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Motivations
The emergence of self-sustained periodic behavior has been widely
observed and (numerically) studied in neuroscience: neural
networks (Pham, Pakdaman, Champagnat ’98; Pakdaman,
Perthame, Salort ’10, Pakdaman, Perthame, Salort ’10), nerve
membranes (Fitzhugh ’61), nerve axons (Nagumo, Arimoto,
Yoshizawa ’62),. . .
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Problem
Emergence of periodicity in mean-field models

Analyze interacting systems that may exhibit a collective periodic
behavior even though single units have no natural tendency of
behaving periodically

MINIMAL
CHARACTERISTICS

• Interaction

• Noise

• Reversibility breaking
mechanism
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Reversibility breaking mechanisms

DISSIPATION

Collet, Dai Pra and Formentin. Collective periodicity in mean-field
models of cooperative behavior. NoDEA, 22(5):1461–1482, 2015

Dai Pra, Fischer and Regoli. A Curie-Weiss model with dissipation.
J. Stat. Phys., 152:37–53, 2013

Dai Pra, Giacomin and Regoli. Noise-induced periodicity: some
stochastic models for complex biological systems, in Mathematical
Models and Methods for Planet Earth, Springer-Berlin, pp. 25-35,
2014

Andreis and Tovazzi. Coexistence of stable limit cycles in a
generalized Curie-Weiss model with dissipation. IHP ground
floor, May 16–18, 2017
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Reversibility breaking mechanisms (cont’d)

DELAY & INTERACTION NETWORK

Ditlevsen and Löcherbach. Multi-class oscillating systems of
interacting neurons. Stoch. Proc. Appl., 127(6): 1840–1869,
2017

Touboul. The hipster effect: When anticonformists all look the
same. arXiv preprint arXiv:1410.8001, 2014
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Reversibility breaking mechanisms (cont’d)

INTERACTION NETWORK TOPOLOGY

AIM
Understand the role of interaction network topology in enhancing

the creation of rhythms in a spin system

Collet, Formentin and Tovazzi. Rhythmic behavior in a
two-population mean field Ising model. Phys. Rev. E, 94(4):
042139, 2016
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Two-population
Curie-Weiss model
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From micro. . .
• N particles (i = 1, . . . ,N) with all-to-all coupling
• State of particle i :

xi ∈ {−1,+1}
• Two families of particles (N1 + N2 = N):

Population F1 Population F2

(x1, x2, . . . , xN1 xN1+1, . . . , xN)

INTERACTION NETWORK

Population F1 Population F2

J22

J11

J12

J21

(!) Ferromagnetic and anti-ferromagnetic interactions are allowed
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From micro. . . (cont’d)

Markovian evolution

xi(t) −→ −xi(t)

with α = N1
N and mNj (t) = 1

Nj

∑
i∈Fj xi(t) for j = 1, 2

Population F1 Population F2

J22

J11

J12

J21
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From micro. . . (cont’d)
Markovian evolution

xi(t) −→ −xi(t)
at rate

e−xi [αJ11mN1 (t)+(1−α)J21mN2 (t)] e−xi [αJ12mN1 (t)+(1−α)J22mN2 (t)]
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From micro. . . (cont’d)
Markovian evolution

xi(t) −→ −xi(t)
at rate

e−xi [αJ11mN1 (t)+(1−α)J21mN2 (t)] e−xi [αJ12mN1 (t)+(1−α)J22mN2 (t)]

if i ∈ F1 if i ∈ F2

with α = N1
N and mNj (t) = 1

Nj

∑
i∈Fj xi(t) for j = 1, 2

ORDER PARAMETER

(mN1(t),mN2(t))
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. . . to macro
Infinite volume dynamics:

(ṁ1(t), ṁ2(t)) = Vα,J(m1(t),m2(t))

where

Vα,J (x , y) =
(
2 sinh [αJ11x + (1− α)J21y ]− 2x cosh [αJ11x + (1− α)J21y ]
2 sinh [αJ12x + (1− α)J22y ]− 2y cosh [αJ12x + (1− α)J22y ]

)

Phase Transition

αJ11 = 2− (1− α)J22[
(1− α)J22 − 1

]2 + α(1− α)J12J21 < 0
⇐⇒

HOPF
BIFURCATION

AT (0, 0)
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. . . to macro (cont’d)

We fix α, J12, J21 and we assume J11 = J22 = J .
Then,

Phase Diagram

PERIODIC SOLUTION

(0, 0) unique and
stable equilibrium

(0, 0) unstable
equilibrium

+
unique and stable limit

cycle
//| J

Jc
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Self-organization
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Time evolution of population F1. Simulations have been run with
N = 1000, α = 0.5, J12 = −6, J21 = 5. Critical threshold: Jc = 2.
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(Partial) summary of the results

