Alignment processes on the sphere

Amic Frouvelle CEREMADE – Université Paris Dauphine

Joint works with : Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

> Workshop: "Life Sciences" Stochastic Dynamics Out of Equilibrium Institut Henri Poincaré, May 16th – 18th, 2017

Context: alignment of self-propelled particles

- Unit speed, local interactions without leader
- Emergence of patterns

Purpose of this talk : alignment mechanisms of (kinetic) Vicsek and BDG models.

Focus on the alignment process only : no noise, no space !

Images @ () Benson Kua (flickr) and ()

Amic Frouvelle

Toy model in \mathbb{R}^n

Velocities $v_i(t) \in \mathbb{R}^n$, for $1 \leq i \leq N$. Each velocity is attracted by the others, with strengths m_j such that $\sum_{j=1}^N m_j = 1$.

$$\frac{\mathrm{d}v_i}{\mathrm{d}t} = \sum_{j=1}^N m_j (v_j - v_i) = J - v_i \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

Toy model in \mathbb{R}^n

Velocities $v_i(t) \in \mathbb{R}^n$, for $1 \leq i \leq N$. Each velocity is attracted by the others, with strengths m_j such that $\sum_{j=1}^N m_j = 1$.

$$\frac{\mathrm{d} v_i}{\mathrm{d} t} = \sum_{j=1}^N m_j (v_j - v_i) = J - v_i \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

Conservation of momentum : J is constant. We get

$$v_i(t) = J + e^{-t} a_i$$
, with $a_i = v_i(0) - J \in \mathbb{R}^n$ and $\sum_{i=1}^N m_i a_i = 0$.

Toy model in \mathbb{R}^n

Velocities $v_i(t) \in \mathbb{R}^n$, for $1 \leq i \leq N$. Each velocity is attracted by the others, with strengths m_j such that $\sum_{j=1}^N m_j = 1$.

$$\frac{\mathrm{d} v_i}{\mathrm{d} t} = \sum_{j=1}^N m_j (v_j - v_i) = J - v_i \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

Conservation of momentum : J is constant. We get

$$v_i(t) = J + e^{-t} a_i$$
, with $a_i = v_i(0) - J \in \mathbb{R}^n$ and $\sum_{i=1}^N m_i a_i = 0$.

Gradient flow structure

If
$$\mathcal{E} = \frac{1}{2} \sum_{i,j} m_i m_j ||v_i - v_j||^2$$
, then $\mathcal{E} = \sum_i m_i ||v_i - J||^2$.
Then $\nabla_{v_i} \mathcal{E} = -2m_i \frac{\mathrm{d}v_i}{\mathrm{d}t}$, and so $\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} = -2\sum_i m_i |\frac{\mathrm{d}v_i}{\mathrm{d}t}|^2 = -2\mathcal{E}$.

Coupled nonlinear ordinary differential equations

Velocities $v_i(t) \in \mathbb{S}$, the unit sphere of \mathbb{R}^n , for $1 \leq i \leq N$. Each velocity is attracted by the others, with strengths m_j such that $\sum_{j=1}^N m_j = 1$, under the constraint that it stays on the sphere. Notation : $P_{v^{\perp}}u = u - (v \cdot u)v$ (orth. proj. if $v \in \mathbb{S}$, $u \in \mathbb{R}^n$).

$$\frac{\mathsf{d} v_i}{\mathsf{d} t} = P_{v_i^\perp} \sum_{j=1}^N m_j (v_j - v_i) = P_{v_i^\perp} J \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

Coupled nonlinear ordinary differential equations

Velocities $v_i(t) \in \mathbb{S}$, the unit sphere of \mathbb{R}^n , for $1 \leq i \leq N$. Each velocity is attracted by the others, with strengths m_j such that $\sum_{j=1}^N m_j = 1$, under the constraint that it stays on the sphere. Notation : $P_{v^{\perp}}u = u - (v \cdot u)v$ (orth. proj. if $v \in \mathbb{S}$, $u \in \mathbb{R}^n$).

$$\frac{\mathrm{d} v_i}{\mathrm{d} t} = P_{v_i^\perp} \sum_{j=1}^N m_j (v_j - v_i) = P_{v_i^\perp} J \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

Remark : $P_{\nu^{\perp}}u = \nabla_{\nu}(\nu \cdot u) = -\frac{1}{2}\nabla_{\nu}(\|u - \nu\|^2)$ for $\nu \in \mathbb{S}$.

