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Intra-cellular transport

Need for transport

From [Wittmann et al, J. Cell Biol. 161:845 (2003)]

From [Judith Stoffer, NIGMS]

C. Appert-Rolland (LPT) Intracellular transport Life Sciences, IHP, 16-05-2017 4 / 60



Intra-cellular transport

Need for transport

From [Wittmann et al, J. Cell Biol. 161:845 (2003)]

From [Judith Stoffer, NIGMS]

C. Appert-Rolland (LPT) Intracellular transport Life Sciences, IHP, 16-05-2017 5 / 60



Intra-cellular transport

Particular case: the axon

up to 1 m in human beings, a

few microns for the diameter

crowded environment

Link with neurodegenerative

diseases
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Intracellular transport

From [Alberts et al, Molecular Biology of the Cell, 5th ed. (2008)]

[From
www.ulysse.u-bordeaux.fr/atelier/ikramer/biocell_diffusion]

[Modified from
www.ulysse.u-bordeaux.fr/
atelier/ikramer/
biocell_diffusion]✞✝ ☎✆Microtubules are polarized

[Modified from a wikipedia
image by Kebes]✞✝ ☎✆Motors can attach and detach

C. Appert-Rolland (LPT) Intracellular transport Life Sciences, IHP, 16-05-2017 7 / 60



Cargo-motor complexes

– +

B

A

– +

C

– +

Current Biology

Teams of motors

Can apply stronger forces

Increases processivity

[Welte (2004) Curr. Biol.]
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Tug-of-war

Endosome inside

Dictyostelium cells.

[Soppina et al (2009) PNAS]
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Cargo-motor complexes

– +

B

A

– +

C

– +

Current Biology

Teams of motors

Dynamics of cargo-motors

complexes

Comparison with

experimental data

Consequences in terms of

transport properties

[Welte (2004) Curr. Biol.]
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Plan - Intra-cellular Transport
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Tug-of-war, symmetric motors

[Müller, Klumpp, and Lipovsky (2008) PNAS]

Variables

Number of attached motors

of each type

Mean field model

➥ Equal sharing of the force among

attached motors of one given type

Motor Dynamics:

-detachment rate

-motor velocity

ω = ω(Fi)
v = v(Fi)
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Tug-of-war, symmetric motors

If motors stop walking before

detaching

If motors detach before stall

• Intermediate case

MF prediction

Symmetric bimodal/trimodal

distributions of the velocity
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Explicit Position Based Model

EPB-model

Motor positions are explicitely taken into account

Motors are linked by springs to the cargo

See Kunwar et al;

Bouzat et al;

Variables

Position of each attached motor

✞✝ ☎✆Position =⇒ Force
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Explicit Position Based Model

Stochastic Motor Dynamics:

- attachment rate

- stepping rate

- detachment rate

ω̃
p = p(Fi)
ω = ω(Fi)

Cargo dynamics

m
∂2xC(t)

∂t2
= −β

∂xC(t)

∂t
+F (xC , {xi})
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Tug-of-war, symmetric motors

Mean field model
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For the same motors

[S. Klein et al, Eur. Phys. J. Special Topics, 223 (2014) 3215]
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Tug-of-war, symmetric motors
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Tug-of-war, asymmetric motors

N+, N− motors attached to the cargo, among which n+, n− attached to

the filament

Asymmetric teams

Kinesins and dyneins behave differently
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Tug-of-war, asymmetric motors

N+, N− motors attached to the cargo, among which n+, n− attached to

the filament

Stochastic motor dynamics

Detachment rate

From [Kunwar et al (2011) PNAS]
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Tug-of-war, asymmetric motors

N+, N− motors attached to the cargo, among which n+, n− attached to

the filament

Stochastic motor dynamics

• Stepping rate (for Fi below stall force) :

s(|Fi |, [ATP]) =
kcat(|Fi |)[ATP]

[ATP] + kcat(|Fi |)kb(|Fi |)
−1

,

Michaelis-Menten kinetics

From [Schnitzer et al (2000) Nat. Cell Biol.]

