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The formation of blood vessels

⋆ Angiogenesis is essential for organ growth & repair

→֒ Figure: Gariano and Gardner, Nature (2005)
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The formation of blood vessels

⋆ Angiogenesis is essential for organ growth & repair

→֒ Figure: Gariano and Gardner, Nature (2005)

⋆ Angiogenesis can be either physiological or pathological (tumor

induced) →֒ Figure: Chung et al., Nature Reviews (2010)
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Angiogenesis mechanisms

Figure: molecular basis of vessel branching – Carmeliet & Jain, Nature (2011)
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Angiogenesis treatment

Experimental dose-effect analysis is routine in biomedical laboratories, but
these still lack methods of optimal control to assess effective therapies

Figure: angiogenesis on a rat cornea – E. Dejana lab (2005)
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Modeling angiogenesis

⋆ Continuum models: reaction-diffusion equations for densities of
endothelial cells, growth factors, . . . (e.g. Chaplain) or kinetic equations
for distributions of active particles (cells, agents, . . . ) (e.g. Bellomo)

⋆ Cellular models (T. Heck’s 2015 classification):
• tip cell migration,
• stalk-tip cell dynamics,
• cell dynamics at cellular scale (e.g. cellular Potts models).

⋆ Many are multiscale models, combining randomness at the natural
microscale/mesoscale with numerical solutions of PDEs at the
macroscale

⋆ Some mathematical models: Chaplain, Bellomo, Preziosi, Byrne,
Sleeman, Anderson, Stokes, Lauffenburger, Capasso, Morale, Wheeler,
Bauer, Bentley, Gerhardt, Travasso

⋆ Some experiments: Folkman, Jain, Carmeliet, Dejana, Fruttiger

⋆ Mostly numerical outcomes, no stat-mech study
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Main features of the model

Early stage formation of a tumor induced vessel network involves:

(i) tip branching: birth process of tips

(ii) vessel extension: Langevin equations

(iii) chemotaxis in response to a generic tumor angiogenic factor (TAF),
released by tumor cells: reaction-diffusion equation

(iv) anastomosis: death process of capillary tips that encounter an existing
vessel

(v) vessel = tip trajectory

(haptotaxis, blood circulation, vessel pruning & other processes are ignored;

haptotaxis: Capasso-Morale 2009)
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Main features of the model

Early stage formation of a tumor induced vessel network involves:

(i) tip branching: birth process of tips

(ii) vessel extension: Langevin equations

(iii) chemotaxis in response to a generic tumor angiogenic factor (TAF),
released by tumor cells: reaction-diffusion equation

(iv) anastomosis: death process of capillary tips that encounter an existing
vessel

(v) vessel = tip trajectory

(haptotaxis, blood circulation, vessel pruning & other processes are ignored;

haptotaxis: Capasso-Morale 2009)

At time t, there are N(t) active tips, with position Xi(t) and velocity vi(t)
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A typical vessel network simulation

⋆ 2D spatial domain: x = (x, y) ∈ [0, L]× [−1.5L, 1.5L]

⋆ Primary vessel at x = 0, tumor at x = L; level curves depict the TAF field

→֒ Figure: (a) 12 h (46 tips), (b) 24 h (60 tips), (c) 32 h (78 tips), (d) 36 h (76 tips)
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Tip branching

New capillaries branch out of vessel tips (not from mature vessels)

The ‘probability’ that a tip branches from an existing one in (t, t+ dt] is
measured by

N(t)
∑

i=1

α
(

C(t,Xi(t))
)

dt , with α(C) = α1
C

CR + C
,

where CR is a reference value for the TAF concentration C(t,x) (α1 ∈ R
+)

A ‘successful’ branching (birth) at x = Xi(t) generates a new tip with

♣ initial position equal to x

♣ initial velocity selected out of a normal distribution with mean v0

(a constant non-random velocity)
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Vessel extension

Vessel extension is modeled by tracking the trajectories of all tips

Description is based on the Langevin equations

dXi(t) = v
i(t) dt

dvi(t) = −k vi(t)
︸ ︷︷ ︸

friction

dt + F
(

C(t,Xi(t))
)