No more conservation here !

Particles : ODE's on the sphere PDE: aggregation equation

Coupled nonlinear ordinary differential equations

Velocities $v_i(t) \in \mathbb{S}$, the unit sphere of \mathbb{R}^n , for $1 \leq i \leq N$. Each velocity is attracted by the others, with strengths m_j such that $\sum_{j=1}^N m_j = 1$, under the constraint that it stays on the sphere. Notation : $P_{v^{\perp}}u = u - (v \cdot u)v$ (orth. proj. if $v \in \mathbb{S}$, $u \in \mathbb{R}^n$).

$$\frac{\mathrm{d} v_i}{\mathrm{d} t} = P_{v_i^\perp} \sum_{j=1}^N m_j (v_j - v_i) = P_{v_i^\perp} J \quad \text{where } J = \sum_{i=1}^N m_i v_i.$$

Remark : $P_{\nu^{\perp}}u = \nabla_{\nu}(\nu \cdot u) = -\frac{1}{2}\nabla_{\nu}(\|u - \nu\|^2)$ for $\nu \in \mathbb{S}$.

No more conservation here !

Special cases : J = 0 (nothing moves...), or $v_i(0) = v_j(0)$, for which $(m_i, m_j) \rightsquigarrow (m_i + m_j)$.

Particles : ODE's on the sphere PDE: aggregation equation

Same gradient flow structure

Define as in the toy model :

$$\mathcal{E} = \frac{1}{2} \sum_{i,j=1}^{N} m_i m_j \|v_i - v_j\|^2 = \sum_{i,j=1}^{N} m_i m_j (1 - v_i \cdot v_j) = 1 - |J|^2 \ge 0.$$

Same gradient flow structure

Define as in the toy model :

$$\mathcal{E} = \frac{1}{2} \sum_{i,j=1}^{N} m_i m_j \|v_i - v_j\|^2 = \sum_{i,j=1}^{N} m_i m_j (1 - v_i \cdot v_j) = 1 - |J|^2 \ge 0.$$

Since $abla_{v}(v \cdot u) = P_{v^{\perp}}u$, (for $v \in \mathbb{S}$, $u \in \mathbb{R}^{n}$), we get

$$\nabla_{\mathbf{v}_i} \mathcal{E} = -2 \sum_{j=1}^N m_i m_j P_{\mathbf{v}_i^{\perp}} \mathbf{v}_j = -2m_i \frac{\mathrm{d}\mathbf{v}_i}{\mathrm{d}t}$$

Particles : ODE's on the sphere PDE: aggregation equation

Same gradient flow structure

Define as in the toy model :

$$\mathcal{E} = \frac{1}{2} \sum_{i,j=1}^{N} m_i m_j \|v_i - v_j\|^2 = \sum_{i,j=1}^{N} m_i m_j (1 - v_i \cdot v_j) = 1 - |J|^2 \ge 0.$$

Since $abla_{v}(v \cdot u) = P_{v^{\perp}}u$, (for $v \in \mathbb{S}$, $u \in \mathbb{R}^{n}$), we get

$$\nabla_{\mathbf{v}_i} \mathcal{E} = -2 \sum_{j=1}^N m_i m_j P_{\mathbf{v}_i^{\perp}} \mathbf{v}_j = -2 m_i \frac{\mathrm{d} \mathbf{v}_i}{\mathrm{d} t}$$

$$\frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t}\left(=-\frac{\mathrm{d}|J|^2}{\mathrm{d}t}\right)=-2\sum_{i=1}^N m_i\left|\frac{\mathrm{d}v_i}{\mathrm{d}t}\right|^2=-2\sum_{i=1}^N m_i(|J|^2-(v_i\cdot J)^2)\leqslant 0.$$

Then |J| is increasing, so if $J(0) \neq 0$, then $J(t) \neq 0$ for all t, and $\Omega(t) = \frac{J(t)}{|J(t)|}$ is well-defined.

