RHYTHMIC COLLECTIVE BEHAVIOR IN MEAN-FIELD SYSTEMS

Francesca Collet

Institute of Applied Mathematics Delft University of Technology

TUDelft

Jointly with Marco Formentin and Daniele Tovazzi

Life Sciences Institut Henri Poincaré, Paris May 16–18, 2017

Francesca Collet (TU Delft)

Motivations

The emergence of self-sustained periodic behavior has been widely observed and (numerically) studied in neuroscience: neural networks (Pham, Pakdaman, Champagnat '98; Pakdaman, Perthame, Salort '10, Pakdaman, Perthame, Salort '10), nerve membranes (Fitzhugh '61), nerve axons (Nagumo, Arimoto, Yoshizawa '62),...

Problem

Emergence of periodicity in mean-field models

Analyze interacting systems that may exhibit a collective periodic behavior even though single units have no natural tendency of behaving periodically

Reversibility breaking mechanisms

DISSIPATION

- Collet, Dai Pra and Formentin. Collective periodicity in mean-field models of cooperative behavior. *NoDEA*, 22(5):1461–1482, 2015
- Dai Pra, Fischer and Regoli. A Curie-Weiss model with dissipation. J. Stat. Phys., 152:37–53, 2013
- Dai Pra, Giacomin and Regoli. Noise-induced periodicity: some stochastic models for complex biological systems, in *Mathematical Models and Methods for Planet Earth*, Springer-Berlin, pp. 25-35, 2014

Andreis and Tovazzi. Coexistence of stable limit cycles in a generalized Curie-Weiss model with dissipation. *IHP ground floor*, May 16–18, 2017

Reversibility breaking mechanisms (cont'd)

DELAY & INTERACTION NETWORK

- Ditlevsen and Löcherbach. Multi-class oscillating systems of interacting neurons. *Stoch. Proc. Appl.*, 127(6): 1840–1869, 2017
- Touboul. The hipster effect: When anticonformists all look the same. *arXiv preprint arXiv:1410.8001*, 2014

Reversibility breaking mechanisms (cont'd)

INTERACTION NETWORK TOPOLOGY

AIM

Understand the role of interaction network **topology** in enhancing the creation of rhythms in a spin system

Collet, Formentin and Tovazzi. Rhythmic behavior in a two-population mean field Ising model. *Phys. Rev. E*, 94(4): 042139, 2016

Two-population Curie-Weiss model

Francesca Collet (TU Delft) Rhythmic collective behavior in mean-field systems May 17, 2017 7 / 24

- *N* particles (i = 1, ..., N) with all-to-all coupling
- State of particle i:

$$x_i \in \{-1,+1\}$$

• Two families of particles $(N_1 + N_2 = N)$:

Population F_1 Population F_2 $(x_1, x_2, \dots, x_{N_1} \mid x_{N_1+1}, \dots, x_N)$

- *N* particles (i = 1, ..., N) with all-to-all coupling
- State of particle i:

$$x_i \in \{-1,+1\}$$

• Two families of particles $(N_1 + N_2 = N)$:

Population F_1 Population F_2 $(x_1, x_2, \dots, x_{N_1} \mid x_{N_1+1}, \dots, x_N)$

8 / 24

- N particles (i = 1, ..., N) with all-to-all coupling
- State of particle *i*:

$$x_i \in \{-1,+1\}$$

• Two families of particles $(N_1 + N_2 = N)$:

Population F_1 Population F_2 $(x_1, x_2, \dots, x_{N_1} \mid x_{N_1+1}, \dots, x_N)$

8 / 24

Francesca Collet (TU Delft)

Markovian evolution

$$egin{array}{lll} x_i(t) \longrightarrow -x_i(t) \ ext{at} \ ext{rate} \end{array}$$

Francesca Collet (TU Delft)

Markovian evolution

$$x_i(t) \longrightarrow -x_i(t)$$

at rate
 $e^{-x_i \left[lpha J_{11} m_{N_1}(t) + (1-lpha) J_{21} m_{N_2}(t)
ight]}$
if $i \in F_1$

with
$$\alpha = \frac{N_1}{N}$$
 and $m_{N_j}(t) = \frac{1}{N_j} \sum_{i \in F_j} x_i(t)$ for $j = 1, 2$

Francesca Collet (TU Delft)

Markovian evolution $x_i(t) \longrightarrow -x_i(t)$

 $e^{-x_{i}\left[\alpha J_{11}m_{N_{1}}(t)+(1-\alpha)J_{21}m_{N_{2}}(t)\right]} e^{-x_{i}\left[\alpha J_{12}m_{N_{1}}(t)+(1-\alpha)J_{22}m_{N_{2}}(t)\right]}$ if $i \in F_{1}$ if $i \in F_{2}$

with $\alpha = \frac{N_1}{N}$ and $m_{N_j}(t) = \frac{1}{N_j} \sum_{i \in F_j} x_i(t)$ for j = 1, 2

Francesca Collet (TU Delft)