• Stepping rate (for Fi above stall force) :

backward stepping sb = vb/d
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Tug-of-war, asymmetric motors

N+, N− motors attached to the cargo, among which n+, n− attached to

the filament

Stochastic motor dynamics

[ATP] and force dependence

Comparison for kinesin

From [Schnitzer et al (2000) Nat. Cell Biol.]

From [Visscher et al (1999) Nature]
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Tug-of-war, asymmetric motors

N+, N− motors attached to the cargo, among which n+, n− attached to

the filament

How does this cargo-motors complex behave?
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Plan - Intra-cellular Transport

Dynamics of cargo-motors complexes
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Anomalous diffusion

Preliminary remarks:

Mean Square Displacement

MSD ≡ 〈(X (t +∆t)− X (t))2〉

〈〉 = average over t .

Ballistic : MSD ∼ ∆t2

Purely diffusive without bias :

MSD ∼ ∆t

Anomalous diffusion:

MSD ∼ ∆tγ with γ < 1 or

1 < γ < 2.
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Anomalous diffusion

Preliminary remarks:

Mean Square Displacement
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Anomalous diffusion

[Caspi et al, PRE (2002) 22, 011916]

Engulfed 2 and 3 µm beads, in living cells,

driven by microtubule-associated motors

black line: 3 µm beads

Enhanced diffusion

scaling as t3/2 at short

times

Ordinary (small spheres)

or subdiffusive (large)

scaling at long times
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Anomalous diffusion

[Caspi et al, PRE (2002) 22, 011916]

Engulfed 2 and 3 µm beads, in living cells,

driven by microtubule-associated motors

black line: 3 µm beads

Enhanced diffusion

scaling as t3/2 at short

times

Ordinary (small spheres)

or subdiffusive (large)

scaling at long times

(see also in grey: subdif-

fusive motion of nondriven

lipid spheres granules natu-

rally appearing in these cells)
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Anomalous diffusion

[Salman et al, Chem. Phys. (2002) 284, 389]

In vitro experiment with egg extract;

3 µm beads coated with motors and moving along MTs

MSD ∼ ∆tγ

Type of filament γ

MT + actin γ ≃ 3/2 superdiffusive

MT (no actin) γ ≃ 3/2 superdiffusive

Actin (no MT) γ ≃ 3/4 subdiffusive

no MT, no actin γ ≃ 1 diffusive

✎
✍

☞
✌“the t3/2 behavior comes about due to a hindrance to ballistic

motion”
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Anomalous diffusion

[Kulic et al (2008) PNAS 105, 10011]

Peroxisome trajectories in Drosophila S2 cells

α = 0.59 ± 0.28 and β = 1.62 ± 0.29

➥ At short time scales

(below 30ms):

subdiffusion

➥ At intermediate times:

superdiffusion

➥ At longer time scales:

diffusion or subdiffusion.
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Anomalous diffusion

[Kulic et al (2008) PNAS 105, 10011]

Peroxisome trajectories in Drosophila S2 cells

α = 0.59 ± 0.28 and β = 1.62 ± 0.29

✬

✫

✩

✪

“an exponent close to

1.5, an observation

challenging the simple

motor-hauling-a-cargo

and random motor switch-

ing model and indicating

the movements of micro-

tubules”
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Network Effects

• On a branched network, purely ballistic motion also shows

Var[X ] ∼ ∆tγ with 1 < γ < 2

depending on the turning angle distribution

[Shaebani et al (2014) PRE 90, 030701(R)]
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Anomalous diffusion

Cargo dynamics

m
∂2xC(t)

∂t2
= −β

∂xC(t)

∂t
+F (xC(t), {xi})

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

10
-2

10
-1

1 10

µ
m

2
]

Time [s]

1.4

1.45

1.5

1.55

1.6

1.65

2 3 4 5 6 7 8 9

γ

ka [s
-1

]

t1.5

t

v
a
ri
a
n
c
e
 [

[Klein et al, EPL (2014)]
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Anomalous diffusion