Particles : ODE's on the sphere PDE: aggregation equation

Convergence, relatively to Ω

$$\frac{1}{2}\frac{\mathsf{d}|J|^2}{\mathsf{d}t} = |J|^2\sum_{i=1}^N m_i(1-(v_i\cdot\Omega)^2) \ge 0.$$

Hence $|J|^2$ is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on S). Therefore its derivative must converge to 0 as $t \to +\infty$.

Particles : ODE's on the sphere PDE: aggregation equation

Convergence, relatively to Ω

$$\frac{1}{2}\frac{\mathsf{d}|J|^2}{\mathsf{d}t} = |J|^2 \sum_{i=1}^N m_i (1 - (v_i \cdot \Omega)^2) \ge 0.$$

Hence $|J|^2$ is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on S). Therefore its derivative must converge to 0 as $t \to +\infty$.

"Front" or "Back" particles

 $v_i(t)\cdot \Omega(t)
ightarrow \pm 1$ as $t
ightarrow +\infty$, for $1 \leqslant i \leqslant N$.

Particles : ODE's on the sphere PDE: aggregation equation

Convergence, relatively to Ω

$$\frac{1}{2}\frac{\mathsf{d}|J|^2}{\mathsf{d}t} = |J|^2 \sum_{i=1}^N m_i (1 - (v_i \cdot \Omega)^2) \ge 0.$$

Hence $|J|^2$ is increasing, bounded and with bounded second derivative (we compute it and get that everything is continuous on S). Therefore its derivative must converge to 0 as $t \to +\infty$.

"Front" or "Back" particles

$$v_i(t) \cdot \Omega(t) o \pm 1$$
 as $t \to +\infty$, for $1 \leqslant i \leqslant N$.

Convergence of $\Omega(t)$? $\frac{d\Omega}{dt} = P_{\Omega^{\perp}} M \Omega$, with $M(t) = \sum_{i=1}^{N} m_i P_{v_i^{\perp}}$ (a $n \times n$ matrix). Easy to show that $|\frac{d\Omega}{dt}|$ is L^2 in time, but L^1 ?...

Only one can finish at the back

We denote $\lambda > 0$ the limit of |J| (increasing). We have that

$$\frac{1}{2}\frac{d}{dt}\|v_i - v_j\|^2 = -|J|\Omega \cdot \frac{v_i + v_j}{2}\|v_i - v_j\|^2.$$

Repulsion of "back" particles

If $v_i(0) \neq v_j(0)$, we cannot have $v_i \cdot \Omega \rightarrow -1$ and $v_j \cdot \Omega \rightarrow -1$ (repulsion). Two possibilities :

- All particle are "front" : $v_i \cdot \Omega \rightarrow 1$.
- Up to renumbering, only v_N is "going to the back".

Second case : $|J| \rightarrow \sum_{i=1}^{N-1} m_i - m_N = 1 - 2m_N = \lambda$ (so $m_N < \frac{1}{2}$).

Only one can finish at the back

We denote $\lambda > 0$ the limit of |J| (increasing). We have that

$$\frac{1}{2}\frac{d}{dt}\|v_i - v_j\|^2 = -|J|\Omega \cdot \frac{v_i + v_j}{2}\|v_i - v_j\|^2.$$

Repulsion of "back" particles

If $v_i(0) \neq v_j(0)$, we cannot have $v_i \cdot \Omega \rightarrow -1$ and $v_j \cdot \Omega \rightarrow -1$ (repulsion). Two possibilities :

- All particle are "front" : $v_i \cdot \Omega \rightarrow 1$.
- Up to renumbering, only v_N is "going to the back".

Second case : $|J| \rightarrow \sum_{i=1}^{N-1} m_i - m_N = 1 - 2m_N = \lambda$ (so $m_N < \frac{1}{2}$). Exponential estimate: $||v_i - v_j|| = O(e^{-\lambda t})$ (for i, j "front").