Markovian evolution

with $\alpha = \frac{N_1}{N}$ and $m_{N_j}(t) = \frac{1}{N_j} \sum_{i \in F_j} x_i(t)$ for j = 1, 2

Francesca Collet (TU Delft)

Markovian evolution

with $\alpha = \frac{N_1}{N}$ and $m_{N_j}(t) = \frac{1}{N_j} \sum_{i \in F_j} x_i(t)$ for j = 1, 2

ORDER PARAMETER

 $(m_{N_1}(t), m_{N_2}(t))$

Francesca Collet (TU Delft)

... to macro

Infinite volume dynamics:

$$(\dot{m}_1(t), \dot{m}_2(t)) = V_{\alpha,J}(m_1(t), m_2(t))$$

where

$$V_{\alpha,J}(x,y) = \begin{pmatrix} 2\sinh\left[\alpha J_{11}x + (1-\alpha)J_{21}y\right] - 2x\cosh\left[\alpha J_{11}x + (1-\alpha)J_{21}y\right] \\ 2\sinh\left[\alpha J_{12}x + (1-\alpha)J_{22}y\right] - 2y\cosh\left[\alpha J_{12}x + (1-\alpha)J_{22}y\right] \end{pmatrix}$$

... to macro

Infinite volume dynamics:

$$(\dot{m}_1(t), \dot{m}_2(t)) = V_{\alpha,J}(m_1(t), m_2(t))$$

where

$$V_{\alpha,J}(x,y) = \begin{pmatrix} 2\sinh\left[\alpha J_{11}x + (1-\alpha)J_{21}y\right] - 2x\cosh\left[\alpha J_{11}x + (1-\alpha)J_{21}y\right] \\ 2\sinh\left[\alpha J_{12}x + (1-\alpha)J_{22}y\right] - 2y\cosh\left[\alpha J_{12}x + (1-\alpha)J_{22}y\right] \end{pmatrix}$$

Phase Transition

Francesca Collet (TU Delft)

... to macro (cont'd)

We fix α , J_{12} , J_{21} and we assume $J_{11} = J_{22} = J$. Then,

Self-organization

Time evolution of population F_1 . Simulations have been run with N = 1000, $\alpha = 0.5$, $J_{12} = -6$, $J_{21} = 5$. Critical threshold: $J_c = 2$.

Francesca Collet (TU Delft)

Self-organization

Time evolution of population F_1 . Simulations have been run with N = 1000, $\alpha = 0.5$, $J_{12} = -6$, $J_{21} = 5$. Critical threshold: $J_c = 2$.

Francesca Collet (TU Delft)

HOPF BIFURCATION THRESHOLD $\alpha J_{11} = 2 - (1 - \alpha)J_{22}$ & $[(1 - \alpha)J_{22} - 1]^2 + \alpha(1 - \alpha)J_{12}J_{21} < 0$

Francesca Collet (TU Delft)

Francesca Collet (TU Delft)

Francesca Collet (TU Delft)

 $\alpha J_{11} = 2 - (1 - \alpha) J_{22} \qquad \& \qquad \left[(1 - \alpha) J_{22} - 1 \right]^2 + \alpha (1 - \alpha) J_{12} J_{21} < 0$

Francesca Collet (TU Delft)

Francesca Collet (TU Delft)

Francesca Collet (TU Delft)

SELF-SUSTAINED RHYTHMIC BEHAVIOR

 Francesca Collet (TU Delft)
 Rhythmic collective behavior in mean-field systems
 May 17, 2017
 13 / 24

Adding delay

- *N* particles (i = 1, ..., N) with all-to-all coupling
- State of particle i:

$$x_i \in \{-1,+1\}$$

• Two families of particles $(N_1 + N_2 = N)$:

Population F_1 Population F_2 $(x_1, x_2, \dots, x_{N_1} \mid x_{N_1+1}, \dots, x_N)$

- *N* particles (i = 1, ..., N) with all-to-all coupling
- State of particle *i*:

$$x_i \in \{-1,+1\}$$

• Two families of particles $(N_1 + N_2 = N)$:

Population F_1 Population F_2 $(x_1, x_2, \dots, x_{N_1} \mid x_{N_1+1}, \dots, x_N)$

where, for $n \in \mathbb{N}$ and $k \in \mathbb{N} \setminus \{0\}$, we define

$$\gamma_{N_j}^{(n)}(t) = \int_0^t \frac{(t-s)^n}{n!} k^{n+1} e^{-k(t-s)} m_{N_j}(s) \, ds$$

Francesca Collet (TU Delft)

Delay kernel features

Delay kernel features

FINITE-DIMENSIONAL ORDER PARAMETER

$$\left(m_{N_1}(t), m_{N_2}(t), \gamma_{N_1}^{(0)}(t), \dots, \gamma_{N_1}^{(n)}(t), \gamma_{N_2}^{(0)}(t), \dots, \gamma_{N_2}^{(n)}(t)\right)$$

Francesca Collet (TU Delft) Rhythmic collective behavior in mean-field systems May

