Alignment processes on the sphere

Amic Frouvelle
CEREMADE - Université Paris Dauphine

Joint works with :
Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

Workshop: "Life Sciences"
Stochastic Dynamics Out of Equilibrium Institut Henri Poincaré, May 16th - 18th, 2017

Context: alignment of self-propelled particles

- Unit speed, local interactions without leader
- Emergence of patterns

Purpose of this talk : alignment mechanisms of (kinetic) Vicsek and BDG models.
Focus on the alignment process only : no noise, no space!
Images ©(i)(0) Benson Kua (flickr) and ©()

Toy model in \mathbb{R}^{n}

Velocities $v_{i}(t) \in \mathbb{R}^{n}$, for $1 \leqslant i \leqslant N$. Each velocity is attracted by the others, with strengths m_{j} such that $\sum_{j=1}^{N} m_{j}=1$.

$$
\frac{\mathrm{d} v_{i}}{\mathrm{~d} t}=\sum_{j=1}^{N} m_{j}\left(v_{j}-v_{i}\right)=J-v_{i} \quad \text { where } J=\sum_{i=1}^{N} m_{i} v_{i}
$$

Toy model in \mathbb{R}^{n}

Velocities $v_{i}(t) \in \mathbb{R}^{n}$, for $1 \leqslant i \leqslant N$. Each velocity is attracted by the others, with strengths m_{j} such that $\sum_{j=1}^{N} m_{j}=1$.

$$
\frac{\mathrm{d} v_{i}}{\mathrm{~d} t}=\sum_{j=1}^{N} m_{j}\left(v_{j}-v_{i}\right)=J-v_{i} \quad \text { where } J=\sum_{i=1}^{N} m_{i} v_{i}
$$

Conservation of momentum : J is constant. We get

$$
v_{i}(t)=J+e^{-t} a_{i}, \text { with } a_{i}=v_{i}(0)-J \in \mathbb{R}^{n} \text { and } \sum_{i=1}^{N} m_{i} a_{i}=0
$$

Toy model in \mathbb{R}^{n}

Velocities $v_{i}(t) \in \mathbb{R}^{n}$, for $1 \leqslant i \leqslant N$. Each velocity is attracted by the others, with strengths m_{j} such that $\sum_{j=1}^{N} m_{j}=1$.

$$
\frac{\mathrm{d} v_{i}}{\mathrm{~d} t}=\sum_{j=1}^{N} m_{j}\left(v_{j}-v_{i}\right)=J-v_{i} \quad \text { where } J=\sum_{i=1}^{N} m_{i} v_{i}
$$

Conservation of momentum : J is constant. We get

$$
v_{i}(t)=J+e^{-t} a_{i}, \text { with } a_{i}=v_{i}(0)-J \in \mathbb{R}^{n} \text { and } \sum_{i=1}^{N} m_{i} a_{i}=0
$$

Gradient flow structure

If $\mathcal{E}=\frac{1}{2} \sum_{i, j} m_{i} m_{j}\left\|v_{i}-v_{j}\right\|^{2}$, then $\mathcal{E}=\sum_{i} m_{i}\left\|v_{i}-J\right\|^{2}$.
Then $\nabla_{v_{i}} \mathcal{E}=-2 m_{i} \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}$, and so $\frac{\mathrm{d} \mathcal{E}}{\mathrm{d} t}=-2 \sum_{i} m_{i}\left|\frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}\right|^{2}=-2 \mathcal{E}$.

Coupled nonlinear ordinary differential equations

Velocities $v_{i}(t) \in \mathbb{S}$, the unit sphere of \mathbb{R}^{n}, for $1 \leqslant i \leqslant N$. Each velocity is attracted by the others, with strengths m_{j} such that $\sum_{j=1}^{N} m_{j}=1$, under the constraint that it stays on the sphere.
Notation : $P_{v \perp} u=u-(v \cdot u) v$ (orth. proj. if $v \in \mathbb{S}, u \in \mathbb{R}^{n}$).

$$
\frac{\mathrm{d} v_{i}}{\mathrm{~d} t}=P_{v_{i}^{\perp}} \sum_{j=1}^{N} m_{j}\left(v_{j}-v_{i}\right)=P_{v_{i}^{\perp}} J \quad \text { where } J=\sum_{i=1}^{N} m_{i} v_{i}
$$

Coupled nonlinear ordinary differential equations

Velocities $v_{i}(t) \in \mathbb{S}$, the unit sphere of \mathbb{R}^{n}, for $1 \leqslant i \leqslant N$. Each velocity is attracted by the others, with strengths m_{j} such that $\sum_{j=1}^{N} m_{j}=1$, under the constraint that it stays on the sphere.
Notation : $P_{v^{\perp}} u=u-(v \cdot u) v$ (orth. proj. if $v \in \mathbb{S}, u \in \mathbb{R}^{n}$).

$$
\frac{\mathrm{d} v_{i}}{\mathrm{~d} t}=P_{v_{i}^{\perp}} \sum_{j=1}^{N} m_{j}\left(v_{j}-v_{i}\right)=P_{v_{i}^{\perp}} J \quad \text { where } J=\sum_{i=1}^{N} m_{i} v_{i}
$$

Remark: $P_{v \perp} u=\nabla_{v}(v \cdot u)=-\frac{1}{2} \nabla_{v}\left(\|u-v\|^{2}\right)$ for $v \in \mathbb{S}$.