Ω as a nearly conserved quantity

Theorem (if all particles are "front"):

There exists $\Omega_{\infty} \in \mathbb{S}$, and $a_i \in {\{\Omega_{\infty}\}}^{\perp} \subset \mathbb{R}^n$, for $1 \leq i \leq N$ such that $\sum_{i=1}^{N} m_i a_i = 0$ and that, as $t \to +\infty$,

$$egin{aligned} \mathsf{v}_i(t) &= (1-|\mathsf{a}_i|^2 e^{-2t})\,\Omega_\infty + e^{-t}\,\mathsf{a}_i + O(e^{-3t}) & ext{for } 1\leqslant i\leqslant \mathsf{N}, \ \Omega(t) &= \Omega_\infty + O(e^{-3t}). \end{aligned}$$

Ω as a nearly conserved quantity

Theorem (if all particles are "front"):

There exists $\Omega_{\infty} \in \mathbb{S}$, and $a_i \in {\{\Omega_{\infty}\}}^{\perp} \subset \mathbb{R}^n$, for $1 \leq i \leq N$ such that $\sum_{i=1}^{N} m_i a_i = 0$ and that, as $t \to +\infty$,

$$egin{aligned} &\mathcal{W}_i(t) = (1-|a_i|^2 e^{-2t})\,\Omega_\infty + e^{-t}\,a_i + O(e^{-3t}) & ext{for } 1\leqslant i\leqslant N, \ &\Omega(t) = \Omega_\infty + O(e^{-3t}). \end{aligned}$$

Theorem (if v_N is the only "back" particle — convexity argument):

There exists $\Omega_{\infty} \in \mathbb{S}$, and $a_i \in {\{\Omega_{\infty}\}}^{\perp} \subset \mathbb{R}^n$, for $1 \leq i < N$ such that $\sum_{i=1}^{N-1} m_i a_i = 0$ and that, as $t \to +\infty$,

$$egin{aligned} v_i(t) &= (1-|a_i|^2 e^{-2\lambda t})\,\Omega_\infty + e^{-\lambda t}\,a_i + O(e^{-3\lambda t}) & ext{for } i
eq N, \ v_N(t) &= -\Omega_\infty + O(e^{-3\lambda t}), & \Omega(t) = \Omega_\infty + O(e^{-3\lambda t}). \end{aligned}$$

Aggregation equation on the sphere

PDE for the empirical distribution

Define $f(t) = \sum_{i=1}^{N} m_i \delta_{v_i(t)} \in \mathcal{P}(\mathbb{S})$ (a probability measure on the sphere), then f is a weak solution of the following PDE:

$$\partial_t f + \nabla_v \cdot (f P_{v^\perp} J_f) = 0$$
, where $J_f = \int_{\mathbb{S}} v \, \mathrm{d}f(v)$. (1)

Aggregation equation on the sphere

PDE for the empirical distribution

Define $f(t) = \sum_{i=1}^{N} m_i \delta_{v_i(t)} \in \mathcal{P}(\mathbb{S})$ (a probability measure on the sphere), then f is a weak solution of the following PDE:

$$\partial_t f + \nabla_v \cdot (f P_{v^\perp} J_f) = 0$$
, where $J_f = \int_{\mathbb{S}} v \, \mathrm{d}f(v)$. (1)

Theorem

Given a probability measure f_0 , there exists a unique global (weak) solution to the aggregation equation given by (1).

Tools: optimal transport, or for this case harmonic analysis (Fourier for n = 2), which gives well-posedness in Sobolev spaces.

Properties of the model

Characteristics, if the function J(t) is given

Define Φ_t as the flow of the one-particle ODE $\left(\frac{dv}{dt} = P_{v^{\perp}}J\right)$:

$$\frac{\mathrm{d}\Phi_t(v)}{\mathrm{d}t} = P_{\Phi_t(v)^{\perp}}J(t) \quad \text{with } \Phi_0(v) = v.$$

Then the solution to the (linear) equation $\partial_t f + \nabla_v \cdot (f P_{v^{\perp}} J) = 0$ is given by $f(t) = \Phi_t \# f_0$ (push-forward):

$$\int_{\mathbb{S}} \psi(v) \mathsf{d}(\Phi_t \# f_0)(v) = \int_{\mathbb{S}} \psi(\Phi_t(v)) \mathsf{d} f_0(v) \text{ for } \psi \in C^0(\mathbb{S}).$$

Properties of the model

Characteristics, if the function J(t) is given

Define Φ_t as the flow of the one-particle ODE $(\frac{dv}{dt} = P_{v^{\perp}}J)$:

$$\frac{\mathrm{d}\Phi_t(v)}{\mathrm{d}t} = P_{\Phi_t(v)^{\perp}}J(t) \quad \text{with } \Phi_0(v) = v.$$