︸ ︷︷ ︸

chemotactic force

dt + σ dWi(t)
︸ ︷︷ ︸

random noise

where Wi(t) are i.i.d. standard Brownian motions

The force due to the underlying TAF field is given by

F(C) =
d1

1 + γ1C
∇xC

(k, σ, d1, γ1 are positive parameters)
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TAF evolution

The TAF diffuses & is consumed due to capillary enlargement

→֒ locally degraded by each tip proportionally to its velocity (in a region ∼ tip size)

The evolution equation is

∂

∂t
C(t,x) = d2△xC(t,x)− η C(t,x)

∣
∣
∣
∣
∣

N(t)
∑

i=1

v
i(t) δσx

(

x−X
i(t)

)

︸ ︷︷ ︸

tip flux

∣
∣
∣
∣
∣

where d2, η, σx are positive parameters

X an initial Gaussian-like concentration C(0,x) is considered

X the production of C(t,x) due to tumor is modeled by a TAF flux
boundary condition at x = L (zero flux at x = 0 and C(t, x,±1.5L) = 0)
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Law of large numbers

X After some time, so many active tips exist that process is
self-averaging: realizations follow the mean, negligible fluctuations.

X Define rescaled density of active tips (N is a fixed large number
representative of the existing number of tips):

1

N

N(t)
∑

i=1

δ(x − X
i(t))δ(v − v

i(t)) ∼ p(t, x,v), N → ∞.

X Get deterministic (integrodifferential) eq. for density: Fokker-Planck
equation plus source & sink terms, Bonilla et al, PRE 2014.

X Prove deterministic equation is well-posed (unique solution smoothly
dependent on data).

X Investigate convergence of stochastic to deterministic tip density (math
research program).
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Law of large numbers

X After some time, so many active tips exist that process is
self-averaging: realizations follow the mean, negligible fluctuations.

X Define rescaled density of active tips (N is a fixed large number
representative of the existing number of tips):

1

N

N(t)
∑

i=1

δ(x − X
i(t))δ(v − v

i(t)) ∼ p(t, x,v), N → ∞.

X Get deterministic (integrodifferential) eq. for density: Fokker-Planck
equation plus source & sink terms, Bonilla et al, PRE 2014.

X Prove deterministic equation is well-posed (unique solution smoothly
dependent on data).

X Investigate convergence of stochastic to deterministic tip density (math
research program).

But it is all wrong! Anastomosis eliminates active tips! N ≈ 100.

Remedy: Enter a large number of replicas N of stochastic process and
work with ensemble averages. (If it was good for Gibbs, it is good for us!)
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Key point: Ensemble averaged tip densities (PRE 93, 022413)

GOAL: a deterministic description of the vessel tip mean density

⋆ Anastomosis keeps the number of tips N(t) relatively low

N No laws of large numbers can be applied

N The stochastic model is not self-averaging (fluctuations do not decay)

♠ Set N independent replicas of the angiogenic process. Empirical
distribution of tips, per unit volume, in (x,v) phase space

pN(t, x,v) =
1

N

N∑

ω=1





N(t,ω)
∑

i=1

δσx(x−Xi(t, ω))δσv (v − vi(t, ω))



 −−−−−→
N→∞

p(t,x,v)

♠ Empirical distribution of tips, per unit volume, in physical space

p̃N (t,x) =
1

N

N∑

ω=1





N(t,ω)
∑

i=1

δσx(x−Xi(t, ω))



 −−−−−→
N→∞

p̃(t,x)
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Marginal tip density from N = 400 replicas (lump)

→֒ Figure: (a) 12 h (56 tips), (b) 24 h (69 tips), (c) 32 h (72 tips), (d) 36 h (66 tips)
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Marginal tip density from N = 400 replicas (soliton)
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→֒ Figure: (a) 12 h (56 tips), (b) 24 h (69 tips), (c) 32 h (72 tips), (d) 36 h (66 tips)
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Deterministic description (Terragni et al., PRE, 2016)

As N → ∞, the tip density p(t,x,v) satisfies the Fokker-Planck-type equation

(Bonillaet al PRE 2014, well-posed: Carpioet al NARWA 2016, AMM 2017)