No more conservation here!

Coupled nonlinear ordinary differential equations

Velocities $v_{i}(t) \in \mathbb{S}$, the unit sphere of \mathbb{R}^{n}, for $1 \leqslant i \leqslant N$. Each velocity is attracted by the others, with strengths m_{j} such that $\sum_{j=1}^{N} m_{j}=1$, under the constraint that it stays on the sphere.
Notation : $P_{v \perp} u=u-(v \cdot u) v$ (orth. proj. if $v \in \mathbb{S}, u \in \mathbb{R}^{n}$).

$$
\frac{\mathrm{d} v_{i}}{\mathrm{~d} t}=P_{v_{i}^{\perp}} \sum_{j=1}^{N} m_{j}\left(v_{j}-v_{i}\right)=P_{v_{i}^{\perp}} J \quad \text { where } J=\sum_{i=1}^{N} m_{i} v_{i}
$$

Remark: $P_{v \perp} u=\nabla_{v}(v \cdot u)=-\frac{1}{2} \nabla_{v}\left(\|u-v\|^{2}\right)$ for $v \in \mathbb{S}$.

No more conservation here!
Special cases: $J=0$ (nothing moves. . .) , or $v_{i}(0)=v_{j}(0)$, for which $\left(m_{i}, m_{j}\right) \rightsquigarrow\left(m_{i}+m_{j}\right)$.

Same gradient flow structure

Define as in the toy model :

$$
\mathcal{E}=\frac{1}{2} \sum_{i, j=1}^{N} m_{i} m_{j}\left\|v_{i}-v_{j}\right\|^{2}=\sum_{i, j=1}^{N} m_{i} m_{j}\left(1-v_{i} \cdot v_{j}\right)=1-|J|^{2} \geqslant 0
$$

Same gradient flow structure

Define as in the toy model :

$$
\mathcal{E}=\frac{1}{2} \sum_{i, j=1}^{N} m_{i} m_{j}\left\|v_{i}-v_{j}\right\|^{2}=\sum_{i, j=1}^{N} m_{i} m_{j}\left(1-v_{i} \cdot v_{j}\right)=1-|J|^{2} \geqslant 0 .
$$

Since $\nabla_{v}(v \cdot u)=P_{v} \perp u$, (for $\left.v \in \mathbb{S}, u \in \mathbb{R}^{n}\right)$, we get

$$
\nabla_{v_{i}} \mathcal{E}=-2 \sum_{j=1}^{N} m_{i} m_{j} P_{v_{i}} v_{j}=-2 m_{i} \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}
$$

Same gradient flow structure

Define as in the toy model :
$\mathcal{E}=\frac{1}{2} \sum_{i, j=1}^{N} m_{i} m_{j}\left\|v_{i}-v_{j}\right\|^{2}=\sum_{i, j=1}^{N} m_{i} m_{j}\left(1-v_{i} \cdot v_{j}\right)=1-|J|^{2} \geqslant 0$.
Since $\nabla_{v}(v \cdot u)=P_{v} \perp u$, (for $\left.v \in \mathbb{S}, u \in \mathbb{R}^{n}\right)$, we get

$$
\nabla_{v_{i}} \mathcal{E}=-2 \sum_{j=1}^{N} m_{i} m_{j} P_{v_{i}} v_{j}=-2 m_{i} \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}
$$

$\frac{\mathrm{d} \mathcal{E}}{\mathrm{d} t}\left(=-\frac{\mathrm{d}|J|^{2}}{\mathrm{~d} t}\right)=-2 \sum_{i=1}^{N} m_{i}\left|\frac{\mathrm{~d} v_{i}}{\mathrm{~d} t}\right|^{2}=-2 \sum_{i=1}^{N} m_{i}\left(|J|^{2}-\left(v_{i} \cdot J\right)^{2}\right) \leqslant 0$.
Then $|J|$ is increasing, so if $J(0) \neq 0$, then $J(t) \neq 0$ for all t, and $\Omega(t)=\frac{J(t)}{J(t) \mid}$ is well-defined.

Convergence, relatively to Ω

$$
\frac{1}{2} \frac{\mathrm{~d}|J|^{2}}{\mathrm{~d} t}=|J|^{2} \sum_{i=1}^{N} m_{i}\left(1-\left(v_{i} \cdot \Omega\right)^{2}\right) \geqslant 0
$$

Hence $|J|^{2}$ is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on \mathbb{S}). Therefore its derivative must converge to 0 as $t \rightarrow+\infty$.