Then the solution to the (linear) equation $\partial_t f + \nabla_v \cdot (f P_{v^{\perp}} J) = 0$ is given by $f(t) = \Phi_t \# f_0$ (push-forward):

$$\int_{\mathbb{S}} \psi(v) \mathsf{d}(\Phi_t \# f_0)(v) = \int_{\mathbb{S}} \psi(\Phi_t(v)) \mathsf{d} f_0(v) \text{ for } \psi \in C^0(\mathbb{S}).$$

We can perform computations exactly as for the particles:

$$\frac{\mathrm{d}}{\mathrm{d}t}J_f = \int_{\mathbb{S}} P_{v^{\perp}}J_f \mathrm{d}f(v) = \langle P_{v^{\perp}} \rangle_f J_f = M_f J_f.$$

Increase of $|J_f(t)|$, integrability of $J_f \cdot M_f J_f$. All moments are C^{∞} .

Convergence of $\Omega(t)$

We have $\dot{\Omega} = \frac{d\Omega}{dt} = P_{\Omega^{\perp}} M_f \Omega$, which is L^2 in time, but L^1 ? After a few computations, we obtain

$$\begin{split} \frac{\mathsf{d}}{\mathsf{d}t} |\dot{\Omega}| &= |\dot{\Omega}| (1 - \Omega \cdot M_f \Omega - \langle (u \cdot P_{\Omega^{\perp}} v)^2 \rangle_f) \\ &+ 2|J| \langle (1 - (v \cdot \Omega)^2) u \cdot P_{\Omega^{\perp}} v \rangle_f, \end{split}$$

where $u = \frac{\dot{\Omega}}{|\dot{\Omega}|}$ (when it is well-defined, 0 otherwise).

Convergence of $\Omega(t)$

We have $\dot{\Omega} = \frac{d\Omega}{dt} = P_{\Omega^{\perp}} M_f \Omega$, which is L^2 in time, but L^1 ? After a few computations, we obtain

$$\begin{aligned} \frac{\mathsf{d}}{\mathsf{d}t} |\dot{\Omega}| &= |\dot{\Omega}| (1 - \Omega \cdot M_f \Omega - \langle (u \cdot P_{\Omega^{\perp}} v)^2 \rangle_f) \\ &+ 2|J| \langle (1 - (v \cdot \Omega)^2) u \cdot P_{\Omega^{\perp}} v \rangle_f, \end{aligned}$$

where $u = \frac{\dot{\Omega}}{|\dot{\Omega}|}$ (when it is well-defined, 0 otherwise).

Lemma: Tail of a perturbed ODE (integrability)

If $\frac{dx}{dt} = x + g$ where x is bounded, $g \in L^1(\mathbb{R}_+)$, then $x(t) \in L^1(\mathbb{R}_+)$.

Therefore we get that $|\dot{\Omega}|$ is integrable, and then $\Omega(t) \to \Omega_{\infty} \in \mathbb{S}$.

Amic Frouvelle

Convergence of f

Proposition: unique back (same idea of "repulsion")

Suppose that J(t) is given (continuous, $|J| \ge c > 0$), with $\Omega(t) = \frac{J(t)}{|J(t)|}$ converging to $\Omega_{\infty} \in \mathbb{S}$. Then there exists a unique $v_{\text{back}} \in \mathbb{S}$ such that the solution v(t) of $\frac{dv}{dt} = P_{v^{\perp}}J(t)$ with $v(0) = v_{\text{back}}$ satisfies $v(t) \to -\Omega_{\infty}$ as $t \to +\infty$.

Conversely, if $v(0) \neq v_{\mathsf{back}}$, then $v(t) \rightarrow \Omega_{\infty}$ as $t \rightarrow \infty$.

Convergence of f

Proposition: unique back (same idea of "repulsion")

Suppose that J(t) is given (continuous, $|J| \ge c > 0$), with $\Omega(t) = \frac{J(t)}{|J(t)|}$ converging to $\Omega_{\infty} \in \mathbb{S}$. Then there exists a unique $v_{\text{back}} \in \mathbb{S}$ such that the solution v(t) of $\frac{dv}{dt} = P_{v^{\perp}}J(t)$ with $v(0) = v_{\text{back}}$ satisfies $v(t) \to -\Omega_{\infty}$ as $t \to +\infty$.