∂

∂t
p(t,x,v) = α(C(t, x)) p(t,x,v) δσv (v − v0)

︸ ︷︷ ︸

birth term (tip branching)

− γ p(t,x,v)

∫ t

0
p̃(s,x) ds

︸ ︷︷ ︸

death term (anastomosis) −→ γ > 0

−v · ∇x p(t,x,v)
︸ ︷︷ ︸

transport

+ k ∇v ·
[

v p(t,x,v)
]

︸ ︷︷ ︸

friction

−∇v ·
[

F(C(t,x)) p(t,x,v)
]

︸ ︷︷ ︸

chemotactic forcing by TAF

+
σ2

2
∆v p(t,x,v)

︸ ︷︷ ︸

diffusion

with
∂

∂t
C(t,x) = d2 △xC(t,x)− η C(t,x)

∣
∣
∣
∣
∣

∫

v′ p(t,x,v′) dv′

︸ ︷︷ ︸

tip flux density

∣
∣
∣
∣
∣
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Deterministic description: source and sink terms

♠ Birth term (tip branching): rb(t,x) p(t,x,v), rb = α(C(t,x)) δσv (v − v0)

(factorization assumed)

♠ Anastomosis: −rd(t,x) p(t,x,v). At time t, one tip meets a vessel at
volume dx about x, whose leading tip was there at past time in
(s, s+ ds), no matter its velocity. Death term for all previous time is
proportional to the ensemble average

∫ t

0
p̃(s,x) ds. Missing in all

previous work!

♠ Anastomosis: rd proportional to average occupation time density of a
volume dx about x: 〈

∫ t

0
ds

∑N(s)
i=1 δσx(x−Xi(s))〉 =

∫ t

0
ds p̃(s,x). We

are making a factorization assumption similar to Boltzmann’s
molecular chaos assumption (ensemble average of a product is product
of ensemble averages).
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Deterministic description: source and sink terms

♠ Birth term (tip branching): rb(t,x) p(t,x,v), rb = α(C(t,x)) δσv (v − v0)

(factorization assumed)

♠ Anastomosis: −rd(t,x) p(t,x,v). At time t, one tip meets a vessel at
volume dx about x, whose leading tip was there at past time in
(s, s+ ds), no matter its velocity. Death term for all previous time is
proportional to the ensemble average

∫ t

0
p̃(s,x) ds. Missing in all

previous work!

♠ Anastomosis: rd proportional to average occupation time density of a
volume dx about x: 〈

∫ t

0
ds

∑N(s)
i=1 δσx(x−Xi(s))〉 =

∫ t

0
ds p̃(s,x). We

are making a factorization assumption similar to Boltzmann’s
molecular chaos assumption (ensemble average of a product is product
of ensemble averages).

♠ Similar factorization assumption made to get the force term in the
deterministic equation for tip density:

⋆

∇v · [F(C(t,x)) p(t,x,v)].
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Deterministic description: boundary conditions for p

⋆ Since p has 2nd -order derivatives in v

p(t,x,v) → 0 as |v| → ∞

⋆ Which spatial bcs for p ? (p has 1st-order derivatives in x)

At each t, we expect to know

X the marginal tip density at the tumor (x = L)

p̃(t, L, y) = p̃L(t, y)

X the normal tip flux density injected at the primary vessel (x = 0)

−n · j(t, 0, y) = j0(t, y)

Using these values & assuming p close to a local equilibrium distribution

at the boundaries, we impose compatible bcs for p+ at x = 0 and p− at x = L
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Deterministic description: boundary conditions for p

First order derivatives in x: 2 one-half boundary conditions at x = 0, x = L:

p+(t, 0, y, v, w) =
e
−

k|v−v0|2

σ2

∫
∞

0

∫
∞

−∞
v′e

−
k|v′−v0|2

σ2 dv′ dw′

[

j0(t, y)−

∫ 0

−∞

∫ ∞

−∞

v′p−(t, 0, y, v′, w′)dv′dw′

]

p−(t, L, y, v, w) =
e
−

k|v−v0|2

σ2

∫ 0
−∞

∫∞

−∞
e
−

k|v′−v0|2

σ2 dv′ dw′

[

p̃L(t, y)−

∫
∞

0

∫
∞

−∞

p+(t, L, y, v′, w′)dv′dw′

]

where

⋆ v = (v, w) ; p+ = p for v > 0 and p− = p for v < 0

⋆ v0 is the mean velocity of the vessel tips

⋆ σ2/k is the temperature of the local equilibrium distribution
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Ensemble-averaged vs. deterministic descriptions