Convergence, relatively to Ω

$$
\frac{1}{2} \frac{\mathrm{~d}|J|^{2}}{\mathrm{~d} t}=|J|^{2} \sum_{i=1}^{N} m_{i}\left(1-\left(v_{i} \cdot \Omega\right)^{2}\right) \geqslant 0 .
$$

Hence $|J|^{2}$ is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on \mathbb{S}). Therefore its derivative must converge to 0 as $t \rightarrow+\infty$.
"Front" or "Back" particles

$$
v_{i}(t) \cdot \Omega(t) \rightarrow \pm 1 \quad \text { as } t \rightarrow+\infty, \quad \text { for } 1 \leqslant i \leqslant N .
$$

Convergence, relatively to Ω

$$
\frac{1}{2} \frac{\mathrm{~d}|J|^{2}}{\mathrm{~d} t}=|J|^{2} \sum_{i=1}^{N} m_{i}\left(1-\left(v_{i} \cdot \Omega\right)^{2}\right) \geqslant 0 .
$$

Hence $|J|^{2}$ is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on \mathbb{S}). Therefore its derivative must converge to 0 as $t \rightarrow+\infty$.

"Front" or "Back" particles

$$
v_{i}(t) \cdot \Omega(t) \rightarrow \pm 1 \quad \text { as } t \rightarrow+\infty, \quad \text { for } 1 \leqslant i \leqslant N .
$$

Convergence of $\Omega(t)$? $\frac{d \Omega}{d t}=P_{\Omega} \perp M \Omega$, with $M(t)=\sum_{i=1}^{N} m_{i} P_{v_{i}^{\perp}}$ (a $n \times n$ matrix). Easy to show that $\left|\frac{\mathrm{d} \Omega}{\mathrm{dt}}\right|$ is L^{2} in time, but L^{1} ? ...

Only one can finish at the back

We denote $\lambda>0$ the limit of $|J|$ (increasing). We have that

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|v_{i}-v_{j}\right\|^{2}=-|J| \Omega \cdot \frac{v_{i}+v_{j}}{2}\left\|v_{i}-v_{j}\right\|^{2} .
$$

Repulsion of "back" particles

If $v_{i}(0) \neq v_{j}(0)$, we cannot have $v_{i} \cdot \Omega \rightarrow-1$ and $v_{j} \cdot \Omega \rightarrow-1$ (repulsion). Two possibilities :

- All particle are "front" : $v_{i} \cdot \Omega \rightarrow 1$.
- Up to renumbering, only v_{N} is "going to the back".

Second case : $|J| \rightarrow \sum_{i=1}^{N-1} m_{i}-m_{N}=1-2 m_{N}=\lambda\left(\right.$ so $\left.m_{N}<\frac{1}{2}\right)$.

Only one can finish at the back

We denote $\lambda>0$ the limit of $|J|$ (increasing). We have that

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|v_{i}-v_{j}\right\|^{2}=-|J| \Omega \cdot \frac{v_{i}+v_{j}}{2}\left\|v_{i}-v_{j}\right\|^{2} .
$$

Repulsion of "back" particles

If $v_{i}(0) \neq v_{j}(0)$, we cannot have $v_{i} \cdot \Omega \rightarrow-1$ and $v_{j} \cdot \Omega \rightarrow-1$
(repulsion). Two possibilities :

- All particle are "front" : $v_{i} \cdot \Omega \rightarrow 1$.
- Up to renumbering, only v_{N} is "going to the back".

Second case : $|J| \rightarrow \sum_{i=1}^{N-1} m_{i}-m_{N}=1-2 m_{N}=\lambda\left(\right.$ so $\left.m_{N}<\frac{1}{2}\right)$. Exponential estimate: $\left\|v_{i}-v_{j}\right\|=O\left(e^{-\lambda t}\right)$ (for i, j "front").

Ω as a nearly conserved quantity

Theorem (if all particles are "front"):

There exists $\Omega_{\infty} \in \mathbb{S}$, and $a_{i} \in\left\{\Omega_{\infty}\right\}^{\perp} \subset \mathbb{R}^{n}$, for $1 \leqslant i \leqslant N$ such that $\sum_{i=1}^{N} m_{i} a_{i}=0$ and that, as $t \rightarrow+\infty$,

$$
\begin{gathered}
v_{i}(t)=\left(1-\left|a_{i}\right|^{2} e^{-2 t}\right) \Omega_{\infty}+e^{-t} a_{i}+O\left(e^{-3 t}\right) \quad \text { for } 1 \leqslant i \leqslant N, \\
\Omega(t)=\Omega_{\infty}+O\left(e^{-3 t}\right) .
\end{gathered}
$$

Ω as a nearly conserved quantity

Theorem (if all particles are "front"):

