cokernel of the injection
V Ip/T Ip → (V /T )Ip .
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