X All parameters appear in both models (with the same values)

X Main parameter values are extracted from experiments

The two descriptions agree quite well (qualitatively) as far as the anastomosis
coefficient is suitably estimated: our fit minimizes the relative RMS error on
the number of tips for 8 h < t < 30 h calculated with the two approaches

N(t) =

[∫

p̃(t,x) dx

]

(deterministic)

N(t) =

[

1

400

400
∑

ω=1

N(t, ω)

]

or

[∫

p̃400(t,x) dx

]

(ensemble-averaged)
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Ensemble-averaged vs. deterministic descriptions

→֒ Figure: marginal tip density by ensemble averages over N = 400 replicas (left)

and deterministic equations (right), for (a) 12 h, (b) 24 h, (c) 32 h, (d) 36 h
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Stochastic Model and Deterministic Description

(haptotaxis, blood circulation, vessel pruning & other processes are ignored)

Bonilla et al, PRE 90, 062716, 2014, Terragni et al, PRE 93, 022413, 2015
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Vessel tips advance as a pulse

⋆ Deterministic marginal tip density at the x-axis, p̃(t, x, y = 0)

⋆ Tips form a growing pulse moving toward the tumor (x = L) by chemotaxis
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→֒ Figure: (a) 12 h, (b) 24 h, (c) 32 h, (d) 36 h
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Soliton (Bonilla et al, Sci. Rep. 6, 31296, 2016; PRE 94,
062415, 2016)

♠ Overdamped limit of vessel extension: dXi

dt = F + β−1/2 dWi

dt , yields
simple equation for p̃(t,x):

∂p̃

∂t
+ ∇x · [F(C)p̃] =

1

2β
∆xp̃ + µ(C)p̃ − Γp̃

∫

t

0

p̃(s, x)ds.

♠ Renormalized µ can be obtained by a Chapman-Enskog perturbation
method (assuming that the tip density rapidly approaches local equilibrium in v)

♠ Ignore diffusion, assume almost constant µ & F produce 1D soliton

s(t, x) =
(2KΓ + µ2)c

2Γ(c− Fx/β)
sech2

[

√

2KΓ + µ2

2(c− Fx/β)
(x− ct− ξ0)

]

⋆ Analogy with the soliton of the Korteweg-de Vries equation

⋆ Blue parameters (dimensionless) come from the angiogenesis model
(those depending on TAF are computed by considering C(t0, x, y), setting

y = 0, and averaging over x)

⋆ Red parameters (dimensionless) are related to the soliton (K, c, ξ0)
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Soliton collective coordinates

s(t, x) =
(2KΓ + µ2)c

2Γ(c− Fx/β)
sech2

[

√

2KΓ + µ2

2(c− Fx/β)
(x−X)

]

Let the soliton parameters depend on time & consider a new “center”

K = K(t) , c = c(t) , X = X(t), Ẋ = c

⋆ Collective coordinates K(t), c(t), X(t) satisfy ODEs reflecting influence
of diffusion and non-constant TAF. Coefficients are spatial averages

⋆ Good predictions on the soliton position & amplitude can be obtained
as to mimic the behavior of the vessel tips pulse

⋆ Soliton controls p̃(t,x) behavior after formation stage
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Deterministic pulse vs. soliton
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→֒ Figure: comparison of spatio-temporal plots between 10 and 24 hours
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Stochastic pulse vs. soliton (ensemble average 400 replicas)
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→֒ Figure: comparison of spatio-temporal plots between 10 and 24 hours
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Position of maximum marginal density for different replicas
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Two realizations for different friction
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Angiogenic network for (a) β = 5.88, (b) β = 29.4, after 36 h.
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Outline