There exists $\Omega_{\infty} \in \mathbb{S}$, and $a_{i} \in\left\{\Omega_{\infty}\right\}^{\perp} \subset \mathbb{R}^{n}$, for $1 \leqslant i \leqslant N$ such that $\sum_{i=1}^{N} m_{i} a_{i}=0$ and that, as $t \rightarrow+\infty$,

$$
\begin{gathered}
v_{i}(t)=\left(1-\left|a_{i}\right|^{2} e^{-2 t}\right) \Omega_{\infty}+e^{-t} a_{i}+O\left(e^{-3 t}\right) \text { for } 1 \leqslant i \leqslant N, \\
\Omega(t)=\Omega_{\infty}+O\left(e^{-3 t}\right) .
\end{gathered}
$$

Theorem (if v_{N} is the only "back" particle - convexity argument):
There exists $\Omega_{\infty} \in \mathbb{S}$, and $a_{i} \in\left\{\Omega_{\infty}\right\}^{\perp} \subset \mathbb{R}^{n}$, for $1 \leqslant i<N$ such that $\sum_{i=1}^{N-1} m_{i} a_{i}=0$ and that, as $t \rightarrow+\infty$,

$$
\begin{gathered}
v_{i}(t)=\left(1-\left|a_{i}\right|^{2} e^{-2 \lambda t}\right) \Omega_{\infty}+e^{-\lambda t} a_{i}+O\left(e^{-3 \lambda t}\right) \quad \text { for } i \neq N, \\
v_{N}(t)=-\Omega_{\infty}+O\left(e^{-3 \lambda t}\right), \quad \Omega(t)=\Omega_{\infty}+O\left(e^{-3 \lambda t}\right) .
\end{gathered}
$$

Aggregation equation on the sphere

PDE for the empirical distribution

Define $f(t)=\sum_{i=1}^{N} m_{i} \delta_{v_{i}(t)} \in \mathcal{P}(\mathbb{S})$ (a probability measure on the sphere), then f is a weak solution of the following PDE:

$$
\begin{equation*}
\partial_{t} f+\nabla_{v} \cdot\left(f P_{v^{\perp}} J_{f}\right)=0, \quad \text { where } J_{f}=\int_{\mathbb{S}} v \mathrm{~d} f(v) . \tag{1}
\end{equation*}
$$

Aggregation equation on the sphere

PDE for the empirical distribution

Define $f(t)=\sum_{i=1}^{N} m_{i} \delta_{v_{i}(t)} \in \mathcal{P}(\mathbb{S})$ (a probability measure on the sphere), then f is a weak solution of the following PDE:

$$
\begin{equation*}
\partial_{t} f+\nabla_{v} \cdot\left(f P_{v^{\perp}} J_{f}\right)=0, \quad \text { where } J_{f}=\int_{\mathbb{S}} v \mathrm{~d} f(v) \tag{1}
\end{equation*}
$$

Theorem

Given a probability measure f_{0}, there exists a unique global (weak) solution to the aggregation equation given by (1).

Tools: optimal transport, or for this case harmonic analysis (Fourier for $n=2$), which gives well-posedness in Sobolev spaces.

Properties of the model

Characteristics, if the function $J(t)$ is given

Define Φ_{t} as the flow of the one-particle ODE $\left(\frac{\mathrm{d} v}{\mathrm{~d} t}=P_{v^{\perp}} J\right)$:

$$
\frac{\mathrm{d} \Phi_{t}(v)}{\mathrm{d} t}=P_{\Phi_{t}(v)^{\perp}} J(t) \quad \text { with } \Phi_{0}(v)=v .
$$

Then the solution to the (linear) equation $\partial_{t} f+\nabla_{v} \cdot\left(f P_{v \perp} J\right)=0$ is given by $f(t)=\Phi_{t} \# f_{0}$ (push-forward):

$$
\int_{\mathbb{S}} \psi(v) \mathrm{d}\left(\Phi_{t} \# f_{0}\right)(v)=\int_{\mathbb{S}} \psi\left(\Phi_{t}(v)\right) \mathrm{d} f_{0}(v) \text { for } \psi \in C^{0}(\mathbb{S})
$$

Properties of the model

Characteristics, if the function $J(t)$ is given

Define Φ_{t} as the flow of the one-particle $\operatorname{ODE}\left(\frac{\mathrm{d} v}{\mathrm{~d} t}=P_{v^{\perp}} J\right)$:

$$
\frac{\mathrm{d} \Phi_{t}(v)}{\mathrm{d} t}=P_{\Phi_{t}(v)^{\perp}} J(t) \quad \text { with } \Phi_{0}(v)=v .
$$

Then the solution to the (linear) equation $\partial_{t} f+\nabla_{v} \cdot\left(f P_{v^{\perp}} J\right)=0$ is given by $f(t)=\Phi_{t} \# f_{0}$ (push-forward):

$$
\int_{\mathbb{S}} \psi(v) \mathrm{d}\left(\Phi_{t} \# f_{0}\right)(v)=\int_{\mathbb{S}} \psi\left(\Phi_{t}(v)\right) \mathrm{d} f_{0}(v) \text { for } \psi \in C^{0}(\mathbb{S})
$$

We can perform computations exactly as for the particles:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} J_{f}=\int_{\mathbb{S}} P_{v^{\perp}} J_{f} \mathrm{~d} f(v)=\left\langle P_{v^{\perp}}\right\rangle_{f} J_{f}=M_{f} J_{f}
$$

Increase of $\left|J_{f}(t)\right|$, integrability of $J_{f} \cdot M_{f} J_{f}$. All moments are C^{∞}.