Conversely, if $v(0) \neq v_{\mathsf{back}}$, then $v(t) \rightarrow \Omega_{\infty}$ as $t \rightarrow \infty$.

Theorem

Convergence in Wasserstein distance to $m\delta_{-\Omega_{\infty}} + (1-m)\delta_{\Omega_{\infty}}$, where *m* is the mass of $\{v_b\}$ with respect to the measure f_0 . In particular, if f_0 has no atoms, then $f \to \delta_{\Omega_{\infty}}$.

No rate ...

Speeds $v_i \in \mathbb{R}^n$ $(1 \leq i \leq N)$, Poisson clocks: $v_i, v_j \rightsquigarrow \frac{v_i + v_j}{2}$.

Kinetic version (large N) : evolution of $f_t(v) \in \mathcal{P}_2(\mathbb{R}^n)$

$$\partial_t f_t(v) = \int_{\mathbb{R}^n} f_t(v+w) f_t(v-w) \mathrm{d}w - f_t(v).$$

Speeds $v_i \in \mathbb{R}^n$ $(1 \leq i \leq N)$, Poisson clocks: $v_i, v_j \rightsquigarrow \frac{v_i + v_j}{2}$.

Kinetic version (large N) : evolution of $f_t(v) \in \mathcal{P}_2(\mathbb{R}^n)$

$$\partial_t f_t(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \delta_{\frac{v_* + v'_*}{2}}(v) \, \mathrm{d}f_t(v_*) \mathrm{d}f_t(v'_*) - f(t, v).$$

Speeds $v_i \in \mathbb{R}^n$ $(1 \leq i \leq N)$, Poisson clocks: $v_i, v_j \rightsquigarrow \frac{v_i + v_j}{2}$.

Kinetic version (large N) : evolution of $f_t(v) \in \mathcal{P}_2(\mathbb{R}^n)$

$$\partial_t f_t(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \delta_{\frac{v_* + v'_*}{2}}(v) \, \mathrm{d}f_t(v_*) \mathrm{d}f_t(v'_*) - f(t, v).$$

- Conservation of center of mass $\bar{v} = \int_{\mathbb{R}^n} v \, df(v)$.
- Second moment $m_2 = \int_{\mathbb{R}^n} |v \bar{v}|^2 df(v)$: $\frac{d}{dt}m_2 = -\frac{m_2}{2}$.

Exponential convergence towards a Dirac mass

$$W_2(f_t,\delta_{\overline{\nu}})=W_2(f_0,\delta_{\overline{\nu}})e^{-\frac{t}{4}}.$$

Speeds $v_i \in \mathbb{R}^n$ $(1 \leq i \leq N)$, Poisson clocks: $v_i, v_j \rightsquigarrow \frac{v_i + v_j}{2}$.

Kinetic version (large N) : evolution of $f_t(v) \in \mathcal{P}_2(\mathbb{R}^n)$

$$\partial_t f_t(v) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \delta_{\frac{v_* + v'_*}{2}}(v) \, \mathrm{d}f_t(v_*) \mathrm{d}f_t(v'_*) - f(t, v).$$

- Conservation of center of mass $\bar{v} = \int_{\mathbb{R}^n} v \, df(v)$.
- Second moment $m_2 = \int_{\mathbb{R}^n} |v \bar{v}|^2 df(v)$: $\frac{d}{dt}m_2 = -\frac{m_2}{2}$.

Exponential convergence towards a Dirac mass

$$W_2(f_t,\delta_{\overline{v}})=W_2(f_0,\delta_{\overline{v}})e^{-rac{t}{4}}.$$

• Decreasing energy: $E(f) = \int_{\mathbb{R}^n \times \mathbb{R}^n} |v - u|^2 df(v) df(u)$ (equal to $2m_2$), no need for \overline{v} in this definition.