1 Introduction

2 Stochastic Model

3 Ensemble Averages

4 Deterministic Equations

5 Soliton

6 Final Comments
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Perspectives

1 Blueprint for other models (master equation → Fokker-Planck eq)

2 Haptotaxis, anti-angiogenic drugs added as extra field RDE and extra
forces in Langevin equations (haptotaxis in Entropy 19, 209, 2017)

3 Stability of soliton, initial stage and arrival to tumor

4 Effect of haptotaxis, anti-angiogenic drugs on soliton: control of

angiogenesis, therapy
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Perspectives

1 Blueprint for other models (master equation → Fokker-Planck eq)

2 Haptotaxis, anti-angiogenic drugs added as extra field RDE and extra
forces in Langevin equations (haptotaxis in Entropy 19, 209, 2017)

3 Stability of soliton, initial stage and arrival to tumor

4 Effect of haptotaxis, anti-angiogenic drugs on soliton: control of

angiogenesis, therapy

THANK YOU!!!

L. L. Bonilla | Tumor Induced Angiogenesis | 37 / 37



Appendix: deterministic description

Derivation of a mean field equation for the vessel tip density, as N → ∞

⋆ Itō’s formula is applied for a smooth g(x,v) & the process in Langevin eqns

⋆ For any replica ω, at time t, the number of tips per unit volume in the (x,v)
phase space is given by the empirical distribution

Q
∗
N (t,x,v, ω) =

N(t,ω)
∑

i=1

δσx(x − X
i(t, ω))δσv(v − v

i(t, ω))

⋆ If N is sufficiently large, Q∗
N

may admit a density by laws of large numbers

1

N

N
∑

ω=1

Q
∗
N (t,x,v, ω) ∼ p(t, x,v)

=⇒
1

N

N
∑

ω=1





N(t,ω)
∑

i=1

g(Xi(t, ω),vi(t, ω))



 ∼

∫

g(x, v) p(t,x,v) dx dv

⋆ Tip branching & anastomosis are added as source & sink terms to the
obtained equation for p(t,x,v) in strong form
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Anastomosis

If a tip meets an existing vessel,
they join at that point & time

→֒ the tip stops the evolution

x/L

y/L

The “death” rate of tips is a fraction of the occupation time density

∫ t

0

ds

N(s)
∑

i=1

δσx(x−X
i(s)) ,

which is the concentration of vessels per unit volume, at t and x

Note: tips occupy a volume dx about x when they reach it, or by branching, or

during anastomosis (this depends on the past history of a given stochastic replica)
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Deterministic description: boundary conditions for p

⋆ Since p has 2nd -order derivatives in v

p(t,x,v) → 0 as |v| → ∞

⋆ Which spatial bcs for p ? (p has 1st-order derivatives in x)

At each t, we expect to know

X the marginal tip density at the tumor (x = L)

p̃(t, L, y) = p̃L(t, y)

X the normal tip flux density injected at the primary vessel (x = 0)

−n · j(t, 0, y) = j0(t, y)

Using these values & assuming p close to a local equilibrium distribution

at the boundaries, we impose compatible bcs for p+ at x = 0 and p− at x = L
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Deterministic description: boundary conditions for p

First order derivatives in x: 2 one-half boundary conditions at x = 0, x = L:

p+(t, 0, y, v, w) =
e
−

k|v−v0|2

σ2

∫
∞

0

∫
∞

−∞
v′e

−
k|v′−v0|2

σ2 dv′ dw′

[

j0(t, y)−

∫ 0

−∞

∫ ∞

−∞

v′p−(t, 0, y, v′, w′)dv′dw′

]

p−(t, L, y, v, w) =
e
−

k|v−v0|2

σ2

∫ 0
−∞

∫∞

−∞
e
−

k|v′−v0|2

σ2 dv′ dw′

[

p̃L(t, y)−

∫
∞

0

∫
∞

−∞

p+(t, L, y, v′, w′)dv′dw′

]

where

⋆ v = (v, w) ; p+ = p for v > 0 and p− = p for v < 0

⋆ v0 is the mean velocity of the vessel tips

⋆ σ2/k is the temperature of the local equilibrium distribution
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