Convergence of $\Omega(t)$

We have $\dot{\Omega}=\frac{\mathrm{d} \Omega}{\mathrm{d} t}=P_{\Omega^{\perp}} M_{f} \Omega$, which is L^{2} in time, but L^{1} ? After a few computations, we obtain

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}|\dot{\Omega}|=|\dot{\Omega}|\left(1-\Omega \cdot M_{f} \Omega-\left\langle\left(u \cdot P_{\Omega^{\perp}} v\right)^{2}\right\rangle_{f}\right) \\
& \quad+2|J|\left\langle\left(1-(v \cdot \Omega)^{2}\right) u \cdot P_{\Omega^{\perp}} v\right\rangle_{f},
\end{aligned}
$$

where $u=\frac{\dot{\Omega}}{|\dot{\Omega}|}$ (when it is well-defined, 0 otherwise).

Convergence of $\Omega(t)$

We have $\dot{\Omega}=\frac{\mathrm{d} \Omega}{\mathrm{dt}}=P_{\Omega^{\perp}} M_{f} \Omega$, which is L^{2} in time, but L^{1} ? After a few computations, we obtain

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}|\dot{\Omega}|=|\dot{\Omega}|\left(1-\Omega \cdot M_{f} \Omega-\left\langle\left(u \cdot P_{\Omega^{\perp}} v\right)^{2}\right\rangle_{f}\right) \\
& \quad+2|J|\left\langle\left(1-(v \cdot \Omega)^{2}\right) u \cdot P_{\Omega^{\perp}} v\right\rangle_{f}
\end{aligned}
$$

where $u=\frac{\dot{\Omega}}{|\dot{\Omega}|}$ (when it is well-defined, 0 otherwise).

Lemma: Tail of a perturbed ODE (integrability)

If $\frac{\mathrm{d} x}{\mathrm{~d} t}=x+g$ where x is bounded, $g \in L^{1}\left(\mathbb{R}_{+}\right)$, then $x(t) \in L^{1}\left(\mathbb{R}_{+}\right)$.

Therefore we get that $|\dot{\Omega}|$ is integrable, and then $\Omega(t) \rightarrow \Omega_{\infty} \in \mathbb{S}$.

Convergence of f

Proposition: unique back (same idea of "repulsion")

Suppose that $J(t)$ is given (continuous, $|J| \geqslant c>0$), with $\Omega(t)=\frac{J(t)}{|J(t)|}$ converging to $\Omega_{\infty} \in \mathbb{S}$. Then there exists a unique $v_{\text {back }} \in \mathbb{S}$ such that the solution $v(t)$ of $\frac{d v}{d t}=P_{v \perp} J(t)$ with $v(0)=v_{\text {back }}$ satisfies $v(t) \rightarrow-\Omega_{\infty}$ as $t \rightarrow+\infty$.

Conversely, if $v(0) \neq v_{\text {back, }}$, then $v(t) \rightarrow \Omega_{\infty}$ as $t \rightarrow \infty$.

Convergence of f

Proposition: unique back (same idea of "repulsion")

Suppose that $J(t)$ is given (continuous, $|J| \geqslant c>0$), with $\Omega(t)=\frac{J(t)}{J(t) \mid}$ converging to $\Omega_{\infty} \in \mathbb{S}$. Then there exists a unique $v_{\text {back }} \in \mathbb{S}$ such that the solution $v(t)$ of $\frac{d v}{d t}=P_{v^{\perp}} J(t)$ with $v(0)=v_{\text {back }}$ satisfies $v(t) \rightarrow-\Omega_{\infty}$ as $t \rightarrow+\infty$.

Conversely, if $v(0) \neq v_{\text {back, }}$, then $v(t) \rightarrow \Omega_{\infty}$ as $t \rightarrow \infty$.

Theorem

Convergence in Wasserstein distance to $m \delta_{-\Omega_{\infty}}+(1-m) \delta_{\Omega_{\infty}}$, where m is the mass of $\left\{v_{b}\right\}$ with respect to the measure f_{0}. In particular, if f_{0} has no atoms, then $f \rightarrow \delta_{\Omega_{\infty}}$.

No rate ...