Cargo dynamics

m
∂2xC(t)

∂t2
= −β

∂xC(t)

∂t
+F (xC(t), {xi})
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[Klein et al, EPL (2014)]

No need for further
ingredient

Superdiffusion can be

explained by cargo-

motors dynamics
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Anomalous diffusion

Cargo dynamics with thermal noise

m
∂2xC(t)

∂t2
= −β

∂xC(t)

∂t
+F (xC(t), {xi})+

√

2kBTβξ(t)
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[Klein et al, EPJST (2014)]

vf = 1000 nm/s

d = 8 nm

Crossover time ≃ delay

between steps
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Relaxation phenomenon

[Kulic et al (2008) PNAS 105,

10011]

✬

✫

✩

✪

“These velocity relaxation events

indicated the presence of an

elastic component in the sys-

tem and suggested that bent and

buckled microtubules could influ-

ence peroxisome transport”
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Relaxation phenomenon

Time (ms)

[Kulic et al (2008) PNAS 105,

10011]
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EPB Model

Elastic energy can be stored and

released when a motor detaches
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Dynamics of cargo-motors complexes along a single

filament

The EPB model allows to reproduce some experimental
observations:

anomalous diffusion

elastic relaxation events

Why is it interesting for the cell to have these cargo-motors

complexes?
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Active transport versus diffusion

0-xB-xB-LB xB xB+LB

ηη* η*

(a) η∗ = η,

(b) η∗ = 10η,

(c) η∗ = 100η

[Klein et al, EPJST (2014)]
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Plan - Intra-cellular Transport

Dynamics of cargo-motors complexes

Tug-of-war: Mean-Field model

Explicit Position Based model

Anomalous diffusion

External control

Interplay between transport and lattice dynamics

Impact of lattice dynamics on transport

Lattice deformation driven by active cross-linkers
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Control by fuel supply

Stall force ATP dependence

Kinesin: constant Fs = 2.6 pN

Dynein: Fs varies linearly from 0.3 pN at vanishing [ATP] to 1.2 pN

for saturating [ATP]
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From [Klein et al (2014) EPL]

ATP dependence

More energy (ATP) can

slow down the cargo

It can also reverse cargo

velocity
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Control by External Force

Effective viscosity dependence
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Viscosity dependence

Increase of viscosity can

speed up the cargo

It can also reverse cargo

velocity

Advantage

Easy control of the

cargo-motors complex

by a single external

parameter
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Conclusion

Many experimental observations can already be explained by the

stochastic motion of cargo-motors complexes along a single

microtubule.

Highly controlable system.

Our predictions for [ATP] dependence or external force control

could be tested experimentally.

Challenges

Need of well controlled experiments to check tug-of-war scenarios

In vitro / in vivo differences?
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Plan - Intra-cellular Transport

Dynamics of cargo-motors complexes

Tug-of-war: Mean-Field model

Explicit Position Based model

Anomalous diffusion

External control

Interplay between transport and lattice dynamics

Impact of lattice dynamics on transport

Lattice deformation driven by active cross-linkers
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Collective effects

Cellular automata models with one type of motors

L−1 L

p p
ωdωa

α β

1 2

[Lipowsky, Klumpp, & Nieuwenhuizen, P.R.L. (2001)]
[Parmeggiani, Franosch, & Frey, P.R.L. (2003)]
[J. Tailleur, M. Evans, & Y. Kafri, P.R.L. (2009)]

In vitro

➥ well suited for motility assays,

predicts the experimentally

observed bulk localization of high

and low density domains

In vivo

Crowded environment

➥ No infinite diffusion

[Nishinari, Okada, Schadschneider, & Chowdhury,
P.R.L. (2005)]

[by Tim Vickers]
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Collective effects in bidirectional intracellular transport

Ingredients

Two types of complexes going in opposite directions

Confined diffusion in the surrounding cytoplasm

Reservoir
ω

aω aω dωp

D D D

p

D

Filament

d

[M. Ebbinghaus and L. Santen, J.
Stat. Mech. (2009)]