Midpoint model on the sphere

Kernel $K(v, v_*, v'_*)$: probability density that a particle at position v_* interacting with another one at v'_* is found at v after collision.

$$\partial_t f_t(\mathbf{v}) = \int_{\mathbb{S}\times\mathbb{S}} K(\mathbf{v}, \mathbf{v}_*, \mathbf{v}'_*) \, \mathrm{d}f_t(\mathbf{v}_*) \mathrm{d}f_t(\mathbf{v}'_*) - f_t(\mathbf{v}).$$

When
$$v_* \neq v'_*$$
, $K(\cdot, v_*, v'_*) = \delta_{v_m}$,
where $v_m = \frac{v_* + v'_*}{\|v_* + v'_*\|}$.

Midpoint model on the sphere

Kernel $K(v, v_*, v'_*)$: probability density that a particle at position v_* interacting with another one at v'_* is found at v after collision.

$$\partial_t f_t(\mathbf{v}) = \int_{\mathbb{S}\times\mathbb{S}} K(\mathbf{v}, \mathbf{v}_*, \mathbf{v}'_*) \, \mathrm{d}f_t(\mathbf{v}_*) \mathrm{d}f_t(\mathbf{v}'_*) - f_t(\mathbf{v}).$$

When
$$v_* \neq v'_*$$
, $\mathcal{K}(\cdot, v_*, v'_*) = \delta_{v_m}$,
where $v_m = \frac{v_* + v'_*}{\|v_* + v'_*\|}$.

Energy

$$E(f) = \int_{\mathbb{S}\times\mathbb{S}} d(v, u)^2 \, \mathrm{d}f(v) \, \mathrm{d}f(u).$$

Collisional kinetic model Stability of Dirac masses

Link "Energy – Wasserstein"

Useful Lemma – Markov inequalities

For $f \in \mathcal{P}(\mathbb{S})$, there exists $\bar{v} \in \mathbb{S}$ such that for all $v \in \mathbb{S}$:

$$W_2(f,\delta_{ar{v}})^2\leqslant E(f)\leqslant 4~W_2(f,\delta_v)^2$$
,

For such a \bar{v} and for all $\kappa > 0$, we have

$$\int_{\{v\in\mathbb{S};\,d(v,\bar{v})\geqslant\kappa\}} \mathrm{d}f(v) \leqslant \frac{1}{\kappa^2} E(f),$$
$$\int_{\{v\in\mathbb{S};\,d(v,\bar{v})\geqslant\kappa\}} d(v,\bar{v}) \,\mathrm{d}f(v) \leqslant \frac{1}{\kappa} E(f).$$

Evolution of the energy

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}E(f) = \int_{\mathbb{S}\times\mathbb{S}\times\mathbb{S}} \alpha(v_*, v'_*, u) \,\mathsf{d}f(v_*) \,\mathsf{d}f(v'_*) \,\mathsf{d}f(u).$$

Local contribution to the variation of energy

$$\alpha(v_*, v'_*, u) = \int_{\mathbb{S}} d(v, u)^2 K(v, v_*, v'_*) \, \mathrm{d}v - \frac{d(v_*, u)^2 + d(v'_*, u)^2}{2}.$$

Evolution of the energy

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}E(f) = \int_{\mathbb{S}\times\mathbb{S}\times\mathbb{S}} \alpha(v_*, v'_*, u) \,\mathsf{d}f(v_*) \,\mathsf{d}f(v'_*) \,\mathsf{d}f(u).$$

Local contribution to the variation of energy

$$\alpha(v_*, v'_*, u) = \int_{\mathbb{S}} d(v, u)^2 K(v, v_*, v'_*) \, \mathrm{d}v - \frac{d(v_*, u)^2 + d(v'_*, u)^2}{2}.$$

Configuration of Apollonius:

$$lpha(v_*,v_*',u) = m^2 - rac{b^2 + b'^2}{2}$$

Evolution of the energy

$$\frac{1}{2}\frac{\mathsf{d}}{\mathsf{d}t}E(f) = \int_{\mathbb{S}\times\mathbb{S}\times\mathbb{S}} \alpha(v_*, v'_*, u) \,\mathsf{d}f(v_*) \,\mathsf{d}f(v'_*) \,\mathsf{d}f(u).$$

Local contribution to the variation of energy

$$\alpha(v_*, v'_*, u) = \int_{\mathbb{S}} d(v, u)^2 K(v, v_*, v'_*) dv - \frac{d(v_*, u)^2 + d(v'_*, u)^2}{2}.$$