Toy model in \mathbb{R}^{n} : midpoint collision (sticky particles)

Speeds $v_{i} \in \mathbb{R}^{n}(1 \leqslant i \leqslant N)$, Poisson clocks: $v_{i}, v_{j} \rightsquigarrow \frac{v_{i}+v_{j}}{2}$.
Kinetic version (large N) : evolution of $f_{t}(v) \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$

$$
\partial_{t} f_{t}(v)=\int_{\mathbb{R}^{n}} f_{t}(v+w) f_{t}(v-w) \mathrm{d} w-f_{t}(v) .
$$

Toy model in \mathbb{R}^{n} : midpoint collision (sticky particles)

Speeds $v_{i} \in \mathbb{R}^{n}(1 \leqslant i \leqslant N)$, Poisson clocks: $v_{i}, v_{j} \rightsquigarrow \frac{v_{i}+v_{j}}{2}$.
Kinetic version (large N) : evolution of $f_{t}(v) \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$

$$
\partial_{t} f_{t}(v)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \delta_{\frac{v *+v_{*}^{\prime}}{2}}(v) \mathrm{d} f_{t}\left(v_{*}\right) \mathrm{d} f_{t}\left(v_{*}^{\prime}\right)-f(t, v) .
$$

Toy model in \mathbb{R}^{n} : midpoint collision (sticky particles)

Speeds $v_{i} \in \mathbb{R}^{n}(1 \leqslant i \leqslant N)$, Poisson clocks: $v_{i}, v_{j} \rightsquigarrow \frac{v_{i}+v_{j}}{2}$.
Kinetic version (large N) : evolution of $f_{t}(v) \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$

$$
\partial_{t} f_{t}(v)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \delta_{\frac{v *+v_{*}^{\prime}}{2}}(v) \mathrm{d} f_{t}\left(v_{*}\right) \mathrm{d} f_{t}\left(v_{*}^{\prime}\right)-f(t, v) .
$$

- Conservation of center of mass $\bar{v}=\int_{\mathbb{R}^{n}} v \mathrm{~d} f(v)$.
- Second moment $m_{2}=\int_{\mathbb{R}^{n}}|v-\bar{v}|^{2} \mathrm{~d} f(v): \frac{\mathrm{d}}{\mathrm{d} t} m_{2}=-\frac{m_{2}}{2}$.

Exponential convergence towards a Dirac mass

$$
W_{2}\left(f_{t}, \delta_{\bar{v}}\right)=W_{2}\left(f_{0}, \delta_{\bar{v}}\right) e^{-\frac{t}{4}} .
$$

Toy model in \mathbb{R}^{n} : midpoint collision (sticky particles)

Speeds $v_{i} \in \mathbb{R}^{n}(1 \leqslant i \leqslant N)$, Poisson clocks: $v_{i}, v_{j} \rightsquigarrow \frac{v_{i}+v_{j}}{2}$.
Kinetic version (large N) : evolution of $f_{t}(v) \in \mathcal{P}_{2}\left(\mathbb{R}^{n}\right)$

$$
\partial_{t} f_{t}(v)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \delta_{\frac{v *+v_{*}^{\prime}}{2}}(v) \mathrm{d} f_{t}\left(v_{*}\right) \mathrm{d} f_{t}\left(v_{*}^{\prime}\right)-f(t, v) .
$$

- Conservation of center of mass $\bar{v}=\int_{\mathbb{R}^{n}} v \mathrm{~d} f(v)$.
- Second moment $m_{2}=\int_{\mathbb{R}^{n}}|v-\bar{v}|^{2} \mathrm{~d} f(v): \frac{\mathrm{d}}{\mathrm{d} t} m_{2}=-\frac{m_{2}}{2}$.

Exponential convergence towards a Dirac mass

$$
W_{2}\left(f_{t}, \delta_{\bar{v}}\right)=W_{2}\left(f_{0}, \delta_{\bar{v}}\right) e^{-\frac{t}{4}} .
$$

- Decreasing energy: $E(f)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}|v-u|^{2} \mathrm{~d} f(v) \mathrm{d} f(u)$ (equal to $2 m_{2}$), no need for \bar{v} in this definition.

Midpoint model on the sphere

Kernel $K\left(v, v_{*}, v_{*}^{\prime}\right)$: probability density that a particle at position v_{*} interacting with another one at v_{*}^{\prime} is found at v after collision.

$$
\partial_{t} f_{t}(v)=\int_{\mathbb{S} \times \mathbb{S}} K\left(v, v_{*}, v_{*}^{\prime}\right) \mathrm{d} f_{t}\left(v_{*}\right) \mathrm{d} f_{t}\left(v_{*}^{\prime}\right)-f_{t}(v)
$$

When $v_{*} \neq v_{*}^{\prime}, K\left(\cdot, v_{*}, v_{*}^{\prime}\right)=\delta_{v_{m}}$, where $v_{m}=\frac{v_{*}+v_{*}^{\prime}}{\left\|v_{*}+v_{*}^{\prime}\right\|}$.