HOPF BIFURCATION THRESHOLD

αJ11 = 2− (1− α)J22
˘ [

(1− α)J22 − 1
]2 + α(1− α)J12J21 < 0
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(Partial) summary of the results

FRUSTRATED NETWORKS

+ +
+

−

+ −
+

−

+ −
−

+

SELF-SUSTAINED RHYTHMIC BEHAVIOR
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Adding delay
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From micro. . .
• N particles (i = 1, . . . ,N) with all-to-all coupling
• State of particle i :

xi ∈ {−1,+1}
• Two families of particles (N1 + N2 = N):

Population F1 Population F2

(x1, x2, . . . , xN1 xN1+1, . . . , xN)

INTERACTION NETWORK

Population F1 Population F2

J22

J11

J12

J21

(!) Ferromagnetic and anti-ferromagnetic interactions are allowed
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From micro. . . (cont’d)
Markovian evolution

xi(t) −→ −xi(t)
at rate

e
−xi

[
αJ11mN1 (t)+(1−α)J21γ(n)

N2
(t)
]

e
−xi

[
αJ12γ(n)

N1
(t)+(1−α)J22mN2 (t)

]
if i ∈ F1 if i ∈ F2

where, for n ∈ N and k ∈ N \ {0}, we define

γ
(n)
Nj

(t) =
∫ t

0

(t − s)n

n! kn+1e−k(t−s) mNj (s) ds
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Delay kernel features

γ
(n)
Nj

(t) =
∫ t

0

(t − s)n

n! kn+1e−k(t−s) mNj (s) ds

n=1

n=2

n=3

n=4
n=5

t
s

0.25

CASE k=1

n=1

n=2

n=3

n=4
n=5

t
s

0.5

1

CASE k=3

n=1

n=2

n=3

n=4
n=5

t
s

0.5

1

1.5

2

CASE k=5

FINITE-DIMENSIONAL ORDER PARAMETER(
mN1(t),mN2(t), γ

(0)
N1

(t), . . . , γ(n)
N1

(t), γ(0)
N2

(t), . . . , γ(n)
N2

(t)
)
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. . . to macro
Infinite volume dynamics:

ṁ1(t) = 2 sinh[αJ11m1(t) + (1 − α)J21γ(n)
2 (t)]

−2m1(t) cosh[αJ11m1(t) + (1 − α)J21γ(n)
2 (t)]

ṁ2(t) = 2 sinh[αJ12γ(n)
1 (t) + (1 − α)J22m2(t)]

−2m2(t) cosh[αJ12γ(n)
1 (t) + (1 − α)J22m2(t)]

γ̇
(0)
1 (t) = k[−γ(0)

1 (t) + m1(t)]
γ̇

(n)
1 (t) = k[−γ(n)

1 (t) + γ
(n−1)
1 (t)] (for n > 0)

γ̇
(0)
2 (t) = k[−γ(0)

2 (t) + m2(t)]
γ̇

(n)
2 (t) = k[−γ(n)

2 (t) + γ
(n−1)
2 (t)] (for n > 0)

GOAL
THERE EXISTS A SUBSPACE OF THE PARAMETER SPACE WHERE

A HOPF BIFURCATION OCCURS
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Summary of the results
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Conclusions

• Network topology. A robust choice of the coupling constants
and of the population sizes is sufficient for a limit cycle to
arise.

• Delay. In the case when the choice of the parameters does not
suffice to favor the transition to a rhythm, delay may help in
this respect.

• Beyond mean-field. Emergence of a periodic behavior through
frustrated dynamics is very much related to the mean-field
setting.

• More general networks. . . ?!
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Currently
with Luisa Andreis, Marco Formentin and Daniele Tovazzi

Understand if frustration may work also for diffusions

• N particles (i = 1, . . . ,N) with all-to-all coupling

• State of particle i : xi ∈ R

• Two families: |F1| = N1, |F2| = N2 and N1 + N2 = N

• Dynamics:

If i ∈ F1 : dxi(t) =
[
−x3i (t) + xi(t)

]
dt − αJ11 [xi(t)−mN1(t)] dt

− (1− α)J21 [xi(t)−mN2(t)] dt + σdwi(t)

If i ∈ F2 : dxi(t) =
[
−x3i (t) + xi(t)

]
dt − αJ12 [xi(t)−mN1(t)] dt

− (1− α)J22 [xi(t)−mN2(t)] dt + σdwi(t)

(!) Positive and negative interactions are allowed
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Noise-induced periodicity

Time evolution of populations F1 and F2. Simulations have been
run with N = 1000, α = 0.7, J11 = J22 = 1, J12 = 0.5 and
J21 = −3.5. Sufficiently large σ.
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Thank you very much
for your attention!
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