Jamming

➥ No transport in thermodynamic limit

➥ Offering multiple filaments enhances

cluster formation.
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Intra-cellular traffic - Dynamic instability

MTs exhibit stochastic switching between a shrinking and a growing state

[A. Viel, R. A. Lue and J. Liebler, BioVisions project, http://multi
media.mcb.harvard.edu]

Microtubules seen by fluorescence in S. pombe (yeast)

Scale bar = 5 µm

[M. Erent, D.R. Drummond, R.A. Cross (2012) PLoS ONE 7(2): e30738]

[Shemesh, Erez, Ginzburg, Spira. Traffic (2008)]

1s (video) = 120s (real time)
Scale bar = 10 µm
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Dynamics of the lattice

Reservoir

ω aω dωdω

kpkd

p

D D D

p

D

Filament

a

static filament dynamic filament

space

ti
m

e

[Ebbinghaus, Appert, Santen, PRE 82 (2010) 040901]
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Bidirectional intracellular traffic

☞ Drugs modifying the dynamics of the microtubules induce jams

video 1: microtubule dynamics with and without drugs (Paclitaxel)

[Shemesh and Spira, Acta Neuropathol (2010) 119:235]
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Bidirectional intracellular traffic

☞ Drugs modifying the dynamics of the microtubules induce jams

video 2: microtubule dynamics and pinocytotic vesicles transport

without drugs

[Shemesh and Spira, Acta Neuropathol (2010) 119:235]
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Bidirectional intracellular traffic

☞ Drugs modifying the dynamics of the microtubules induce jams

video 3: microtubule dynamics and pinocytotic vesicles transport

with drugs

[Shemesh and Spira, Acta Neuropathol (2010) 119:235]
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Challenges

A full picture of the axonal MT network is still missing

Understanding the mechanisms of transport breakdown in

neurodegenerative diseases
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Plan - Intra-cellular Transport

Dynamics of cargo-motors complexes

Tug-of-war: Mean-Field model

Explicit Position Based model

Anomalous diffusion

External control

Interplay between transport and lattice dynamics

Impact of lattice dynamics on collective cargo transport

Lattice deformation driven by active cross-linkers
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MT deformation: Observations

In vivo

[Brangwynne et al, PNAS (2007)]

[Straube et al, Molec. Biol. of the Cell (2006)]

MT-MT interactions mediated by conventional kinesin (fungus
Ustilago maydis)

In vitro

[Brangwynne et al, PRL (2008)]

MT embedded in acto-myosin gel

In vitro measurements

Persistence length of a free MT

= a few mm

In vivo measurements

Persistence length of MTs = 30

µm
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Model definition
[Ines Weber, Cécile Appert-Rolland, Grégory Schehr, and Ludger Santen, "Non-equilibrium fluctuations of a
semi-flexible filament driven by active cross-linkers" (2017) submitted]

Model

Semi-flexible filament E = k
∫ L

0

(

∂θ
∂s

)2
ds

Connected to a background network by active cross-linkers

Stochastic dynamics for the cross-linkers

Cross-linkers feel a force FSFF only for elongated chain

k = bending rigidity
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Model definition

Active Cross-linkers

bind at available sites with rate ωa

➥ Polarity of the background filament

chosen at each attachment event

unbind with rate

ωd = ωd0
exp

(

|FSFF|
Fd

)

step with rate p(FSFF)

Fs = stall force.
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Model definition

Coupling SFF / linkers

{xi} = positions of pulling linkers (elongated chains)

Between xi and xi+1: F = Force / unit length

Ei = k
∫ xi+1

xi

[

∂2
x ui(x)

]2
dx and F ∼ ∂4

x ui(x)

Equilibrium shape

F = 0 ➥ ui(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di
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Model definition

Coupling SFF / linkers

• We put end-to-end these segments with boundary conditions :

ui(xi) = zi , ui(xi+1) = zi+1

∂xui(xi) = vi , ∂xui(xi+1) = vi+1

zi = vertical displacement of the SFF imposed at position xi

vi = the local slope ➥ differentiability of the global polynomial
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Model definition