Midpoint model on the sphere

Kernel $K\left(v, v_{*}, v_{*}^{\prime}\right)$: probability density that a particle at position v_{*} interacting with another one at v_{*}^{\prime} is found at v after collision.

$$
\partial_{t} f_{t}(v)=\int_{\mathbb{S} \times \mathbb{S}} K\left(v, v_{*}, v_{*}^{\prime}\right) \mathrm{d} f_{t}\left(v_{*}\right) \mathrm{d} f_{t}\left(v_{*}^{\prime}\right)-f_{t}(v)
$$

When $v_{*} \neq v_{*}^{\prime}, K\left(\cdot, v_{*}, v_{*}^{\prime}\right)=\delta_{v_{m}}$, where $v_{m}=\frac{v_{*}+v_{*}^{\prime}}{\left\|v_{*}+v_{*}^{\prime}\right\|}$.

Energy

$$
E(f)=\int_{\mathbb{S} \times \mathbb{S}} d(v, u)^{2} \mathrm{~d} f(v) \mathrm{d} f(u)
$$

Link "Energy - Wasserstein"

Useful Lemma - Markov inequalities

For $f \in \mathcal{P}(\mathbb{S})$, there exists $\bar{v} \in \mathbb{S}$ such that for all $v \in \mathbb{S}$:

$$
W_{2}\left(f, \delta_{\bar{v}}\right)^{2} \leqslant E(f) \leqslant 4 W_{2}\left(f, \delta_{v}\right)^{2}
$$

For such a \bar{v} and for all $\kappa>0$, we have

$$
\begin{gathered}
\int_{\{v \in \mathbb{S} ; d(v, \bar{v}) \geqslant \kappa\}} \mathrm{d} f(v) \leqslant \frac{1}{\kappa^{2}} E(f), \\
\int_{\{v \in \mathbb{S} ; d(v, \bar{v}) \geqslant \kappa\}} d(v, \bar{v}) \mathrm{d} f(v) \leqslant \frac{1}{\kappa} E(f) .
\end{gathered}
$$

Evolution of the energy

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} E(f)=\int_{\mathbb{S} \times \mathbb{S} \times \mathbb{S}} \alpha\left(v_{*}, v_{*}^{\prime}, u\right) \mathrm{d} f\left(v_{*}\right) \mathrm{d} f\left(v_{*}^{\prime}\right) \mathrm{d} f(u) .
$$

Local contribution to the variation of energy

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right)=\int_{\mathbb{S}} d(v, u)^{2} K\left(v, v_{*}, v_{*}^{\prime}\right) d v-\frac{d\left(v_{*}, u\right)^{2}+d\left(v_{*}^{\prime}, u\right)^{2}}{2} .
$$

Evolution of the energy

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} E(f)=\int_{\mathbb{S} \times \mathbb{S} \times \mathbb{S}} \alpha\left(v_{*}, v_{*}^{\prime}, u\right) \mathrm{d} f\left(v_{*}\right) \mathrm{d} f\left(v_{*}^{\prime}\right) \mathrm{d} f(u) .
$$

Local contribution to the variation of energy

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right)=\int_{\mathbb{S}} d(v, u)^{2} K\left(v, v_{*}, v_{*}^{\prime}\right) d v-\frac{d\left(v_{*}, u\right)^{2}+d\left(v_{*}^{\prime}, u\right)^{2}}{2} .
$$

Configuration of Apollonius:

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right)=m^{2}-\frac{b^{2}+b^{\prime 2}}{2} .
$$

Evolution of the energy

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} E(f)=\int_{\mathbb{S} \times \mathbb{S} \times \mathbb{S}} \alpha\left(v_{*}, v_{*}^{\prime}, u\right) \mathrm{d} f\left(v_{*}\right) \mathrm{d} f\left(v_{*}^{\prime}\right) \mathrm{d} f(u) .
$$

Local contribution to the variation of energy

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right)=\int_{\mathbb{S}} d(v, u)^{2} K\left(v, v_{*}, v_{*}^{\prime}\right) d v-\frac{d\left(v_{*}, u\right)^{2}+d\left(v_{*}^{\prime}, u\right)^{2}}{2} .
$$

Configuration of Apollonius:

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right)=m^{2}-\frac{b^{2}+b^{\prime 2}}{2} .
$$

Flat case (we get $-a^{2}$):

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right)=-\frac{1}{4} d\left(v_{*}, v_{*}^{\prime}\right)^{2} .
$$

Error estimates in Apollonius' formula

Lemma: global estimate (only triangular inequalities)

For all $v_{*}, v_{*}^{\prime}, u \in \mathbb{S}$, we have

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right) \leqslant-\frac{1}{4} d\left(v_{*}, v_{*}^{\prime}\right)^{2}+2 d\left(v_{*}, v_{*}^{\prime}\right) \min \left(d\left(v_{*}, u\right), d\left(v_{*}^{\prime}, u\right)\right) .
$$

Error estimates in Apollonius' formula

Lemma: global estimate (only triangular inequalities)