Configuration of Apollonius:

$$\alpha(v_*, v'_*, u) = m^2 - \frac{b^2 + b'^2}{2}$$

Flat case (we get $-a^2$):

$$\alpha(v_*, v'_*, u) = -\frac{1}{4}d(v_*, v'_*)^2.$$

Error estimates in Apollonius' formula

Lemma: global estimate (only triangular inequalities)

For all v_* , v'_* , $u \in \mathbb{S}$, we have

$$\alpha(v_*, v'_*, u) \leqslant -\frac{1}{4} d(v_*, v'_*)^2 + 2 d(v_*, v'_*) \min (d(v_*, u), d(v'_*, u)).$$

Error estimates in Apollonius' formula

Lemma: global estimate (only triangular inequalities)

For all v_* , v'_* , $u \in \mathbb{S}$, we have

$$\alpha(v_*, v'_*, u) \leqslant -\frac{1}{4} d(v_*, v'_*)^2 + 2 d(v_*, v'_*) \min (d(v_*, u), d(v'_*, u)).$$

Lemma: local estimate, more precise

For all $\kappa_1 < \frac{2\pi}{3}$, there exists $C_1 > 0$ such that for all $\kappa \leq \kappa_1$, and all v_* , v'_* , $u \in \mathbb{S}$ with $\max(d(v_*, u), d(v'_*, u), d(v_*, v'_*)) \leq \kappa$, we have

$$lpha(v_*, v_*', u) \leqslant -\frac{1}{4}d(v_*, v_*')^2 + C_1 \kappa^2 d(v_*, v_*')^2.$$

Spherical Apollonius: $\frac{1}{2}(\cos b + \cos b') = \cos a \cos m$.

Decreasing energy – Control on displacement

We set $\bar{\omega} := \{ v \in \mathbb{S}; d(v, \bar{v}) \leq \frac{1}{2}\kappa \}$, and we cut the triple integral in four parts following if v_*, v'_*, u is in $\bar{\omega}$ or not.

Decreasing energy – Control on displacement

We set $\bar{\omega} := \{ v \in \mathbb{S}; d(v, \bar{v}) \leq \frac{1}{2}\kappa \}$, and we cut the triple integral in four parts following if v_*, v'_*, u is in $\bar{\omega}$ or not.

$$\frac{1}{2}\frac{d}{dt}E(f) + \frac{1}{4}E(f) \leqslant \underbrace{C\kappa^{2}E(f)}_{\text{Local lemma}} + \underbrace{12\frac{E(f)^{\frac{3}{2}}}{\kappa} + 24\frac{E(f)^{2}}{\kappa^{2}}}_{\text{Global lemma + Markov}}.$$

Same kind of cut to show that $\bar{v}(t)$ satisfies Cauchy's criteria (for $t \to \infty$) and converges with the same rate as $\sqrt{E(f)}$.

Decreasing energy – Control on displacement

We set $\bar{\omega} := \{ v \in \mathbb{S}; d(v, \bar{v}) \leq \frac{1}{2}\kappa \}$, and we cut the triple integral in four parts following if v_*, v'_*, u is in $\bar{\omega}$ or not.

$$\frac{1}{2}\frac{d}{dt}E(f) + \frac{1}{4}E(f) \leqslant \underbrace{C\kappa^{2}E(f)}_{\text{Local lemma}} + \underbrace{12\frac{E(f)^{\frac{3}{2}}}{\kappa} + 24\frac{E(f)^{2}}{\kappa^{2}}}_{\text{Global lemma + Markov}}.$$

Same kind of cut to show that $\bar{v}(t)$ satisfies Cauchy's criteria (for $t \to \infty$) and converges with the same rate as $\sqrt{E(f)}$.

Theorem: local stability of Dirac masses

There exists $C_1 > 0$ and $\eta > 0$ such that for all solution $f \in C(\mathbb{R}_+, \mathcal{P}(\mathbb{S}))$ with initial condition f_0 satisfying $W_2(f_0, \delta_{v_0}) < \eta$ for a $v_0 \in \mathbb{S}$, there exists $v_\infty \in \mathbb{S}$ such that

$$\mathcal{N}_2(f_t, \delta_{v_\infty}) \leqslant C_1 \mathcal{W}_2(f_0, \delta_{v_0}) e^{-\frac{1}{4}t}$$

Thanks!