Coupling SFF / linkers

For each set of positions {xi}, we find

➥ the global equilibrium shape of the SFF

➥ the local force exerted at each attachment point:

Fk = ∂E
∂zk

= 24k

(

∆zk−1

∆x3
k−1

−
∆zk

∆x3
k

)

− 12k

{

vk

(

1

∆x2
k−1

− 1

∆x2
k

)}

− 12k

{

vk−1

∆x2
k−1

−
vk+1

∆x2
k

}
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Coupling between SFF and linkers

Update scheme

We update the system of linkers with a tower sampling algorithm

and perform stochastic events until the occurrence of an event

that modifies the force exerted on the SFF

Then the new equilibrium shape of the SFF is calculated

The new forces exerted on the linkers are obtained and the value

of force-dependent rates is calculated for each linker.

➥ Can model cascades of detachment

➥ Understanding how deformations originate from microscopic

discrete forcing
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Non-equilibrium fluctuations of a SFF driven by active

cross-linkers

Results

➥ Obtain deformation spectrum

➥ Obtain persistance length

➥ Investigate the role of parameters (rigidity, mesh size, etc)

➥ Compare thermal and active linkers to identify geometrical effects
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Deformation spectrum

Decomposition into cosine modes

θ(s) =
√

2/L

∞
∑

n=0

a(q) cos(qs)

with the wavenumber q = (nπ/L)

Thermal fluctuations in 2D

The variance of cosine modes’ amplitudes is known to vary with q as

Var(a(q)) ≡ 〈a(q)2〉 =
1

Lp

1

q2
with Lthermal

p =
2k

kBT
.

Non-thermal fluctuations

No reason to have q−2 dependence
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Deformation spectrum

In vivo

[Brangwynne et al, PNAS (2007)]

In silico

[I. Weber et al, submitted (2017)]

Red squares: parameters inspired by biological sys-

tem. The q−2 behavior (orange line) for small q can
be associated with a persistence length of 26µm.

Generic: no clear q−2 behavior.
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Persistence length

For two dimensional fluctuations

Auto-correlation of the tangent angle θ

〈cos
(

θ(s)− θ(s′)
)

〉 = exp
(

−|s − s′|/(2Lp)
)

Lthermal
p =

2k

kBT
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Persistence length

d
mesh

 = 0.2
d

mesh
 = 0.4

d
mesh

 = 0.6
d

mesh
 = 0.8

d
mesh

 = 1.0

10
-2

10
0

10
2

bending rigidity k

10
0

10
2

10
4

10
6

pe
rs

is
te

nc
e 

le
ng

th
 [

µm
]

L
p
 ~ k

1.0

✞✝ ☎✆k = 1 for MTs

Straight line = the linear increase

expected for purely thermal fluctu-

ations

Rigidity dependence

➥ For small k, deformations are limited by the mesh size.

➥ For k ≥ 1, super-linear increase of the persistence length up to,

and beyond the SFF length.
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Persistence length
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Mesh size dependence (fixed number of linkers)

➥ For small k, the persistence length slightly decreases with dmesh

(This dependence is linear in dmesh)

➥ For large k, it is the contrary! When dmesh decreases, the

curvature induced by a single linker step is more pronounced. At

high k , this results into strong load forces, which most likely the

linker will not be able to sustain. Therefore, it is difficult to deform

the stiff SFF at all, if the density of cross-linkers is too high.
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Non-equilibrium fluctuations of a SFF driven by active

cross-linkers

Model allowing to couple the dynamics of a SFF with the
stochastic dynamics of active linkers.

Deformation spectrum

investigate the role of parameters (rigidity, mesh size, etc)

Can be generalized to other types of cross-linkers.

We could have expected that one type of motors could pull off the
other. This is not the case.

➥ cf Tug-of-war

Challenges

In vitro experiments in simplified geometry?
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For more details:

http://www.th.u-psud.fr/page_perso/Appert/

Thank-you
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