For all $v_{*}, v_{*}^{\prime}, u \in \mathbb{S}$, we have

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right) \leqslant-\frac{1}{4} d\left(v_{*}, v_{*}^{\prime}\right)^{2}+2 d\left(v_{*}, v_{*}^{\prime}\right) \min \left(d\left(v_{*}, u\right), d\left(v_{*}^{\prime}, u\right)\right) .
$$

Lemma: local estimate, more precise

For all $\kappa_{1}<\frac{2 \pi}{3}$, there exists $C_{1}>0$ such that for all $\kappa \leqslant \kappa_{1}$, and all $v_{*}, v_{*}^{\prime}, u \in \mathbb{S}$ with $\max \left(d\left(v_{*}, u\right), d\left(v_{*}^{\prime}, u\right), d\left(v_{*}, v_{*}^{\prime}\right)\right) \leqslant \kappa$, we have

$$
\alpha\left(v_{*}, v_{*}^{\prime}, u\right) \leqslant-\frac{1}{4} d\left(v_{*}, v_{*}^{\prime}\right)^{2}+C_{1} \kappa^{2} d\left(v_{*}, v_{*}^{\prime}\right)^{2} .
$$

Spherical Apollonius: $\frac{1}{2}\left(\cos b+\cos b^{\prime}\right)=\cos a \cos m$.

Decreasing energy - Control on displacement

We set $\bar{\omega}:=\left\{v \in \mathbb{S} ; d(v, \bar{v}) \leqslant \frac{1}{2} \kappa\right\}$, and we cut the triple integral in four parts following if v_{*}, v_{*}^{\prime}, u is in $\bar{\omega}$ or not.

$$
\frac{1}{2} \frac{d}{d t} E(f)+\frac{1}{4} E(f) \leqslant \underbrace{C \kappa^{2} E(f)}_{\text {Local lemma }}+\underbrace{12 \frac{E(f)^{\frac{3}{2}}}{\kappa}+24 \frac{E(f)^{2}}{\kappa^{2}}}_{\begin{array}{c}
\text { Global lemma }+ \text { Markov } \\
\text { (and Cauchy-Schwarz) }
\end{array}}
$$

Decreasing energy - Control on displacement

We set $\bar{\omega}:=\left\{v \in \mathbb{S} ; d(v, \bar{v}) \leqslant \frac{1}{2} \kappa\right\}$, and we cut the triple integral in four parts following if v_{*}, v_{*}^{\prime}, u is in $\bar{\omega}$ or not.

$$
\frac{1}{2} \frac{d}{d t} E(f)+\frac{1}{4} E(f) \leqslant \underbrace{C \kappa^{2} E(f)}_{\text {Local lemma }}+\underbrace{12 \frac{E(f)^{\frac{3}{2}}}{\kappa}+24 \frac{E(f)^{2}}{\kappa^{2}}}_{\begin{array}{c}
\text { Global lemma }+ \text { Markov } \\
\text { (and Cauchy-Schwarz) }
\end{array}} .
$$

Same kind of cut to show that $\bar{v}(t)$ satisfies Cauchy's criteria (for $t \rightarrow \infty$) and converges with the same rate as $\sqrt{E(f)}$.

Decreasing energy - Control on displacement

We set $\bar{\omega}:=\left\{v \in \mathbb{S} ; d(v, \bar{v}) \leqslant \frac{1}{2} \kappa\right\}$, and we cut the triple integral in four parts following if v_{*}, v_{*}^{\prime}, u is in $\bar{\omega}$ or not.

$$
\frac{1}{2} \frac{d}{d t} E(f)+\frac{1}{4} E(f) \leqslant \underbrace{C \kappa^{2} E(f)}_{\text {Local lemma }}+\underbrace{12 \frac{E(f)^{\frac{3}{2}}}{\kappa}+24 \frac{E(f)^{2}}{\kappa^{2}}}_{\begin{array}{c}
\text { Global lemma }+ \text { Markov } \\
\text { (and Cauchy-Schwarz) }
\end{array}}
$$

Same kind of cut to show that $\bar{v}(t)$ satisfies Cauchy's criteria (for $t \rightarrow \infty$) and converges with the same rate as $\sqrt{E(f)}$.

Theorem: local stability of Dirac masses

There exists $C_{1}>0$ and $\eta>0$ such that for all solution $f \in C\left(\mathbb{R}_{+}, \mathcal{P}(\mathbb{S})\right)$ with initial condition f_{0} satisfying $W_{2}\left(f_{0}, \delta_{v_{0}}\right)<\eta$ for a $v_{0} \in \mathbb{S}$, there exists $v_{\infty} \in \mathbb{S}$ such that

$$
W_{2}\left(f_{t}, \delta_{v_{\infty}}\right) \leqslant C_{1} W_{2}\left(f_{0}, \delta_{v_{0}}\right) e^{-\frac{1}{4} t}
$$

Thanks!