... to macro

Infinite volume dynamics:

$$\dot{m}_1(t) = 2 \sinh[\alpha J_{11}m_1(t) + (1-\alpha)J_{21}\gamma_2^{(n)}(t)] \\ -2m_1(t) \cosh[\alpha J_{11}m_1(t) + (1-\alpha)J_{21}\gamma_2^{(n)}(t)]$$

$$\dot{m}_2(t) = 2 \sinh[\alpha J_{12} \gamma_1^{(n)}(t) + (1-\alpha) J_{22} m_2(t)] - 2m_2(t) \cosh[\alpha J_{12} \gamma_1^{(n)}(t) + (1-\alpha) J_{22} m_2(t)]$$

$$\dot{\gamma}_{1}^{(0)}(t) = k[-\gamma_{1}^{(0)}(t) + m_{1}(t)] \dot{\gamma}_{1}^{(n)}(t) = k[-\gamma_{1}^{(n)}(t) + \gamma_{1}^{(n-1)}(t)] \quad (\text{for } n > 0) \dot{\gamma}_{2}^{(0)}(t) = k[-\gamma_{2}^{(0)}(t) + m_{2}(t)] \dot{\gamma}_{2}^{(n)}(t) = k[-\gamma_{2}^{(n)}(t) + \gamma_{2}^{(n-1)}(t)] \quad (\text{for } n > 0)$$

GOAL

THERE EXISTS A SUBSPACE OF THE PARAMETER SPACE WHERE A HOPF BIFURCATION OCCURS

Summary of the results

DYNAMICS INTERACTION NETWORK	without delay	with delay
+++++++++++++++++++++++++++++++++++++++	Rhythmic behavior	Rhythmic behavior
+	Rhythmic behavior	Rhythmic behavior
-+++	Rhythmic behavior	Rhythmic behavior
	Rhythmic behavior	Rhythmic behavior

Conclusions

- Network topology. A robust choice of the coupling constants and of the population sizes is sufficient for a limit cycle to arise.
- Delay. In the case when the choice of the parameters does not suffice to favor the transition to a rhythm, delay may help in this respect.
- Beyond mean-field. Emergence of a periodic behavior through frustrated dynamics is very much related to the mean-field setting.
- More general networks...?!

Currently

with Luisa Andreis, Marco Formentin and Daniele Tovazzi

Understand if frustration may work also for diffusions

- N particles (*i* = 1, ..., N) with all-to-all coupling
- State of particle $i: x_i \in \mathbb{R}$
- Two families: $|F_1| = N_1$, $|F_2| = N_2$ and $N_1 + N_2 = N$
- Dynamics:

If
$$i \in F_1$$
: $dx_i(t) = [-x_i^3(t) + x_i(t)] dt - \alpha J_{11} [x_i(t) - m_{N_1}(t)] dt - (1 - \alpha) J_{21} [x_i(t) - m_{N_2}(t)] dt + \sigma dw_i(t)$

If
$$i \in F_2$$
: $dx_i(t) = [-x_i^3(t) + x_i(t)] dt - \alpha J_{12} [x_i(t) - m_{N_1}(t)] dt - (1 - \alpha) J_{22} [x_i(t) - m_{N_2}(t)] dt + \sigma dw_i(t)$

(!) Positive and negative interactions are allowed

Noise-induced periodicity

Time evolution of populations F_1 and F_2 . Simulations have been run with N = 1000, $\alpha = 0.7$, $J_{11} = J_{22} = 1$, $J_{12} = 0.5$ and $J_{21} = -3.5$. Sufficiently large σ .

Francesca Collet (TU Delft) Rhythmic collective behavior in mean-field systems May 17, 2017 22 / 24

Thank you very much for your attention!

Francesca Collet (TU Delft) Rhythmic collective behavior in mean-field systems May 17, 2017 23 / 24

References

- Collet, Dai Pra and Formentin. Collective periodicity in mean-field models of cooperative behavior. *NoDEA*, 22(5):1461–1482, 2015
- Collet, Formentin and Tovazzi. Rhythmic behavior in a two-population mean field Ising model. *Phys. Rev. E*, 94(4): 042139, 2016
- Dai Pra, Fischer and Regoli. A Curie-Weiss model with dissipation. *J. Stat. Phys.*, 152:37–53, 2013
- Dai Pra, Giacomin and Regoli. Noise-induced periodicity: some stochastic models for complex biological systems, in *Mathematical Models and Methods for Planet Earth*, Springer-Berlin, pp. 25-35, 2014
- Ditlevsen and Löcherbach. Multi-class oscillating systems of interacting neurons. *Stoch. Proc. Appl.*, 127(6): 1840–1869, 2017
- Giacomin and Poquet. Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors. *Braz. J. Prob. Stat.*, 29(2): 460–493, 2015

Touboul. The hipster effect: When anticonformists all look the same. arXiv preprint arXiv:1410.8001, 2014

Francesca Collet (TU Delft) Rhythmic collective behavior in mean-field systems May 17, 2017 24 / 24